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Jisu Kim1(B) , Alina Ŝırbu2(B) , Fosca Giannotti3(B) ,
and Lorenzo Gabrielli3(B)

1 Scuola Normale Superiore, Pisa, Italy
jisu.kim@sns.it

2 University of Pisa, Pisa, Italy
alina.sirbu@unipi.it

3 Istituto di Scienza e Tecnologie dell’Informazione,
National Research Council of Italy, Pisa, Italy

{fosca.giannotti,lorenzo.gabrielli}@isti.cnr.it

Abstract. Studying migration using traditional data has some limi-
tations. To date, there have been several studies proposing innovative
methodologies to measure migration stocks and flows from social big
data. Nevertheless, a uniform definition of a migrant is difficult to find
as it varies from one work to another depending on the purpose of the
study and nature of the dataset used. In this work, a generic method-
ology is developed to identify migrants within the Twitter population.
This describes a migrant as a person who has the current residence dif-
ferent from the nationality. The residence is defined as the location where
a user spends most of his/her time in a certain year. The nationality is
inferred from linguistic and social connections to a migrant’s country of
origin. This methodology is validated first with an internal gold standard
dataset and second with two official statistics, and shows strong perfor-
mance scores and correlation coefficients. Our method has the advantage
that it can identify both immigrants and emigrants, regardless of the ori-
gin/destination countries. The new methodology can be used to study
various aspects of migration, including opinions, integration, attachment,
stocks and flows, motivations for migration, etc. Here, we exemplify how
trending topics across and throughout different migrant communities can
be observed.
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1 Introduction

Understanding where migrants are is an important topic because it touches upon
multidimensional aspects of the sending and receiving countries’ society. It is
not only the demographic fabric of countries but also labour market conditions,
as well as economic conditions that may alter due to demographic adjustment.
Understanding their allocation is essential for both policy makers and researchers
to bring the best of its effects.

Official data such as census, survey and administrative data have been tradi-
tionally the main data source to study migration. However, these data have some
limitations [12]. They are inconsistent across different nations because countries
employ different definitions of a migrant. Moreover, collecting traditional data
is costly and time consuming, thus tracking instantaneous stocks of migrants
becomes difficult. This becomes even harder when tracking emigrants because
of the lack of motivation from citizens to declare their departure.

In recent years, however, we are provided with other alternative data sources
for migration. The availability of social big data allows us to study social
behaviours both at large scale and at a granular level, and to peek into real-
world phenomena. Although known to suffer from other types of issues, such as
selection bias, these data could bring complementary value to standard statistics.

Here, we propose a method to identify migrants based on Twitter data, to
be used in further analyses. According to the official definition, a migrant1 is “a
person who moves to a country other than that of his or her usual residence for
a period of at least a year”. In the context of Twitter, we define a migrant as “a
person who has the current residence different from the nationality”.

Following this definition, we performed a two step analysis. First, we esti-
mated the current residence for users by examining location information from
tweets. The residence is defined as the country where the user spends most of
the time in a year. Second, we estimated nationality, by considering the social
network of users. In the international literature, nationality is defined as a rela-
tionship between a state and an individual, with rights and duties on both sides
[1,6]. Related concepts are ethnicity - in terms of cultural features - and citizen-
ship - in terms of political life. In this paper, we employ the term nationality
to define the ensemble of features that make a person feel like they belong to a
certain country [2,5]. This could be the country where a person was born, raised
and/or lived most of their lives. By comparing labels of residence and nationality
of a user, we were able to understand whether the person has moved from their
home country to a host country, and thus if they are a migrant. We validated
our estimation internally, from the data itself, and externally, with two official
datasets (Italian register and Eurostat data).

