
SoK: Cryptography for Neural Networks

Monir Azraoui1, Muhammad Bahram2, Beyza Bozdemir3, Sébastien Canard1,
Eleonora Ciceri4, Orhan Ermis3(B), Ramy Masalha2, Marco Mosconi4,
Melek Önen3, Marie Paindavoine5, Boris Rozenberg2, Bastien Vialla1,

and Sauro Vicini4

1 Applied Crypto Group, Orange Labs, Caen, France
{monir.azraoui,sebastien.canard,bastien.vialla}@orange.com

2 IBM Haifa, Haifa, Israel
{muhammad,Ramy.Masalha,borisr}@il.ibm.com

3 EURECOM, Sophia Antipolis, France
{beyza.bozdemir,orhan.ermis,melek.onen}@eurecom.fr

4 MediaClinics, Lissone, Italy
{e.ciceri,m.mosconi,s.vicini}@mediaclinics.it

5 Cybersecurity Research, Renault, Paris, France
marie.paindavoine@renault.com

Abstract. With the advent of big data technologies which bring better
scalability and performance results, machine learning (ML) algorithms
become affordable in several different applications and areas. The use of
large volumes of data to obtain accurate predictions unfortunately come
with a high cost in terms of privacy exposures. The underlying data are
often personal or confidential and, therefore, need to be appropriately
safeguarded. Given the cost of machine learning algorithms, these would
need to be outsourced to third-party servers, and hence protection of
the data becomes mandatory. While traditional data encryption solu-
tions would not allow accessing the content of the data, these would,
nevertheless, prevent third-party servers from executing the ML algo-
rithms properly. The goal is, therefore, to come up with customized
ML algorithms that would, by design, preserve the privacy of the pro-
cessed data. Advanced cryptographic techniques such as fully homomor-
phic encryption or secure multi-party computation enable the execution
of some operations over protected data and, therefore, can be consid-
ered as potential candidates for these algorithms. However, these tech-
niques incur high computational and/or communication costs for some
operations. In this paper, we propose a Systematization of Knowledge
(SoK) whereby we analyze the tension between a particular ML tech-
nique, namely, neural networks (NN), and the characteristics of relevant
cryptographic techniques.

Keywords: Privacy · Neural networks · Homomorphic encryption ·
Secure multi-party computation

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
M. Friedewald et al. (Eds.): Privacy and Identity 2019, IFIP AICT 576, pp. 63–81, 2020.
https://doi.org/10.1007/978-3-030-42504-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42504-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-42504-3_5


64 M. Azraoui et al.

1 Introduction

Artificial Intelligence (AI) is a generic term used to designate any system that
is capable of learning and solving problems based on the perception of its envi-
ronment. AI is today divided into several sub-fields, depending on the technical
considerations, and, several tools related to AI are now capable of solving a lot
of difficult problems related to computer science. These tools such as neural net-
works (including deep learning), Bayesian networks, or classifiers are well-known
today. In this paper, we focus on neural networks (NN) that are inspired by the
architecture of neurons in the human brain. NN have two modes of operations:
a training phase (also called learning phase) in which the network learns a new
capability from a training dataset and a querying phase (also known as predic-
tion or classification phase), where this capability is tested over new data. The
first phase takes as input the training dataset that permits the “neurons” to cre-
ate their data model used in the second phase. While goal of NN is to learn from
data, the European General Data Protection Regulation (GDPR) [2] aims to
protect the data often considered as personal and hence, privacy sensitive. NN
and GDPR cannot a priori live together, and several advanced cryptographic
techniques are used to reconcile them.

Among these advanced cryptographic techniques, Secure Multi-Party Com-
putation (MPC) [27] allows several parties to put in common their own input
to obtain a unique output. While the latter can be made publicly available or
kept private at the end of the protocol, each input should remain confidential at
any time. Nowadays, several practical constructions exist [4,27,38,58,59], based
on garbled circuits, secret sharing, or oblivious transfer, and some implemen-
tations are available. Another important cryptographic technique is homomor-
phic encryption. When only additions or multiplications are performed in the
“encrypted world” using RSA [50], ElGamal [21] or Paillier [48], which is quite
limited in practice, the possibility to have a “fully” homomorphic encryption
(FHE), capable to perform both additions and multiplications in the encrypted
world in an arbitrary manner, is quite recent. And since the first construction
of FHE in 2009, several papers [9,17,18,22] have appeared on this subject or
the way to use such encryption schemes with practical algorithms [7,11,26,53].
As for MPC, several implementations for FHE exist. In this case, the entity
encrypting the data will necessarily be the one who will be able to decrypt the
result.

The possibility to use advanced cryptographic techniques for AI has first
been suggested in 2000 by Lindell and Pinkas [37], in the case of data mining
and decision trees. Regarding neural networks, to the best of our knowledge, the
first paper on the subject is the work by [47] in 2007. However, by the second half
of 2010s, things accelerated a lot and many papers have been published, either
focusing on the training phase [34], or working on the classification phase [7,26,
39,45], which is the most frequent case as it is the easiest, but also the most
useful one.

In this work, we propose the first Systematization of Knowledge (SoK) paper
that compares the different approaches and results of privacy-preserving NNs



SoK: Cryptography for Neural Networks 65

based on advanced cryptographic techniques. As state-of-the-art non-linear NN
layers (pooling and activation) are too complex to be directly executed in the
encrypted world, there is a strong need for approximating them. We first com-
pare the different strategies for these approximations, giving the ones we have
found in the literature and the resulting accuracy. Then, this allows us to exhibit
the NN operations that need to be performed on protected data (such as poly-
nomial evaluation or comparison). Finally, we present a performance evaluation
to compare the advanced cryptographic techniques on particular NN models
designed for arrhythmia classification and image classification.

