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1 Introduction

Recently, a quasistatic boundary element method (BEM) solution has been proposed
[1] that combines the adjoint double-layer formulation of the boundary element
method [2–4] which utilizes surface charges at the boundaries, the zeroth-order
(piecewise constant) basis functions with accurate near-field integration, and the
FMM accelerator [5–7]. This approach does not require explicit forming of the BEM
matrix; an iterative solution with M iterations requires O(MN) operations. The fast
multipole method speeds up computation of a matrix-vector product of a numerical
iterative solution via the boundary element method (BEM) by many orders of
magnitude. In the past, it was successfully applied for modeling high-frequency
electromagnetic [8, 9] and acoustic [10–12] scattering problems. It has also been
applied to modeling transcranial magnetic stimulation (TMS) and demonstrated a
fast computational speed and superior accuracy for high-resolution head models as
compared to both the standard boundary element method and the finite element
method of various orders [1, 13, 14]. The rapid increase in the use of FMM in such
numerical modeling schemes calls for an accurate and thorough study of the
performance of FMM in a wide range of scenarios.

The goal of this study is to benchmark the performance (both speed and memory
consumption) of the fast multipole method or FMM [5, 6]. Here, we will use the
established head collection and its barycentrically refined versions to perform the
profiling of the FMM library provided by Z. Gimbutas and L. Greengard [7] and
employed in [1, 12]. Such profiling implies running the FMM for all head geometries
at different frequencies including the static case and averaging the respective results.
One FMM runtime essentially corresponds to one iteration step of an iterative
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BEM-FMM solution [1, 12]. Therefore, the data reported in the present study could
be used to estimate the performance of a rather generic BEM-FMM algorithm if the
number of iterations is approximately known or could be estimated a priori.

2 Materials and Methods

2.1 FMM Library of 2017

The core FMM algorithm is taken from the FMM library provided by Gimbutas and
Greengard [7]. The latest version, last updated on November 8, 2017, is downloaded
from the GitHub database to use in this study. We focus specifically in the function
fmm3dwhich is used to solve Laplace and Helmholtz equations for a large number of
target points. The compiled MEX versions of this function, namely, fmm3d.mexw64
and fmm3d.mexw64 for MATLAB compatibility in Windows and Linux, respec-
tively, are used for all FMM calculations within the MATLAB environment.
Depending on whether a solution for the Laplace or Helmholtz equation is desired,
a wrapper function, either lfmm3dpart or hfmm3dpart – both available in the FMM
library, is employed. A sample MATLAB command that calls hfmm3dpart to
compute the Helmholtz equation is given by the following:

[U]=hfmm3dpart(iprec,k,nsource,source,ifcharge,charge,ifdipole,
dipstr,dipvec,ifpot,iffld,ntarget,target,ifpottarg,iffldtarg)

In the command above, the inputs parameters are as follows:

• iprec: precision flags for FMM
• k: wave number(Helmholtz parameter)
• nsource: number of source points
• source: source locations
• ifcharge: charge flag
• charge: charge values
• ifdipole: dipole flag
• dipstr: dipole magnitudes
• dipvec: dipole orientations
• ifpot: potential flag
• iffld: filed flag
• ntarget: number of targets
• target: target locations
• ifpottarg: target potential flag
• iffldtarg: target field flag
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The output parameter is the struct U that contains the following fields:

• U.pot: the computed potential at source locations
• U.fld: the field at source location
• U.pottarg: potential at target locations
• U.fldtarg: field at target locations

In a similar manner, a sample MATLAB command that calls lfmm3dpart to
compute the Laplace equation is given by the following:

[U]=lfmm3dpart(iprec,nsource,source,ifcharge,charge,ifdipole,
dipstr,dipvec,ifpot,iffld,ntarget,target,ifpottarg,iffldtarg)

where the input and output variables are similar to that of hfmm3dpart, except that
for lfmm3dpart there is no wave number k. A more recent FMM library, developed
by Flatiron Institute [15], is also investigated and compared with the library provided
by Gimbutas and Greengard [7].