One of the advantages of our methodology is that it is generic enough to
allow for identification of both immigrants and emigrants. We also overcome
one of the limitations of traditional data by setting up a uniform definition of

1 Recommendations on Statistics of International Migration, Revision 1 (p. 113).
United Nations, 1998.
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a migrant across different countries. Furthermore, our definition of a migrant
is very close to the official definition. We establish the fact that a person has
spent a significant period at the current location. Also, we eliminate visitors
or short-term stays that do not follow the definition of a migrant. This is also
validated by the comparison with official datasets. Another advantage of our
method is the fact that it uses only very basic features from the Twitter data:
location, language and network information. This is useful since the settings of
the freely available Twitter API change constantly. Some of the user attributes
that the existing literature use to estimate nationality are no longer available.
In addition, we make use of unknown locations of tweets by examining whether
they intersect with identified locations. By doing so, we do not neglect any
information provided by the tweets from unknown locations which later provide
useful information on trending topics of Italian emigrants overseas.

One of the issues with our method is that the migrants that we observed are
selected from the Twitter population, and not from the general world population,
and it is known that some demographic groups are missing. Nevertheless, we
believe that studying the Twitter migrant population can provide important
insight into migration phenomena, even if some findings may not apply to the
other demographic groups that are not represented in the data.

It is important to note that tracking individual migrants is not the objective
of our study, but it is only an intermediate stage to enable further analyses.
We simply perform user classification to identify migrants among users in our
data, and then aggregate the findings. Further studies we envision are aimed at
devising new population-level indices useful to evaluate and improve the quality
of life of migrants, through targeted evidence-based policy making. No individ-
ual personal information nor migration status is released at any stage during
the current analysis, nor in any population-level analysis, which is performed
following the highest ethical and privacy standards.

The rest of the paper is organised as follows. In the next section we describe
related work that studies migration using big data. In Sect. 3, we provide details
of the experimental setting for data collection as well as data pre-processing.
We then explain our identification strategy for both residence and nationality in
Sect. 4. In Sect. 5, we evaluate our estimation using both internal and external
data. Section 6 covers a possible application of our method on studying trending
topics among Italian emigrants, while Sect. 7 concludes the paper.

2 Related Work

In the past few years, there have been several works on migration studies using
social big data. Most of these employed Twitter data but Facebook, Skype, Email
as well as Call Detail Record (CDR) data have also been used to study both
international and internal migration [3,9,10,14,16]. Here, we focus on studies
that have employed freely available data. The definition of a migrant varied from
one work to another depending on the purpose of the study and the nature of
the dataset. Thus, the definitions provided fit under different types of migration
such as refugees, internal migrants, seasonal migrants or even visitors.
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One example of using Twitter to observe migration flows is [15]. They defined
residence as the country where the tweets were most frequently sent out for
periods of four months. If one’s residence changed in the following four months
period, it was considered that the person has moved. In a more recent work,
[11] measure migration flows from Venezuela to neighbouring countries between
2015 and 2019. They look at the bounding boxes and country labels provided by
the tweets and identified the most common country of tweets posted monthly.
Their definition of a migrant was “any individual leaving Venezuela during the
time window of observation” which was observed when an identified Venezuelan
resident appeared for the first time in a different country. Our definition of
residence is somewhat similar to these works. However, unlike them, we are
measuring stocks of migrants, and not flows. Thus, we take into account the
aspect of duration of stay. This naturally eliminates short-term trips and visits.

Apart from geo-tagged tweets, there is other information provided by the
Twitter API that can help us infer whether a person is a migrant or not.
Although [8] did not directly study migrants, but looked at foreigners present
in Qatar, it provides important insights to which of the features provided by
Twitter is useful in identifying nationality of users. They gathered features from
both profile and tweets of users. For features providing information on profile
pictures and name, they performed facial recognition and name ethnicity detec-
tion. Their final results showed that ethnicity of name, race, language of tweet,
language of mention, location of followers and friends are the first six features
that are useful. In this paper, we purely employ data provided by Twitter for
the analysis and therefore, we do not have name, ethnicity and race features.
Nevertheless, our work also shows that locations of users and friends are the use-
ful features. The difference here is that we propose to use the social network of
users as one of the main features in identifying nationality, which is more flexible
than having to perform ethnicity detection on names and profile pictures.