The rest of the paper is organized as follows. In the next section, we overview
the Neural Networks operations and identify the main privacy and security
requirements in our context. In Sect. 3, we compare MPC and FHE in their use
to provide a privacy-preserving NN. We detail the solutions in Sect. 4. Section 5
presents a performance evaluation for two NN classifier based on underlying
advanced cryptographic techniques. Finally, our conclusive remarks and some
potential future works are given in Sect. 6.

2 Neural Networks

In this section, we briefly define neural networks and describe their underlying
operations. We further discuss how these operations can be approximated so
that cryptographic tools can support them.

2.1 Definition

A Neural Network (NN) is a particular case of machine learning techniques. It
consists of several interconnected nodes called neurons that are structured in
layers. Each neuron performs one operation depending on which layer it belongs
to. The NN layers are described are as follows:

– Convolution layer (optional): The basic idea behind a convolution layer is
to slide a filter, or kernel, over the original input to obtain information about
the similarity between the chunk of the original image covered by the filter
and the filter itself. On input a (�1, �2)-matrix X representing the data, and
a smaller (�′

1, �
′
2)-matrix K representing the kernel, the convolution function

outputs a matrix Y as follows:

Y[n,m] =
�′
1∑

i=1

�′
2∑

j=1

(
K[i, j] · X[n + i − 1,m + j − 1]

)
.

Y is a map corresponding to the filter K, which was slid over the image with
a stride of 1. This function is executed for all filters considered in the layer
to obtain multiple maps.



66 M. Azraoui et al.

– Activation layer: The goal of the activation layer is to determine whether
the pattern of a filter is actually present at a given position in the data. There
are different kinds of activation functions. We consider the three following
ones:

• sigmöıd σ as y = 1
1+ex ;

• hyperbolic tangent tanh as y = ex−e−x

ex+e−x ;
• the rectified linear unit (ReLU)1 as y = max(0,x). When using the ReLU

activation functions, it is highly recommended to use normalization by
adding a batch normalization layer prior to each activation layer to obtain
a stable and normalized distribution before the execution of the activation
function [35].

– Pooling: The max pooling operations consists in reducing the spatial size of
the input in order to make it more manageable.

– Fully Connected layer: The fully connected layer correlates the output of
the previous layer with the features of each class.

2.2 Architecture

In a scenario, NN are outsourced to a third party server, we basically consider
two actors:

– a client C having the input i.e. some data X;
– a server S having already received a trained neural network model (M).

The main goal is to delegate the querying phase to S. Hence, at the end
of the process, C wants to obtain R = M(X), where M consists of a set of
the predefined functions. In order to ensure data privacy, namely the privacy
of X against S, some NN operations unfortunately cannot easily/efficiently be
supported by cryptographic techniques. These operations should therefore be
approximated into polynomial operations without having a significant impact
on the accuracy of the overall NN. In the next section, we discuss the different
approximation methods applied for each particular layer.

2.3 Approximation of NN Layers

As previously mentioned, some NN layers contain nonlinear operations so that it
may be hard to directly execute them on the encrypted input. The best idea is to
approximate them to simplify, and then improve the efficiency of such execution
without sacrificing from the NN accuracy.

– Approximation of pooling functions: As the max pooling function is not
linear, the literature [26] suggests to approximate it by either summing up all
values or computing their average.

1 The ReLU is currently the activation function that is mostly used. There are also
some variants, such as the parametric version PReLU and the Exponential Linear
Units ELU.



SoK: Cryptography for Neural Networks 67

– Approximation of the activation function: There are several ways to
perform the activation function but, regarding the literature, the most suit-
able one in terms of efficiency and prediction accuracy is to use square func-
tion, which directly computes x2 for any given input x.

Operations: Regarding the description of the different main functions (directly
or using an approximation) that should be executed during an NN evaluation
(activation and pooling), we have extracted the main basic functions that should
be operated on encrypted data. We have obtained the following results.

– Addition: activation, pooling, fully connected, and convolutional layer.
– Multiplication: activation, fully connected, and convolutional layer.
– Polynomial evaluation: activation.
– Comparison: activation, pooling.

2.4 Security Requirements

In order to identify the main privacy requirements, we first define the overall con-
text where neural networks are used with privacy sensitive data. We therefore
consider a scenario whereby an entity, such as a hospital (or an SME), is collect-
ing or has already collected some data from some data subjects such as patients
(or customers). The entity wishes to infer some information about some clinical
diagnosis (or customer habits), or predict the diagnosis of the next patient (or
the behavior of the next customer), using this collected data and the NN tool.
This entity that is usually considered as the data controller will outsource both
the data and the relevant computations for analyzing the data and performing
the prediction to a powerful cloud server, which is defined as the data processor.
The data owner or any authorized party can further query the model. In the
sequel of this paper, this party is called the querier.

With GDPR and given the sensitiveness of the collected and processed data,
there is a strong need for the data subjects to be protected. The first and foremost
requirement to satisfy is to protect their data against unauthorized access by
third parties during the entire lifetime of the data, i.e., from their collection
until their analysis or even their deletion. Entities who can be considered as
unauthorized to access are of three types: First, the external parties do not play
any role in the collection, storage and analysis of the data. Second, the cloud
server acts as the data processor and is considered as a third-party server that
only provides storage and computational resources to the data controller. The
cloud server is considered as a honest-but-curious adversary. Finally, the data
collector collects the data (such as the hospital or the SME in the previous
example) and can also be sometimes prevented from accessing the cleartext
content.