2.2 CAD Human Head Models

Every CAD human head model [8] has seven objects: the skin, skull, CSF, GM,
cerebellum, WM, and ventricles head compartments. The models have an “onion”
topology: the gray matter shell is a container for white matter, ventricles, and
cerebellum objects; the CSF shell contains the gray matter shell; the skull shell
contains the CSF shell; and finally, the skin or scalp shell contains the skull shell.
The models have an average of 866,000 triangular facets and an average triangle
quality of 0.25. The average edge length is 1.48 mm, and the average surface mesh
density or resolution is 0.57 points per mm2. A sample image of such a head model is
shown in Fig. 1. Finer meshes with ~3,464,000 facets, obtained through one iteration
of subdivision on the original CAD models, are also obtained for more intensive
examinations on the scaling of timings and hardware resources.

2.3 Hardware Information

Windows server:

• 2 CPUs: Intel(R) Xeon(R) CPU E5–2683 v4 at 2.10GHz, 16 cores, 32 logical
processors

• Physical memory (RAM): 256 GB
• OS: Microsoft Windows Server 2008 R2 Enterprise
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Linux server:

• 2 CPUs: Intel(R) Xeon(R) CPU E5–2690 0 at 2.90GHz, 64 bits
• Physical memory (RAM): 192 GB
• OS: Red Hat Enterprise Linux Server release 7.5 (Maipo)

2.4 Charge Assembly

For each of the 16 CAD models, a set of monopole charges are distributed over the
surfaces of the triangular mesh so that at each triangle centers, a charge of random

Fig. 1 Compartments of a sample brain model used in the testing of FMM software. (Image
adapted from Htet et al. [8])
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magnitude q is assigned. The electric potential generated at each triangle centroids,
excluding self-contribution from the local charge, is given by the following:

φ rð Þ ¼
X

i

1
4πε0

q
r� rij j e

�jk r�rij j ð1Þ

where ε0 is permittivity of vacuum, q is electric charge of the source, k is the wave
number, r is the target location at which the potential is sought, and ri is the source
location. The resultant electric field is given by the following:

E rð Þ= 2∇φ ¼
X

i

þ q
4πε0

r� ri
r� rij j3 þ jk

r� ri
r� rij j2

 !
e�jk r�rij j ð2Þ

As a measure of FMM’s performance, both the potential and the electric field,
given by Eqs. (1) and (2), are computed for all models, at the same triangle
centroids, and excluding the self-contribution. Through the function hfmm3dpart
(and lfmm3dpart for the case ka ¼ 0), the potential and the field are obtained
simultaneously. With each head models, the calculations are done for three levels
of accuracy:

• 2 digits (iprec ¼ 0)
• 3 digits (iprec ¼ 1)
• 6 digits (iprec ¼ 2)

The frequencies for which the FMM algorithm is tested span over a wide range,
which corresponds to ka values varying from 0 to 500. Here, a is the maximum of
the x, y, and z coordinates of the model. Average value of a is 107.5754.

3 Results

3.1 Windows Platform (FMM 2017)

3.1.1 Original CAD Models

The relationship between runtimes of FMM calculations on Windows server, aver-
aged over all 16 models, and ka is shown in Figs. 2, 3 and 4, with precisions 0 (two
digits), 1 (three digits), and 2 (six digits), respectively. The discrete step for values of
ka is 50, starting from ka¼ 0 and ending at ka¼ 500, with a more refined resolution
within the low-frequency domain, from 0 to 50, where the step is 2.5. As can be seen
in the insets in these figures, where the plot for low-frequency domain is magnified,
there is always a sharp jump from the runtime for ka ¼ 0 (Laplace case) to the very
next value ka ¼ 2.5. After the abrupt jump, FMM time increases steadily in a linear
manner within the small ka domain (low frequencies) before growing exponentially
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Fig. 2 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is two digits accuracy. The Laplace case takes on average 3.41 s to
complete with precision 0 (two digits)
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Fig. 3 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is three digits accuracy. The Laplace case takes on average 9.23 s to
complete with precision 1 (three digits)