3 Experimental Setting for Data Collection

We began with a Twitter dataset collected by the SoBigData.eu Laboratory [4].
We started from a three months period of geo-tagged tweets from August to
October 2015. Due to our focus on Italy, we selected from these data the users
that tweeted from Italy, obtaining thus 34,160 users. We then crawled the net-
work of geo-enabled friends of these 34,160 users, using the Twitter API. Friends
are people that the individual users are following. We focused on friends because
we believe that for a user, the information on whom they follow is more infor-
mative when it comes to nationality, than who they are followed by. We concen-
trated on geo-enabled friends because geo-location is necessary for our analysis.
By collecting friends, the list of users crossed our initial geographic boundary,
i.e., Italy. At this stage, the number of unique users grew to over 250,000. For
all users we also scraped the profile information and the 200 most recent tweets
using the Twitter API. During this process, we were able to collect all 200 recent
tweets for 97% of users and at least 55 tweets for 99% of users. Our final user



278 J. Kim et al.

network consists of 258,455 nodes and 1,205,133 edges which includes both our
initial 34,160 users and their geo-tagged friends.

For the process of identifying migration status, we focus on the core users, i.e.,
34,160 users. We assign a residence and a nationality to each user, based on the
geo-locations included in the data, the language of tweets and profile information.
The final dataset includes 237 unique countries from where individuals have sent
out their tweets, including ‘undefined’ location. Even if a user enables geo-tags
on their tweets, not all tweets are geo-tagged. As a result, 21% of our tweets are
‘undefined’. As for the languages, there are 66 unique languages and 12% of our
tweets are in English.

Fig. 1. Distribution of the number of days (left) and the number of tweets (right)
observed in the data per user: on average, our users have tweeted 47 days and 82
tweets in 2018.

As for the profile features, we observe that 40% of the users have filled out
location description. In addition, most of users have set their profile language
to English. The number of unique profile languages detected in our data is 58
which is smaller than the languages used, indicating that some users are using
languages different from their profile language when tweeting.

In order to assign a place of residence to users, we needed to restrict the
observation time period. We have chosen to look at one year length of tweets from
2018, in order to assign the residence label for the 2018 solar year. We selected
users that have tweeted in 2018, identifying 128,305 users. To remove bots, we
looked at whether a user is tweeting too many times a day. We considered that
tweeting more than 50 tweets on average in a single day was excessive and we
have eliminated in this way 39 users. In addition, we removed users that were
not very active in 2018. If the number of tweets was less than 20, we checked
whether the tweeted days were spread out during the year. If the days were not
well spread out, we filtered out the user. On the other hand, if it was well spread
out, it meant that the user was regularly tweeting, so the user was kept. During
this process, we removed 10,764 users. After removing bots and inactive users,
we have 117,502 users. For these, we show the distribution of the number of
tweets and number of days in which they tweeted in Fig. 1. On average we see
47 days and 82 tweets.
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In addition to the Twitter data, we also collected a list of official and spoken
languages for countries identified in our data2.

4 Identifying Migrants

A migrant is a person that has the residence different from the nationality. We
thus consider our core 34,160 Twitter users and assign a residence and nationality
based on the information included in our dataset. The difference between the two
labels will allow us to detect individuals who have migrated and are currently
living in a place different from their home country. The methodology we propose
is based on a series of hypotheses: a person that has moved away from their
home country stays in contact with their friends back in the home country and
may keep using their mother tongue.

4.1 Assigning Residence

In order for a place to be called residence, a person has to spend a considerable
amount of time at the location. Our definition of residence is based on the amount
of time in which a Twitter user is observed in a country for a given solar year.
More precisely, a residence for each user is the country with the longest length of
stay which is calculated by taking into account both the number of days in which
a user tweets from a country but also the period between consecutive tweets in
the same country. In this work we compute residences based on 2018 data.