In addition to the collected data, the query of the NN prediction/classification
should remain private against unauthorized parties. The query (and sometimes
the corresponding result) should not reveal any information to some potentially
malicious adversaries. Those can be external parties who basically should not



68 M. Azraoui et al.

learn any information (neither the data nor the queries and results). Even if the
cloud server can be a malicious party, it should be able to process the query
without discovering any information about the data being processed. In some
cases, the cloud server should even not learn the classification result.

Finally, in the context of neural networks, even the model can reveal some
privacy sensitive information and therefore needs some protection. Similarly to
the previous two information, the model should not be revealed to external
parties. The model should also be protected against the querier or the data
subjects as it is obtained based on all collected data. In some cases, the model
should even remain private against the cloud server.

3 Cryptographic Techniques

This paper investigates the suitability of two advanced cryptographic techniques
to neural networks, namely: fully homomorphic encryption (FHE) and secure
multi-party computation (MPC), and overviews the state-of-the-art solutions
that succeed in obtaining privacy preserving neural networks by applying some
approximations on the underlying operations.

3.1 Multi-party Computation

Secure multi-party computation is introduced in early 1980s by Yao [58,59] who
focused on the two-party computation (2PC) case by defining Yao’s Million-
naire problem. Then, by Goldreich et al. in [28], the problem was generalised to
multiple parties.

Definition. Secure multi-party computation (MPC) is defined as a system in
which a group of data owners can jointly compute a function of their private
inputs without disclosing the underlying inputs, but the output of the function.
Formally, let P1, . . . , Pn be n parties and each of them having input x1, . . . , xn,
respectively. The parties P1, . . . , Pn want to jointly compute the function f over
all inputs {x1, . . . , xn} and learn the output without revealing their input.

MPC should ensure the following two properties, at least: (i) input privacy,
i.e., parties’ inputs should remain private and only the output of the function is
learned; (ii) correctness, i.e., even if some parties misbehave, the correct output
should be obtained.

Building Blocks. Existing MPCs leverage Yao’s Garbled circuits [58,59] and
secret sharing (additive or Boolean) [4]. We briefly explain each method in
the following paragraphs. Before going into details, we first introduce Oblivi-
ous Transfer (OT) method.

Oblivious Transfer. Oblivious transfer (OT) [49] is a fundamental crypto-
graphic primitive that is used as a building block in MPC. OT allows a party
to choose k out of n secrets from another party without disclosing which secrets
have been chosen. Usually, the 1-out-of-2 OT is used, ensuring that one secret



SoK: Cryptography for Neural Networks 69

out of two of them is retrieved: Let Alice have two inputs x0 and x1, and Bob
selects a bit b and wants to obtain xb. OT ensures that Bob does not learn x1−b

and does not reveal b to Alice.

Yao’s Protocol. Yao’s protocol (a.k.a. Garbled Circuits (GC)) is a secure two-
party computation that allows the two parties to evaluate a function f(x1, x2)
in the presence of semi-honest adversary (i.e., this adversary has to truly follow
the protocol yet s/he can try to extract information during the execution of
protocol), where inputs x1 and x2 are provided by two parties, namely Alice and
Bob. Let Alice be the garbler and Bob be the evaluator. Alice builds a garbled
version of a circuit for the function f by obfuscating all possible outputs in the
truth table. The garbled circuit and Alice’s garbled input GI(x1) are sent to
Bob. Alice also provides a map from the garbled-circuit outputs to the actual
bit values. After receiving the circuit, Bob uses 1-out-of-2 OT [49] with Alice to
obliviously obtain his garbled circuit values GI(x2) without revealing it to Alice.
Bob further evaluates the function f(x1, x2) using GI(x1) and GI(x2).

The function f is evaluated through a Boolean circuit. The garbler assigns
two keys that correspond to bit values 0 or 1 for each wire of the circuit. Then,
Alice, the garbler, computes four ciphertexts for each binary gate with the input
wires and the output wire. After obtaining ciphertexts, Alice randomly orders
these four outcoming values. The evaluator, Bob, can decrypt the correct row
from the table if he successfully obtains the pair of keys from Alice via OT.

Secret Sharing. Alternatively to Yao’s Garbled Circuits, MPC solutions based
on secret sharing consist of distributing secrets among parties involved in the
system and further evaluate the function defined as a circuit accordingly. The
GMW protocol [28] relies on Boolean shares and mainly support XOR oper-
ations over single bits. The function to be evaluated is encoded as a Boolean
circuit and OT is used during the circuit evaluation. The Boolean circuit takes
as inputs bit u from Alice and bit v from Bob. These bits are first secret-shared
between the parties as u = u1 ⊕ u2 and v = v1 ⊕ v2, where share 1 belongs to
Alice and share 2 to Bob. Then both parties evaluate the circuit gate by gate.
For example, given shared values, an XOR gate with input bits u and v and
output bit w is evaluated locally (i.e. without communication) by each party by
computing wi = ui ⊕ vi. Value w can be retrieved by exchanging and XORing
the shares. Some other solutions use arithmetic circuit whereby inputs are addi-
tively shared and addition gates (respectively multiplication gates) correspond
to XOR gates (resp. AND gates).

Available Implementations. Several practical open-source implementations
for 2PC/MPC systems have been proposed in recent years. Some consist of high-
level description languages and corresponding compilers used to specify the func-
tion to be securely evaluated and to translate it into a Boolean or arithmetic
circuit; for example, Fairplay [41] and its extension to multiple parties, Fair-
playMP [5]. Other implementations offer libraries for MPC such as SCAPI [20].
Finally, some other solutions propose more comprehensive frameworks consisting



70 M. Azraoui et al.

of libraries, languages and their compilers, runtime environments and OT tools
such as TASTY [33], ABY [19] or EMPtoolkit [57].