352 D. N. Pham



at medium and large ka. The slope of the time-ka dependence in low ka with
precision 0 (Fig. 2) is (6.04 � 0.19) � 10�2, whereas with precision 1, the slope is
(7.86 � 0.13) � 10�2, and with precision 2, it is (16.81 � 1.03) � 10�2. From these
numerical estimations, it can be concluded that the higher the demanded precision is,
the steeper the time-ka slope becomes, and the runtime increases with ka in a higher
rate.

In Fig. 5, the FMM runtimes for all three precision choices are plotted. For the
Laplace case (ka ¼ 0), it takes on average 3.41 s for the computations to complete
with precision 0. If higher level of accuracy is requested, the time taken increases to
9.23 s with precision 1 and 16.70 with precision 2. This trend, however, is not
replicated in the Helmholtz case, particularly at the low-frequency domain. As
shown in Figs. 2 and 5, in the small ka domain, except for ka ¼ 0, FMM is longest
with precision 0, the lowest level of accuracy of all. More specifically, with precision
0, FMM runtime increases from an average of 62.88 s at ka ¼ 2.5 to 65.33 s at
ka ¼ 50 (Fig. 1 or 4). Precision 2, the highest accuracy level tested, only takes the
second longest amount of time, with 41.92 s for ka ¼ 2.5, and rises to 50.77 s at
ka ¼ 50. Calculations within the low-frequency domain are fastest with precision
1, as it only takes 27.73 s to finish calculating for ka ¼ 2.5 and 31.67 s for ka ¼ 50.
This rather unexpected behavior continues as far as ka¼ 150, where FMM time with
precision 2, due to its rapid exponential rise, surpasses the runtime of precision
0. Toward the high end of the frequency range, precision 1 runtime, whose expo-
nential rate is also higher than precision 0 (but not as high as 2), starts approaching
before surpassing precision 0’s runtime at ka ¼ 500. Therefore, at very large values
for ka, a more intuitively expected trend is observed, where FMM runtime with
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Fig. 4 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Windows vs
ka. The demanded precision is six digits accuracy. The Laplace case takes on average 16.70 s to
complete with precision 3 (six digits)
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precision 0 is lowest and has the slowest exponential rise as ka increases, followed
by precision 1, and lastly, precision 2 is most time-consuming and has the quickest
exponential rate.

3.1.2 First-Order Mesh Subdivision

In Figs. 6, 7 and 8, FMM runtimes on Windows server with precisions 0, 1, and
2, respectively, averaged over all 16 refined meshes obtained through one iteration of
barycentric subdivision done on the original CAD models, are presented. Average
mesh size quadruples; it is now 3.464 M facets. Similar to when the calculations
were done on the original head models, for ka ¼ 0 (Laplace case), precision 0 takes
the least amount of time, 10.41 s, compared to 41.50 s with precision 1 and 70.86 s
with precision 2. Also similar to the original head models, there are abrupt jumps in
runtime from the Laplace case to the Helmholtz calculations, as shown in Figs. 6, 7
and 8. Within low-frequency limit, FMM runtime increases linearly with ka. The
higher the requested accuracy is, the steeper the slope is; with precision 0, FMM time
increases at the linear rate of (11.02 � 1.90) � 10�2 for ka in the low-frequency
domain (0–50), while FMM time for calculations done with precision 1 increases at a
higher rate, (21.30 � 0.61) � 10�2, and precision 2 calculation time increases most
rapidly with the rate (39.21 � 6.75) � 10�2.