To compute the residence, we first compute the number of days in which we
see tweets for each country for each user. If the top location is not ‘undefined’,
then that is the location chosen as residence. Otherwise, we check whether any
tweet sent from ‘undefined’ country was sent on a same day as tweets sent
from the second top country. In case at least one date matched between the
two locations, we substitute second country as the user’s place of residence. On
average, 5 dates matched. This is done under the assumption that a user cannot
tweet from two different countries in a day. Although this is not always the case if
a user travels, in most of the days of the year this should be true. This approach
allowed us to assign a residence in 2018 to 57,180 users.

For the remaining 60,322 users, a slightly different approach was imple-
mented. We computed the length of stay in days by adding together the duration
between consecutive tweets in the same country. We selected the country with
the largest length of stay. In case the top country was ‘undefined’, we checked
whether ‘undefined’ locations were in between segments of the second top coun-
try, in which case the second country was chosen. In this way, an additional
11,046 users were assigned a place of residence. The remaining 49,276 users were
neglected because we considered that we did not have enough information to
assign a residence.

2 Retrieved from http://www.geonames.org and https://www.worlddata.info.

http://www.geonames.org
https://www.worlddata.info
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4.2 Assigning Nationality

In order to estimate nationalities for Twitter users, we took into account two
types of information included in our Twitter data. The first type relates to the
users themselves, and includes the countries from which tweets are sent and the
languages in which users tweet. For each user u we define two dictionaries locu

and langu where we include, for each country and language the proportion of
user tweets in that country/language.

Fig. 2. Example of calculation of the floc and flang values for a user. The calculation
of flocU1 and flangU1 is based of the floc and flang values for the three friends,
showing the distribution of tweets in various countries/languages for each.

The second type of information used is related to the user’s friends. Again,
we look at the languages spoken by friends, and locations from which friends
tweet. Specifically, starting from the loc and lang dictionaries of all friends of
a user, we define two further dictionaries floc and flang. The first stores all
countries from where friends tweet, together with the average fraction of tweets
in that country, computed over all friends:

flocu[C] =
1

|F (u)|
∑

f∈F (u)

locf [C] (1)

where F (u) is the set of friends of user u. Similarly, the flang dictionary stores all
languages spoken by friends, with the average fraction of tweets in each language
l:

flangu[l] =
1

|F (u)|
∑

f∈F (u)

langf [l] (2)

Figure 2 shows an example of a (fictitious) user with their friends, and the four
resulting dictionaries.

The four dictionaries defined above are then used to assign a nationality score
to each country C for each user u:

Nu
C =wlocloc

u[C] + wlang

∑

l∈languages(C)

langu[l]+ (3)

wflocfloc
u[C] + wflang

∑

l∈languages(C)

flangu[l] (4)
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where languages(C) are the set of languages spoken in country C, while wloc,
wlang , wfloc and wflang are parameters of our model which need to be estimated
from the data (one global value estimated for all users). Each of the w value gives
a weight to the corresponding user attribute in the calculation of the nationality.
To select the nationality for each user we simply select the country C with
maximum NC : Nu = argmaxCN

u
C .

5 Evaluation

To evaluate our strategy for identifying migrants we first propose an internal val-
idation procedure. This defines gold standard datasets for residence and nation-
ality and computes the classification performance of our two strategies to identify
the two user attributes. The gold standard datasets are produced using profile
information as they are provided by the users themselves. We then perform an
external validation where we compare the migrant percentages obtained in our
data with those from official statistics.

5.1 Internal Validation: Gold Standards Derived from Our Data

Residence. To devise a gold standard dataset for residence we consider profile
locations set by users. We assume that if users declare a location in their profile,
then that is most probably their residence. Very few users actually declare a
location, and not all of them provide a valid one, thus we only selected profile
locations that were identifiable to country level. Among the user accounts for
which we could estimate the residence, 3,065 accounts had a valid country in
their profile location. Using these accounts as our validation data, we computed
the F1 score to measure the performance of our residence calculation. Table 1
shows overall results, and also scores for the most common countries individually.
The weighted average of the F1 score is 86%, with individual countries reaching
up to 94%, demonstrating the validity of our residence estimation procedure.