3.2 Fully Homomorphic Encryption

Homomorphic encryption allows to process encrypted data without learning nei-
ther the input data nor the computation result. The data owner, Alice, can thus
delegate some of her computation over sensitive data to a non-trusted party, Bob.
Alice encrypts her data under her own public key, and sends the encryption to
Bob. Once received, Bob can evaluate a circuit over Alice’s inputs, obtaining a
result still encrypted under Alice’s public key. Bob sends the result back to Alice,
who is the only party able to decrypt it. Formally, a homomorphic encryption
scheme is composed of four procedures, defined as follows:

– KeyGen: the key generation procedure takes as input the security parameter
λ and outputs the public-secret key pair (pk, sk).

– Enc: the encryption procedure uses the public key pk to transform a message
M into a ciphertext c.

– Eval: the evaluation procedure takes as inputs a circuit C, and ciphertexts
c1, . . . c� such that ci = Enc(Mi, pk). It outputs another ciphertext cres =
Eval(C, (c1, . . . c�)).

– Dec: the decryption procedure uses the secret key sk to transform back a
ciphertext c to the message M .

Homomorphic encryption has been known since many decades. The concept,
initially called privacy homomorphism, has been introduced in 1978 by Rivest,
Adleman and Dertouzos [50] and several “basic” schemes verifying this prop-
erty followed: such as the well-known RSA [50] (multiplicatively), ElGamal [21]
(multiplicatively, or additively, depending on the variant) and Paillier [48] (addi-
tively). In 2005, the Boneh-Goh-Nissim encryption [6] scheme was able to per-
form an arbitrary number of additions, and one single multiplication (hence
becoming one of the first somewhat homomorphic encryption schemes). The
first FHE scheme was proposed in 2009 by Craig Gentry [24] with an ingenious
idea called bootstrapping. Further, since research on FHE has been prolific and
new schemes have been proposed based on Gentry’s first idea to improve the
efficiency of the original but impractical schemes. Both somewhat and leveled
homomorphic schemes include some noise in the ciphertexts. This noise grows
throughout computations. A refreshing procedure, bootstrapping, can be added
to manage the noise growth. The bootstrapping operation remains a bottleneck
when evaluating circuits in the encrypted domain.

While Gentry’s work is today considered as the first FHE generation, the
second generation has been marked by Brakerski and two important schemes
were published in 2012: Brakerski-Gentry-Vaikuntanathan (BGV) [9] and Fan-
Vercauteren (FV) [22], for which many optimizations have later been proposed.
This second generation of FHE enjoys a huge efficiency increase in compari-
son to the first one [29,30]. The third generation has started in 2013 with the



SoK: Cryptography for Neural Networks 71

Gentry-Sahai-Waters (GSW) scheme [25] and a different way to represent keys.
However, this generation is less used, because existing optimizations are not
compatible with such a kind of representation. Recently, the fourth generation
has been introduced by the scheme named TFHE [17,18], which is based on
a mathematical object called a torus, allowing to have the advantage of both
second and third generations. Today, existing implementations are mostly based
on the second and fourth generations.

An entire line of work is dedicated to the FHE over the integers. These
solutions rely on the Approximate Greatest Common Divisor (AGCD) problem.
They achieve mostly the same properties as LWE-based FHE. In [16], the authors
proved that both AGCD and LWE problems are equivalent. Another line of work
has designed FHE schemes based on the NTRU problem, such as LTV [40].
Finally, a scheme allowing to do computation directly on floating point numbers
was introduced [15]. This scheme had major implications in applied homomor-
phic encryption by facilitating the implementation of algorithms having a lot of
numerical computation such as neural networks.

Available Implementations. There are multiple implementations of (fully)
homomorphic encryption. Most of them provide a leveled homomorphic scheme
(without bootstrapping). The Simple Encrypted Arithmetic Library (SEAL)2 is
edited by Microsoft and provides an implementation of the FV scheme in C++. A
Python version also exists, Pyfhel3. Unlike FV-NFLlib4, which is based on the
NFLlib library dedicated to lattice cryptography, SEAL does not require any
dependencies. PALISADE5 is a standalone library written in C++ that lets the
user choose between four schemes: FV, BGV, LTV and Stehlé Steinfield. Finally
Λ◦λ6 is a Haskell library that offers a refinement of BGV scheme. HElib7 imple-
ments BGV in C++ and provides bootstrapping. FHEW8 implements a fast
bootstrapping procedure. Finally, TFHE9 implements one of third generation of
FHE schemes that features boostrapping under 0.1 s. A performance comparison
between the most used libraries published in [43].

4 Existing Solutions

4.1 MPC-Based Privacy Preserving NN Solutions

We analyze the method of secure MPC-based privacy preserving neural network
solutions. Most of the early solutions use the 2PC-based approach between two

2 https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-
library/.