In Fig. 9, the runtimes of FMM applied to the first-order-refined meshes with all
three precision choices are plotted. Again, within the low-frequency domain, preci-
sion 0 does not yield the fastest runtime. As shown in Fig. 9, at ka ¼ 2.5, runtime
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Fig. 5 Comparison among average FMM runtimes within MATLAB platform on Windows for
when two, three, and six digits accuracy are demanded

354 D. N. Pham



1000

800

1200

600

F
M

M
 ti

m
e 

in
 s

ec
on

ds

FMM time vs ka - precision 0 (Windows)
First order mesh refinement

400

200

0
0 50 100 150 200 250 300 350 400 450 500

ka

0
0

200

50

150

100

10 20 30 40 50

Fig. 6 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Windows vs ka. The demanded precision is two digits accuracy. The Laplace case takes
on average 10.41 s to complete with precision 0 (two digits)
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Fig. 7 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Windows vs ka. The demanded precision is three digits accuracy. The Laplace case takes
on average 41.50 s to complete with precision 1 (three digits)
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with precision 0 (172.62 s) is essentially comparable to precision 2 (173.26 s), and
both are significantly slower than precision 1 (127.76 s). As ka increases, out of the
three options, precision 0 has its runtimes increase at the slowest rate. Therefore, by
ka ¼ 350, FMM runtimes of precision 0 is surpassed by precision 1, and from then
on, its runtimes are quickest, followed by precision 1, and precision 2 takes up the
most time.

On the scaling of FMM runtime from the original CAD models that have average
of N0 ¼ 866,000 facets to first-order-refined meshes with N1 ¼ 3,464,000 facets, the
theoretical factor is as follows:

S ¼ N1 logN1

N0 logN0
¼ 4:4 ð3Þ

In Fig. 10, throughout the tested range for ka, the time ratio for precision 0 is
always the smallest out of the three choices for precision. Quite surprisingly, the
ratio for precision 2, for most of the time, is smaller than that of precision 1. Also
interestingly, all three precision options start at ka¼ 0 with scaling factors relatively
close to the theoretical values (perhaps with an exception with precision 0) and then
decrease significantly as ka increases. Therefore, it appears that the higher the
frequency is, the better the scaling in runtime is.
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Fig. 8 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) onWindows vs ka. The demanded precision is six digits accuracy. The Laplace case takes on
average 70.86 s to complete with precision 2 (six digits)
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3.2 Linux Platform (FMM 2017)

3.2.1 Original CAD Models

The relationship between runtimes of FMM calculations on Linux server, averaged
over all 16 models, and ka is shown in Figs. 11, 12 and 13 with precisions 0, 1, and
2, respectively. A summary of runtimes for all three precisions is plotted in Fig. 14.
Different from the same calculations done on the Windows platform, the runtime on
Linux with precision 0, the lowest level of accuracy tested in this study, takes the
least amount of time, while calculations with precision 1 are second, and precision
2, the highest level of accuracy with six digits, consumes the most amount of time.
This order is held consistently throughout the entire frequency range from 0 to 500.
It is also noticeable that runtimes with precisions 0 and 1, which guarantee accuracy
within two and three digits, respectively, are comparable to each other, with calcu-
lations with precision 1 take slightly longer than 0. FMM runtime with precision
2, which demands six digits accuracy, takes significantly more time to finish. This
rather intuitive behavior, however, is not present in the runtime profiling for Win-
dows, which was discussed in Sect. 3.1. As a note on how the two servers compare to
each other in computing Laplace equation, it takes the Linux server 5.14 s to finish
the calculation with precision 0, while for Windows, it is only 3.41 s. The Linux
server, however, is notably faster on precision 1, taking 5.33 s to finish as compared
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Fig. 11 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
ka. The demanded precision is two digits accuracy. The Laplace case takes on average 5.14 s to
complete with precision 0 (two digits)
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Fig. 12 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
ka. The demanded precision is three digits accuracy. The Laplace case takes on average 5.33 s to
complete with precision 1 (three digits)
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Fig. 13 FMM runtime within MATLAB platform (averaged over all sixteen heads) on Linux vs
ka. The demanded precision is six digits accuracy. The Laplace case takes on average 15.31 s to
complete with precision 2 (six digits)
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to 9.23 s by the Windows platform. And finally, the Linux server is slightly better at
precision 2, with 15.31 s, whereas Windows takes 16.70 s.