Nationality. In order to build a gold standard for nationality, we take into account
the profile language declared by the users. The assumption is that profile languages
can provide a hint of one’s nationality [13]. However, many users might not set their
profile language, but use the default English setting. For this reason, we do not
include into the gold standard users that have English as their profile language.

Table 1. Average precision, recall and F1 scores, together with scores for the top 7
residences in terms of support size.

Weighted Avg Macro avg Micro avg IT KW US ID SG AU

F1-score 0.858 0.716 0.856 0.928 0.839 0.703 0.945 0.83 0.891

Precision 0.879 0.745 0.856 0.935 0.989 0.572 0.949 0.946 0.883

Recall 0.856 0.727 0.856 0.921 0.728 0.91 0.941 0.739 0.899

Support 3065 3065 3065 343 125 122 119 119 109
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Table 2. Average precision, recall and F1 scores for top 8 nationalities in terms of
support numbers

Weighted avg Macro avg Micro avg IT ES TR RU FR BR DE AR

F1-score 0.99 0.98 0.72 0.99 0.96 0.98 0.95 0.94 0.95 0.92 0.97

Precision 0.99 0.98 0.73 1 0.94 0.98 0.98 0.9 0.96 0.91 0.98

Recall 0.98 0.98 0.75 0.99 0.97 0.99 0.93 0.98 0.94 0.93 0.95

Support 12223 12223 12223 10781 302 173 146 118 113 86 59

The profile language, however, does not immediately translate into national-
ity. While for some languages the correspondence to a country is immediate, for
many others it is not. For instance, Spanish is spoken in Spain and most Amer-
ican countries, so one needs to select the correct one. For this, we look at tweet
locations. We consider all countries that match with the profile language and,
among these, we select the one with the largest number of tweets, but only if the
number of tweets from that country is at least 10% of the total number of tweets
of that user. This allows to select the most probable country, also for users who
reside outside their native country. If no location satisfies this criterion the user
is not included in the gold standard. We were able to identify nationalities of
12,223 users. Due to the fact that during data collection we focused on geo-tags
in Italy, the dataset contains a significant number of Italians.

Fig. 3. Distribution of residences and nationalities of top 30 countries, for all users
that possess both residence and nationality labels.

We employed this gold standard dataset in two ways. First, we needed to
select suitable values for the w weights from Eqs. 3–4. These show the importance
of the four components used for nationality computation: own language and
location, friends’ language and location. We performed a simple grid search and
obtained the best accuracy on the gold standard using values 0 for languages
and 2 and 1.5 for own and friends’ location, respectively. Thus we can conclude
that it is the locations that are most important in defining nationality for twitter
users, with a slightly stronger weight on the individual’s location rather than the
friends. The final F1-score, both overall and for top individual nationalities, are
included in Table 2, showing a very good performance in all cases.
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To assign final residences and nationalities to our core users, we combined the
predictions with the gold standards (we predicted only if the gold standard was
not present). Figure 3 shows the final distribution of residences and nationalities
of top 30 countries for all users that have both the residence and nationality
labels. The difference in the residence and nationality can be interpreted as
either immigrants or emigrants.

Fig. 4. Comparison between the true and predicted data; the first two plots show
predicted versus AIRE/EUROSTAT data on European countries. The last plot shows
predicted versus AIRE data on non-European countries.

5.2 External Validations: Validation with Ground Truth Data

In order to validate our results with ground truth data, we study users labelled
with Italian nationality and non-Italian residence, i.e. Italian emigrants. We com-
puted the normalised percentage of Italian emigrants resulting from our data for
all countries, and compared with two official datasets: AIRE (Anagrafe Italiani
residenti all’estero), containing Italian register data, and Eurostat, the European
Union statistical office. For comparison we use Spearman correlation coefficients,
which allow for quantifying the monotonic relationship between the ground truth
data and our estimation by taking ranks of variables into consideration.