3 https://github.com/ibarrond/Pyfhel.
4 https://github.com/CryptoExperts/FV-NFLlib.
5 https://git.njit.edu/palisade/PALISADE.
6 https://hackage.haskell.org/package/lol.
7 https://github.com/shaih/HElib.
8 https://github.com/lducas/FHEW.
9 https://github.com/tfhe/tfhe.

https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://github.com/ibarrond/Pyfhel
https://github.com/CryptoExperts/FV-NFLlib
https://git.njit.edu/palisade/PALISADE
https://hackage.haskell.org/package/lol
https://github.com/shaih/HElib
https://github.com/lducas/FHEW
https://github.com/tfhe/tfhe


72 M. Azraoui et al.

entities, namely the client and the server. One such example for 2PC-based solu-
tions is SecureML [45] which aims at building a privacy preserving training and
classification solution for neural networks using secure multiparty computation.
SecureML uses the stochastic gradient descent method to build the model and
supports secure arithmetic operations on shared decimal numbers. In SecureML,
evaluation of ReLU using Garbled circuits and they further a secure computation
of polynomial approximation for activation functions (i.e., sigmöıd and softmax
functions) are provided. Another secure 2PC-based study is MiniONN proposed
by Liu et al. [38] for providing privacy preserving convolutional neural networks
(CNN). To ensure data privacy, MiniONN defines oblivious transformations for
each CNN operation. Moreover, DeepSecure [51] relies on Yao’s Garbled circuits
to securely compute deep learning models. Rouhani et al. [51] use sigmöıd and
tanh as activation functions due to the optimization of Garbled circuits. Ball et
al. [3] propose an extension to DeepSecure that is a secure evaluation of the NN
classifier based on garbled circuits. Unlike DeepSecure, authors in [3] make use
of arithmetic circuits instead of Boolean circuits and further use some improved
techniques for the computation of matrix multiplication, activation function,
and max-pooling. Chameleon proposed by Riazi et al. [52] is a hybrid proto-
col to securely compute function evaluation where two parties jointly perform
a function without disclosing their inputs. Chameleon is called a hybrid frame-
work since two parties can use Garbled circuits, the Goldreich-Micali-Wigderson
(GMW) protocol, and arithmetic sharing. Similar to Chameleon, another solu-
tion EzPC [13] is a cryptographic cost-aware secure 2PC protocol generator and
makes use of arithmetic and Boolean circuits for a secure NN classification. This
scheme is useful for the one who does not have sufficient knowledge on the cryp-
tographic techniques to compute a secure NN classification since EzPC takes
source code as an input and outputs 2PC protocols.

Recently, MPC-based solutions also proposed for NN classification and train-
ing. ABY3 proposed by Mohassel et al. [44] is an extension to SecureML. In
SecureML, there are two non-colluding servers and clients share their private
inputs among them whereas in ABY3 there are three non-colluding servers;
hence, arithmetic, Boolean and Yao’s sharing are redefined across these three
servers. SecureNN [55] presents secure a 3-party computation protocols for NN
operations. This scheme supports both NN training and NN classification on
convolutional neural networks based on MNIST dataset. SecureNN does not use
garbled circuits and oblivious transfer to obtain performance gain in terms of the
communication cost. The proposed protocols are secure against not only semi-
honest adversary but also malicious adversary. Furthermore, a protocol proposed
by Ohrimenko et al. [46] use trusted SGX processors for NN training.

4.2 FHE-Based Privacy Preserving NN Solutions

The first work leveraging homomorphic encryption for NN is CryptoNets [26].
The selected homomorphic encryption scheme is FV [22], without its bootstrap-
ping procedure. In order to minimize the computation depth, they approximate
the activation function by the square function, which only consumes one level of



SoK: Cryptography for Neural Networks 73

homomorphic evaluation. While effectively transforming a neural network into
a FHE-friendly circuit, the square function is only a good approximation of the
RELU on restricted distributions.

In [12], the authors introduce a batch normalization layer before each acti-
vation layer in order to stabilize the distribution and achieve better accuracy.
Where CryptoNets gets an accuracy of 98.95 %, Chabanne et al.’s work [12]
permits to obtain 99.30 %. Moreover, in both protocols, the number of neurons
that can be handled is bound by the initially chosen parameters.

Encoding real numbers in a way that preserves the operations is a core prob-
lem that might affect performances. CryptoNets first convert the real number
to a fixed precision number, and then embed it into a polynomial whose coeffi-
cients are its binary decomposition. The inverse mapping consists in evaluating
the polynomial at 2. While neural networks operate on real numbers, with nat-
ural arithmetic, plaintext spaces for homomorphic encryption are finite field of
polynomials (modular arithmetics). Therefore, different encoding methods have
been proposed to operate with integers, as in the case of BGV [8] or FV [22].

In order to avoid this encoding step, the authors in [7] only consider dis-
cretized neural networks that directly operate on integers. They use a partic-
ularly restrictive form of neural network, Binarized Neural Networks, where
weights are set in {1,−1}. In order to preserve this property, they select the sign
function as approximation function, where negative integers are mapped to −1
and positive ones to 1. The underlying homomorphic scheme is TFHE [17,18],
with bootstrapping. They modified this scheme to compute both bootstrapping
and the sign function at the same time. Due to the use of bootstrapping, their
scheme can evaluate networks with arbitrary numbers of neurons. Although the
use of bootstrapping allows a huge increase in the number of layers in the net-
work, the discretization of the network incurs a non negligible loss of accuracy
(obtaining “only” 96%).

A recent work of [34] addresses the problem of both training and classifica-
tion over encrypted data. Their solution follows the approach of approximating
activation functions with low-degree polynomials by introducing a new method
based on Chebyshev-like orthogonal polynomials. Besides the authors resort to
homomorphic encryption (HElib) to encrypt both the inputs and (unlike previ-
ous work [7,26]) the models. To handle the noise in the ciphertexts during the
computations, they do not consider bootstrapping since it imposes a high com-
putational overhead, but instead propose to have the server (i) check the noise
level and (ii) ask the client to recrypt the ciphertext when the noise reaches a
predefined threshold.