Comparing the calculations done on two platforms, Linux and Windows, we also
observe major differences in how the runtime evolves as ka varies. First of all, FMM
calculations within low-frequency domain are generally faster on Linux than on
Windows, especially for low-to-medium accuracies (precisions 0 and 1). In partic-
ular, with precision 0, on Linux, it takes on average 19.51 s for hfmm3dpart to finish
solving the Helmholtz equation on the original CAD models for ka within the range
0–50, whereas it takes on average 64.03 s to complete the same task on the Windows
server. Similarly, it takes only 25.59 s on Linux to finish the calculations in the
low-frequency domain with precision 1. Calculations on Windows, although not
drastically slower than Linux as in the case of precision 0, still take 29.71 s to
complete. If higher precisions are in demand, in fact, runtimes on Windows will
catch up with Linux, and eventually, the speed on Windows will exceed. Evidently,
for low-frequency calculations demanding precision 2 (six digits accuracy), it takes
only 45.35 s for hfmm3dpart to complete computing, while a similar task takes the
Linux server 88.88 s to complete.

Scaling of runtime as the frequency (or ka) is increased is another important
metric. For the Linux server, within the range 0–50 for ka, FMM runtime increases
linearly with the slope of (16.06 � 0.31) � 10�2 with precision 0. This is a
significantly faster rate compared to the slope (6.04 � 0.19) � 10�2 (already
mentioned in Sect. 3.1.1) for the same precision but on Windows. This comparison
also holds with precisions 1 and 2, as on Linux the linear rates are
(26.20 � 0.07) � 10�2 with precision 1 and a whopping (50.09 � 3.81) � 10�2
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with precision 2. These values are far inferior than the rates (7.86 � 0.13) � 10�2

with precision 1 and (16.81 � 1.03) � 10�2 with precision 2 on Windows.
Therefore, although the Linux server shows an edge over the Windows platform in
computing low-frequency Helmholtz equation, the fact that runtimes on Linux
increase too quickly with frequency makes it eventually get surpassed by Windows
server at medium- and high-frequency domains. At ka ¼ 500 (the highest value for
ka tested in this study), runtimes on Windows are 834.69 s with precision 0, 833.91 s
with precision 1, and 1090 s with precision 2, while on Linux, the numbers are
1108 s, 1148 s, and 1526 s, respectively.

3.2.2 First-Order Mesh Subdivision

In Figs. 15, 16, and 17, FMM runtimes on Linux server with precisions 0, 1, and
2, respectively, averaged over all 16 refined mesh (obtained through one iteration of
barycentric subdivision done on the original CAD models), are presented. A sum-
mary of runtimes for all three precisions is plotted in Fig. 18. Comparing FMM done
for the refined meshes on Linux and Windows, we obtain trends that are mostly
similar to what was observed in the calculations done on the original models. First,
comparisons on Laplace calculations yield the same results: Linux with precision
0 takes 16.41 s, considerably slower than Windows, which takes only 10.41 s. For
precision 1, the time is 17.7 s on Linux, again significantly better than Windows’
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Fig. 15 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 16.41 s to complete with precision 0 (two digits)
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Fig. 16 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 17.7 s to complete with precision 1 (three digits)
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Fig. 17 FMM runtime for the refined models within MATLAB platform (averaged over all sixteen
heads) on Linux vs ka. The demanded precision is two digits accuracy. The Laplace case takes on
average 73.29 s to complete with precision 2 (six digits)
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41.50 s, and finally, runtimes for precision 2 of the two platforms are comparable,
73.29 s for Linux and 70.86 s for Windows.