Figure 4 displays the various values obtained, compared with official data.
A first interesting remark is that even between the official datasets themselves,
the numbers do not match completely. The correlation between the two datasets
is 0.91. Secondly we observed good agreement between our predictions and the
official data for European countries. The correlation with AIRE is 0.753, while
with Eurostat it is 0.711 when considering Europe. For non-European countries,
however the correlation with AIRE data drops to 0.626. We believe the lower
performance is due to several factors related to sampling bias and data quality
in the various datasets. This includes bias on Twitter and in our methods, but
also errors in the official data, which could be larger in non-EU countries due to
less efficient connections in sharing information.

All in all, we believe our method shows good performance and can be suc-
cessfully used to build population level indices for studying migration. We do
not aim to perform nowcasting of immigrant stocks, but rather to identify a
population that can be representative enough for further analyses.
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6 Case Study: Topics on Twitter

In this section we show that our methodology can be employed to study how
trending topics in Italy are also being discussed among Italian emigrants. As
an example, we selected one hashtag that has been very popular in the last
years: #Salvini. This refers to the Italian politician Matteo Salvini who served as
Deputy Prime Minister and Minister of internal affairs in Italy until recently. To
this, we added the top nine hashtags that appear frequently with #Salvini in our
data: Berlusconi, Conti, Diciott, DiMaio, Facciamorete, Legga, M5S, Migrant,
Ottoemezzo. Indeed, they all represent people that are often mentioned together
or political parties or other issues that are associated with the hashtag #Salvini.

Fig. 5. Stream graph: appearance of hashtags related to #Salvini from Italians across
10 selected residence countries in 2018. The discussion continuously appeared in Italy
throughout the year and it became more lively employed by Italians overseas as Salvini
gained more political attention.

Figure 5 shows an evolution of the usage of the 10 above mentioned hashtags
across different Italian communities both within and abroad Italy. The values
shown are the number of tweets from Italian nationals residing in each country
that include one of the 10 hashtags, divided by the total number of tweets from
Italian nationals from that country. Values are computed monthly. Thus, we
show the monthly popularity of the topics in each country. In this way, even
the tweets from less represented countries are well shown. As the figure shows,
the hashtag was continuously used by Italians in Italy. We observed that the
hashtag gradually spread over other residence countries as Salvini received more
and more attention. We also observe that most of the attention comes from
Italians residing in Europe, with non-European countries less represented.

7 Conclusion and Future Work

We have developed a new methodology to provide a snapshot of migrants within
the Twitter population. We considered the length of stay in a country as the
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key factor to define a user’s residence. As for the nationality, connections which
migrants maintain with their country of origin provided us with a good indica-
tion. In particular, the location of friends seemed to be a strong feature in deter-
mining nationality, together with the location of the users themselves. Tweet
language, on the other hand, was not considered relevant by our model. This
is probably due to the fact that English is the dominating language on Twit-
ter, since a language that is widely understood has to be spoken to get more
attention from other users. We have validated our results both with internal and
external data. The results show good classification performance scores and good
correlation coefficients with official datasets.

The constructed dataset can be applied in different scenarios. We have shown
how it can be used to study trending topics on Twitter, and how attention is
divided between emigrants and non-migrants of a certain nationality. In the
future, we plan to analyse social ties, integration and assimilation of migrants
[7]. At the same time, one can investigate the strength of the ties with the
community of origin.

References

1. Castillo petruzzi case (1999)
2. Assal, M.A.: Nationality and citizenship questions in Sudan after the Southern

Sudan referendum vote. Sudan Report (2011)
3. Blumenstock, J.E.: Inferring patterns of internal migration from mobile phone call

records: evidence from Rwanda. Inf. Technol. Dev. 18(2), 107–125 (2012)
4. Coletto, M., et al.: Perception of social phenomena through the multidimensional

analysis of online social networks. Online Soc. Netw. Media 1, 14–32 (2017)
5. Donner, R.: The Regulation of Nationality in International Law, 2d edn, p. 289.

Leiden, Brill Nijhoff (1994). https://brill.com/view/title/14000, ISBN 978-09-41-
32077-1

6. Hailbronner, K.: Nationality in public international law and European law. JSTOR
(2006)
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