4.3 Hybrid Solution

The classification protocol of GAZELLE [36] combines FHE and MPC (via Gar-
bled Circuits) to compute neural network classifications privately. Fully con-
nected and convolutional layers are computed via FHE. Activation functions
and max pooling layers are computed via MPC. Transitions between FHE and
MPC are performed by each participant having an additive secret sharing of



74 M. Azraoui et al.

the intermediate result. This allows to take FHE with very low noise capacity
(which results in efficient computation). Transitions between FHE and MPC act
effectively as bootstrapping as they reset the noise. Another feature of these
transitions is that computational and communication costs grow only linearly
with network depth. The transitions between FHE and MPC and the special-
ized algorithms for linear layers in FHE could be applied regardless of the given
cryptographic primitives which realize FHE and MPC. However, another avenue
of innovation for GAZELLE lies in the FHE implementation and parameter
choice. In GAZELLE, the Brakerski-Fan-Vercauteren (BFV) scheme [23] is used.
GAZELLE is secure for semi-honest adversaries, that is, neither the server nor
the client recovers any information if they follow the protocol. The protocol
does not reveal the weights of each layer or their exact size. The performance
of GAZELLE was evaluated by using the MNIST dataset. The neural network
used in this evaluations consists of one convolution layer and two consecutive
fully connected layers. The offline runtime is 0.15 ms, and online runtime is 0.05
ms (overall 0.2 ms), which is better than other approaches [38,45].

5 Performance Study

In this section, we present a performance study that motivates the usage of
neural networks in the context of health data and image processing. For this
respect, we compare the performance of FHE-based, 2PC-based and Hybrid
(GAZELLE-based) solutions for arrhythmia and image classification.

5.1 Arrhythmia Case Study

Heart arrhythmia is a set of conditions in which the heartbeat is not regular.
Most types of arrhythmia a patient can be subjected to, are not causes for
concern, as they neither cause damages to the heart nor make the patient expe-
rience symptoms. Unfortunately, several arrhythmia types cause symptoms that
range from tolerable ones (e.g., lightheadedness) to more serious ones (e.g., short
breath), and some others predispose patients to heart failure and stroke, result-
ing in grave consequences such as cardiac arrests. For this reason, it becomes
vital to monitor chronic patients’ ECG signals to identify arrhythmias at their
onset, and prevent the aggravation of patients’ conditions.

Nowadays, several commercial services that perform arrhythmia detection
on ECG signals can be found in the market. These services collect patients’
ECG data via dedicated wearable devices, analyse them to detect arrhythmias
and report the results to a healthcare professional, who creates a report. As the
identification of arrhythmia in this case is done by a machine, there is a need for
building reliable and accurate algorithms for the identification of critical ECG
sections. In this context, the algorithmic paradigm of deep learning represents a
valid tool for improving the performance of automated ECG analysis [31].

Unfortunately, there are limitations to this approach. Indeed, the burden
of analyzing long streams of ECG data for a large number of patients may be



SoK: Cryptography for Neural Networks 75

difficult to be handled on premises, where the potential lack of computational
resources would limit the performance. To overcome this issue, one could acquire
ECG data on premises and outsource them to an external environment (with
more resources), where the arrhythmia detection would be performed. Neverthe-
less, moving from a trusted environment to an untrusted one would endanger
the protection of personal data. This aspect becomes particularly critical when
analyzing health-related data, as the most recent regulations on data protection
(such as the GDPR) impose strict analysis constraints for the so-called special
categories of data (as per Article 9). Hence, it becomes essential, in this case,
to protect data before outsourcing them to the untrusted environment, e.g., via
the use of advanced cryptographic techniques.

5.2 Image Classification Case Study

Image classification [32] is the study of processing an image and extract valuable
information from its content. Image classification has various application areas
that spans from face [14] or finger print [56] recognition for biometrics to video
surveillance systems [54], hand gestures recognition for sign language [10], etc.

Classifying an image involves computationally intensive operations. With the
recent developments in information systems, particularly with the rise of Graphi-
cal Processing Units (GPUs), the popularity of image classification has increased
again for researchers in machine learning. Thus, many small and medium orga-
nizations started developing new applications based on the purpose of image
classification for either providing better services for their customers such as face
recognition for access control rather than using password based access control, or
surveilling an area, building, room, etc. Although GPUs provide extra computa-
tion power for the processing of an image, such companies may require the help
of computationally more powerful environments such as cloud servers. Compa-
nies again face with the dilemma mentioned in Sect. 5.1: outsourcing the images
and the underlying image classification operations to an untrusted environment
raise privacy issues since these images may contain sensitive information about
individuals and more critically some malicious parties can gain access to vari-
ous online systems using these individuals’ images. Therefore, an extra layer of
protection should be provided before outsourcing these images to the untrusted
environment such as the use of advanced cryptographic techniques mentioned
throughout the paper.

5.3 Performance Evaluation of Cryptographic Techniques
on Arrhythmia Classification

5.3.1 The Neural Network Models
In order to evaluate the suitability and efficiency of the advanced cryptographic
techniques mentioned in this paper, we propose a comparative study for neu-
ral network classification with the two previously described use cases, namely
arrhythmia and image classification. To this aim, we build a small NN model for



76 M. Azraoui et al.

the arrhythmia classification and a deeper NN model for the image classification.
These models are newly built in order to be compatible with the use of FHE
and 2PC.

For the arrhythmia classification use case, the PhysioBank database10 is
employed for training and classification of the newly built NN model. The net-
work consists of 2 fully-connected layers and 1 activation layer that uses x2 with
the input vector size 180, 40 hidden neurons and the output vector size 16 as
defined in [42]. The model achieves 96.51% accuracy.