In terms of how runtimes of the three accuracy options compare to each other, as
can be seen in Fig. 18, precision 0 takes the least amount of time, tightly followed by
precision 1, while precision 2 is a lot more time-consuming. The same behavior was
already discussed in Sect. 3.2.1 for calculations done with the original CAD models
on Linux. The same conclusion, however, cannot be drawn for calculations done on
Windows, as mentioned in Sects. 3.1.1 and 3.1.2.

The rates at which FMM runtimes increase with ka are significantly higher on
Linux than on Windows. Within the low-frequency domain, where the FMM time-
ka dependence appears to be linear, FMM runtime (with refined meshes) for
precision 0 on Linux has the linear rate of (28.90 � 0.45) � 10�2, by a large margin
higher than the rate (11.02 � 1.9) � 10�2 on Windows for the same precision level.
Similarly, precision 1’s runtimes increase at the rate (53.91 � 0.90) � 10�2 in the
low-frequency range, while on windows, it is only (21.30 � 0.61) � 10�2. And
finally, for precision 2, the rate is (104.5 � 4.30) � 10�2 on Linux and
(39.21 � 6.75) � 10�2. Such steep slopes on the runtime-ka dependence in the
low-frequency domain of the Linux platform are continued by the rapid exponenti-
ations in the medium- and high-frequency ranges, which result in the Linux server
being far inferior to Windows in computing the Helmholtz equations in high-
frequency domain.

In Fig. 19, the actual ratio between FMM time (on Linux) of the refined models
and the original model is plotted. Unlike the time ratio plot for Windows (Fig. 10),
here, we see a more expected trend; the time ratio for precision 0 is lowest, followed
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by precision 1, while precision 2 has the largest ratio, and this behavior is maintained
over the entire range ka ¼ 0–500. As also shown in Fig. 19, except for only the
Laplace case precision 2, all the ratios of the three precisions are below the
theoretical scaling factor (see Eq. (3)). As ka increases, a decreasing trend is
observed for all three plots. A similar result can be seen in Fig. 10 for Windows.

3.3 Memory Requirements

3.3.1 Original CAD Models

In this section, we discuss the memory consumed by FMM. Due to limitations on
tools available, as well as Windows’ uncompromising memory recording scheme,
only memory information for calculations done on Linux is profiled and analyzed
here. However, given the same FMM task, the (approximately) same amount of
memory consumption is expected in both platforms. Therefore, valuable insights in
memory requirements for performing FMM on Windows can still be drawn. In
Figs. 20, 21, and 22, peak physical memory over FMM runtime is plotted with ka for
precisions 0, 1, and 2, respectively. In Fig. 23, a summary of memory vs ka is plotted
for all three precision choices. As can be seen in the figures, the general shapes of the
curves are similar to the runtime plots displayed in previous sections; there is an
abrupt jump from memory needed for solving Laplace equation to the Helmholtz
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case. For the Laplace case, calculations with all three levels of precisions require
roughly the same amount of memory (approximately 1.2 Gb). Within the
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low-frequency domain, the memory-ka dependence is linear before evolving into an
exponential growth in higher frequency ranges.

Perhaps the most astonishing results are that precision 0, the lowest level of
accuracy, requires the most amount of memory, especially at high-frequency
domain. As shown in Fig. 23, starting with very small values of ka, calculations
for precision 0 consume the least amount of memory. However, both its linear rate
within the low-frequency range and its exponential rate in the higher-frequency
domain exceed that of precisions 1 and 2, resulting in the memory needed for
precision 0 to somehow outgrow the supposedly more computationally demanding
precision options. The memory plots for precisions 1 and 2, on the other hand,
evolve in a more relaxed manner and, over the entire ka range from 0 to 500, tend to
stay close to each other.

3.3.2 First-Order Mesh Subdivision

In Figs. 24, 25 and 26, peak physical memory over FMM runtime (performed on
refined meshes) is plotted with ka for precisions 0, 1, and 2, respectively. In Fig. 27,
a summary of memory vs ka is plotted for all three precision choices. Similar to the
memory recorded for FMM done on the original meshes, here, we again observe that
it is precision 0 that consumes the most memory, particularly at high frequencies
(Fig. 28).
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Fig. 24 Average peak memory consumption in MATLAB for the refined models on Linux is
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3.4 Second-Order Mesh Refinement (FMM 2017)

3.4.1 Windows Platform

In this section, we study the performance of FMM in calculations that use CAD
models that have more refined meshes. These models have an average of 13,800,000
triangles and are obtained by performing two levels of barycentric subdivisions on
the original head models. In Figs. 29, 30, and 31, FMM runtimes on Windows server
with precisions 0, 1, and 2, respectively, averaged over all 16 refined meshes, are
presented. In Fig. 32, a summary of runtime vs ka is plotted for all three precision
choices. For the studies in this section, due to limited resources in computation, we
restrict ourselves with ka values only from 0 to 50. As seen in Figs. 29 and 32, the
runtimes for dense meshes are rather unpredictable, as there are no observable
patterns for how the runtime of FMM evolves when ka is increased from 0 to 50.
This volatility can be seen in the plots for all precisions 0, 1, and 2. In Fig. 33, the
ratio between FMM time for the refined models (second level of mesh refinement)
and FMM time for the original CAD models is plotted with respect to ka. As seen in
Fig. 33, the scaling is best for calculations that require precision 0, followed by
precision 2. FMM calculations for precision 1 has the largest scaling factor. This
unintuitive scaling result was also seen for first-order mesh refinement (see Fig. 9)
and was discussed in Sect. 3.1.2.
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Fig. 29 Average FMM runtime for the doubly refined models in MATLAB on Windows is plotted
with respect to values of ka. The demanded precision is two digits accuracy
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3.4.2 Linux Platform

In Figs. 34, 35, and 36, FMM runtimes on Linux server with precisions 0, 1, and
2, respectively, averaged over all 16 refined meshes (second order), are presented. In
Fig. 37, a summary of runtime vs ka is plotted for all three choices of precision.
Unlike the volatile behavior seen in the results for Windows, the FMM runtimes in
Linux for meshes of second-order refinement increase linearly as ka increases, as
expected. In Fig. 38, the ratio between FMM time for the refined models (second
level of mesh refinement) and FMM time for the original CAD models is plotted
with respect to ka. Again, we see that the scaling for precision 0 is lowest, while
precision 1 has the highest scaling factor.

3.5 Comparisons with the New FMM Package (Summer
2019)

Very recently, a new version of the FMM library was published by the Flatiron
Institute [15]. This package was downloaded for testing on June 11, 2019. Shortly
after that, the online library was updated; this newer version was downloaded on
June 20, 2019. In this section, we compare the performances of these two new
versions of the FMM software with the original FMM library by Gimbutas and
Greengard [7], last updated on November 8, 2017. Here, we focus on the
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Fig. 34 Average FMM runtime for the doubly refined models in MATLAB on Linux is plotted
with respect to values of ka. The demanded precision is two digits accuracy
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performance in Linux. Note the legends in the plots: “new2”¼ newly updated MEX
file (June 20, 2019), “new1” ¼ MEX file in the original new FMM library
(downloaded June 11, 2019), “old” ¼ MEX file in the old FMM library (2017),
and zero time ¼ program fails.

In Figs. 39, 40, and 41, FMM runtimes of the new and old libraries on Linux
server with precisions 0, 1, and 2, respectively, averaged over all 16 refined meshes,
are presented. A few comments are in order:

• The newest FMM library of the three tested crashed at high frequencies. The
reason for these crashes is due to memory leaking. This issue has been fixed
meanwhile.

• At low frequencies (ka �50), the newest library has the best runtime (June
20, 2019), followed by the second newest (June 11, 2019), while the old library
is slowest. However, the old FMM library shows significant superiority in
runtime over the new libraries as the frequency increases.