For the image classification use case, the MNIST database11 that consists of
handwritten digits is used to construct the NN model. The organization of the
layers in the model are as follows: one convolution layer with 5 different 5 × 5
filters that have (2, 2) strides, one x2 activation layer, a flatten layer, a fully
connected layer with 100 neurons, another x2 activation layer and finally a fully
connected layer with 10 neurons. This model achieves 97.39% accuracy.

5.3.2 Privacy Preserving Classifiers
Once these NN models are designed, the goal is to execute them over protected
inputs. We have developed three different solutions that are based on the use of
FHE, 2PC or Hybrid (see Sect. 4) for both NN models.

For the FHE-based solution, we use the CKKS scheme implemented in
Microsoft SEAL 3.1. The CKKS scheme allows making computations on floating-
point numbers, directly. We choose a precision of 15 bits after the point to ensure
that the accuracy of the encrypted evaluation is the same as its evaluation in
the non-encrypted version for both NN models. The network weights are not
encrypted. Therefore, we mostly use operations between plaintexts and cipher-
texts, instead of ciphertext and ciphertext, which improve performances the
solution. We choose m = 4096 and q = 2116 as parameters for the scheme in
order to ensure 128-bit security.

In the 2PC-based solution, we propose to use the ABY framework [19] to
realize the operations of the proposed NN models such as additions and mul-
tiplications. In particular, we propose to use arithmetic circuits in the ABY
framework since the majority of the underlying operations are linear (matrix
multiplications) and there are no comparisons. Moreover, we approximate all
real numbers into integers by using a simple truncation method that consists of
keeping only some digits of the fractional part (hence by multiplying them with
10n). The resulting circuit for privacy preserving arrhythmia classifier has depth
5 and 127 arithmetic gates and for privacy preserving image classifier, the circuit
has depth 7 and 37685 arithmetic gates. Both classifiers also allow for prediction
in batches thanks to the use of the SIMD packing method.

For the Hybrid solution, we follow the approach in [36] and use the so-called
Gazelle technique. In other words, we have implemented the linear operations
such as vector/matrix multiplication using FHE and the non-linear ones such
as operations in activation layer by using MPC. On the other hand, we use
10 https://www.physionet.org/physiobank/database/mitdb.
11 http://yann.lecun.com/exdb/mnist/.

https://www.physionet.org/physiobank/database/mitdb
http://yann.lecun.com/exdb/mnist/


SoK: Cryptography for Neural Networks 77

HElib [1] as the homomorphic encryption library and BGV as the FHE tool. We
also employ a truncation method to deal with the real numbers. This method
is applied on the plaintext value before and after the classification such that
floating point numbers are converted into integers before the classification and
the result is converted into floating point number after the classification.

5.3.3 Experimental Results
In this section, we present the experimental results to compare the performance
of the FHE-based, 2PC-based, and Hybrid solutions on the arrhythmia and
image classifications. All the simulations were carried out using a computer which
has six 4.0 GHz Intel Core i7-7800X processors, 128 GB RAM and 1 TB SSD
disk. The experimental results are given in Table 1. We have performed two dif-
ferent tests for classifying of a single heartbeat/image and classifying heartbeats
in batches of 2048 heartbeats/images.

Table 1. Performance Evaluation on ECG classification and image classification for
FHE-based, 2PC-based and Hybrid solutions.

1 Heartbeat 2048 Heartbeats 1 Image 2048 Images

FHE-based solution
(with packing)

Comp Cost
(ms.)

1253 1253 13570 13570

Comm. Cost
(MB)

0.0018 3.69 0.075 155

2PC-based solution
(with packing)

Online Comp.
Cost (ms.)

25.7 3792.7 205.4 369878

Total Comp.
Cost (ms.)

212.947 23092.4 1083.2 776778.3

Comm. Cost
(MB)

1.85 3801 3.5 82015

Hybrid solution
(without packing)

Online Comp.
Cost (ms.)

43 88064 1200 4505600

Total Comp.
Cost (ms.)

5638 11546624 6500 13312000

Comm. Cost
(MB)

15.5 31744 264 540672

For the arrhythmia classification, the 2PC-based solution seems to provide
the lowest computational cost when compared with the other solutions for the
classification of a single heartbeat. However, the FHE-based solution outper-
forms when classification is performed in batches. Additionally, the FHE-based
solution has better advantage in terms of the communication cost since all the
computations in this solution are realized at the server and there is no need
for interaction except for the transfer of the input. Moreover, the NN model of
arrhythmia classification, which only involves linear operations and one square



78 M. Azraoui et al.

operation, the FHE-based solution seems to be the most suitable one. Neverthe-
less, this may not be the case for deeper neural networks such as for the case
of image classification. For the image classification, the 2PC-based solution and
the hybrid solution outperforms the FHE based solution for the classification
of a single image. On the other hand, the FHE-based solution again provides
better results for the classification in batches. However, these two NN models
are designed to be implemented in all proposed solutions and therefore they do
not consist of any non-linear operations such as the max pooling layer and ReLU
activation function which are not supported by FHE. The hybrid solution may
be the most appropriate one in such a case as it combines the use of 2PC and
FHE. Indeed, this particular solution is specifically designed to operate on large
NN models and it can be seen that the increase rate on the computational cost
is lower than in the case of other solutions. Furthermore, the current version of
the hybrid solution does not support packing yet.