• Both new libraries show improvements over the old FMM codes when the
Laplace solver is in used, with the second newest FMM library having the best
runtime.
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3.6 Solving for Multiple Solutions in Parallel

The FMM software updated by the Flatiron Institute also allows one to solve
multiple right-hand sides at a time. In this section, we report the scaling of the
FMM code when it is used to solve the Laplace equation with multiple sets of
charges simultaneously. The original CAD models are used. The performances of
the MEX function compiled for Windows, Linux (June 11, 2019), and the updated
version for Linux (June 20, 2019) are compared against each other. These three
MEX options are, respectively, called Windows, Linux1, and Linux2 in the follow-
ing table. Runtimes are in seconds, and “X” indicates program failures due to
memory issues. In Table 1, we show the runtimes of FMM run on different
platforms, when different number of sets are included. The scale curves are shown
in Figs. 42 and 43. The most significant result is that FMM run on Windows has the
shortest runtime when a small number of sets are computed. The Linux platform, on
the other hand, has a much better scaling rate, and therefore, the runtimes on Linux
(for both versions of the library) are progressively better than those on Windows as
the number of sets increases.

4 Discussion and Conclusions

In this paper, we have studied the performance of the fast multipole method in
computing the Laplace and Helmholtz source-to-source potentials within human
head topology. The FMM software used for this study was developed by Gimbutas
and Greengard [7], and we have profiled the method in a wide range of frequency
values, mesh density, in both Linux and Windows frameworks, and with all choices
of precision available. We showed that for problems that have reasonably “small”
sizes (up to 3–4 million facets), the FMM runtime and memory consumption evolve
in a predictable manner when run on both Linux and Windows. In particular, the
runtime (and memory usage) varies exponentially as the frequency increases, with a
small linear dependence at small values of frequency. We also observe universally a
sharp, discrete increase in both runtime and memory from when the FMM software
is using the Laplace solver to when the Helmholtz solver is used.

Table 1 FMM runtimes in
Linux and Windows for dif-
ferent number of sets of
charge distributions are shown

Number of sets, N Total runtime, TN

Linux1 Linux2 Windows

1 5.37 5.66 2.99

2 6.18 5.64 3.87

4 9.10 7.69 6.43

8 12.82 10.75 11.90

16 19.72 17.94 22.89

32 35.46 35.43 43.70

64 66.76 75.58 90.07

128 X X X
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Upon studying the scaling efficiency of FMM, we showed that the algorithm
deviates slightly from the theoretically expected scaling factors for runtime and
memory, along with decreasing trends as the problem size increases. We also
observed a number of interesting and unexpected results in terms of comparisons
in runtimes required by different level of accuracy. In particular, we showed that for
calculations run in Windows, the runtime needed for the three levels of accuracy
tested did not follow any particular order at low frequency and only formed a pattern
(low accuracy needed less time than high accuracy) when the frequency is suffi-
ciently high. Resources needed for calculations performed in Linux were shown to
have much more predictable patterns among different choices of accuracy and
problem sizes, as well as smoother evolutions as the frequency changes.

We also compare the performance of this FMM library with a newer package
(downloaded June 11, 2019) and its updated version (downloaded June 20, 2019).
The results show that although the new library has better performance at low
frequency, in Laplace calculations, it scales poorly compared to the old library and
therefore is time-wise less efficient than the old FMM codes at high frequencies.
Finally, we investigate the scaling rate of the new library with increasing number of
right-hand sides (rhs) being solved simultaneously. The overall results show that
while the Windows platform has the shorter runtime for small number of rhs, the
FMM code compiled for Linux has better scaling rate and therefore has better
runtime when the number of rhs increases.

With this study, we have benchmarked the performance of the general-purpose
FMM, provided new insights to the behavior of the algorithms in various scenarios,
and effectively offered a means to pre-estimate the efficiency of FMM-based or
FMM-accelerated numerical methods.
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