6 Summary

In this paper, we have presented the systematization of knowledge for privacy
preserving Neural Network classifiers. We have first overviewed the NN opera-
tions and their approximations when needed for the cryptographic world. Later,
we have introduced the definitions of advanced cryptographic techniques pre-
sented in this paper and with this aim, we have overviewed the existing solutions
in the literature that utilize these techniques for NN classification. We further
have developed particular NN models for the arrhythmia and image classification
case studies, a small architecture for the first one and a deeper model for the
second one and applied them on encrypted data using FHE-based, 2PC-based,
and Hybrid solutions. We presented a performance evaluation to compare the
FHE-based, 2PC-based, and Hybrid solutions. From the performance study, we
can conclude that there is no single technique that outperforms. Moreover, in
this study, the neural networks used are specifically selected by the compatibil-
ity with the FHE-based solution, which means these models do not consist of
any non-linear operations. Therefore, for other usage scenarios, we may have to
consider to use these operations, and this makes us deal with another dilemma
between privacy, accuracy, and efficiency.

Acknowledgement. This work was partly supported by the PAPAYA project funded
by the European Union’s Horizon 2020 Research and Innovation Programme, under
Grant Agreement no. 786767.

References

1. HElib: An Implementation of homomorphic encryption (2013). https://github.
com/shaih/HElib

2. GDPR. Official Journal of the European Union (2016)
3. Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural

networks are practical. Cryptology ePrint Archive, Report 2019/338 (2019)

https://github.com/shaih/HElib
https://github.com/shaih/HElib


SoK: Cryptography for Neural Networks 79

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS (2008)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

10. Camgöz, N.C., Kındıroğlu, A.A., Akarun, L.: Sign language recognition for assisting
the deaf in hospitals. In: Chetouani, M., Cohn, J., Salah, A.A. (eds.) HBU 2016.
LNCS, vol. 9997, pp. 89–101. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46843-3 6

11. Canard, S., Carpov, S., Nokam, D., Sirdey, R.: Running compression algorithms in
the encrypted domain: a case-study on the homomorphic execution of RLE (2017)

12. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network (2017)

13. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: pro-
grammable, efficient, and scalable secure two-party computation for machine learn-
ing. Euro S&P (2019)

14. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA-based face
recognition system which can solve the small sample size problem. Pattern Recogn.
33, 1713–1726 (2000)

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

16. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 20

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

19. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

20. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. Cryptology ePrint Archive, Report 2012/629
(2012)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-46843-3_6
https://doi.org/10.1007/978-3-319-46843-3_6
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14


80 M. Azraoui et al.

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012)

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive (2012)

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC (2009)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

26. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML (2016)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: ACM Symposium on
Theory of Computing (1987)

29. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

30. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

31. Hannun, A.Y., et al.: Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65
(2019)

32. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classifi-
cation. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

33. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: ACM CCS (2010)

34. Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.N.: Privacy-preserving
Machine Learning as a Service. PETS 2018, 123–142 (2018)

35. Ibarrondo, A., Önen, M.: FHE-compatible batch normalization for privacy pre-
serving deep learning. In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G.,
Rios, R. (eds.) DPM/CBT 2018. LNCS, vol. 11025, pp. 389–404. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00305-0 27

36. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: Gazelle: a low latency frame-
work for secure neural network inference. arXiv preprint (2018)

37. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

38. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: ACM CCS (2017)

39. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. Cryptology ePrint Archive, Report 2017/452 (2017)

40. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-030-00305-0_27
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3


SoK: Cryptography for Neural Networks 81

41. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—a secure two-party compu-
tation system. In: USENIX (2004)

42. Mansouri, M., Bozdemir, B., Önen, M., Ermis, O.: PAC: privacy-preserving
arrhythmia classification with neural networks. In: FPS (2019)

43. Aguilar Melchor, C., Kilijian, M.-O., Lefebvre, C., Ricosset, T.: A comparison of
the homomorphic encryption libraries HElib, SEAL and FV-NFLlib. In: Lanet,
J.-L., Toma, C. (eds.) SECITC 2018. LNCS, vol. 11359, pp. 425–442. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12942-2 32

44. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: ACM CCS (2018)

45. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: S&P (2017)

46. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted proces-
sors. In: USENIX (2016)

47. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homo-
morphic encryption. EURASIP (2007)

48. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

49. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187 (2005)

50. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

51. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure
deep learning. In: DAC (2018)

52. Sadegh Riazi, M., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T.,
Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine
learning applications. arXiv e-prints (2018)

53. Singh, K., Sirdey, R., Artiguenave, F., Cohen, D., Carpov, S.: Towards
confidentiality-strengthened personalized genomic medicine embedding homomor-
phic cryptography. In: ICISSP (2017)

54. Srinivasan, S., Latchman, H., Shea, J., Wong, T., McNair, J.: Airborne traffic
surveillance systems: video surveillance of highway traffic. In: International Work-
shop on Video Surveillance & Sensor Networks (2004)

55. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network
training. In: PETS (2019)

56. Wahab, A., Chin, S., Tan, E.: Novel approach to automated fingerprint recognition.
IEE Proceedings - Vision, Image and Signal Processing (1998)

57. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the
single-execution setting. Cryptology ePrint Archive, Report 2016/762 (2016)

58. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS
(1982)

59. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-030-12942-2_32
https://doi.org/10.1007/3-540-48910-X_16

	SoK: Cryptography for Neural Networks
	1 Introduction
	2 Neural Networks
	2.1 Definition
	2.2 Architecture
	2.3 Approximation of NN Layers
	2.4 Security Requirements

	3 Cryptographic Techniques
	3.1 Multi-party Computation
	3.2 Fully Homomorphic Encryption

	4 Existing Solutions
	4.1 MPC-Based Privacy Preserving NN Solutions
	4.2 FHE-Based Privacy Preserving NN Solutions
	4.3 Hybrid Solution

	5 Performance Study
	5.1 Arrhythmia Case Study
	5.2 Image Classification Case Study
	5.3 Performance Evaluation of Cryptographic Techniques on Arrhythmia Classification

	6 Summary
	References




