
Chapter 10
Bayesian Disaggregated Forecasts:
Internal Migration in Iceland

Junni L. Zhang and John Bryant

10.1 Introduction

Ministries of Finance want national-level population forecasts. Almost all other
users of population forecasts, from local councils, to market analysts, to planners
of roads, supermarkets, and hospitals, want local-level forecasts.

Constructing local-level population forecasts is not easy. The most difficult part
is estimating historical trends for demographic rates that can be extrapolated into the
future. Fertility, mortality, and migration rates vary across subnational areas in ways
that can be difficult to model. The age profiles of migrants coming to university
towns, for instance, are dramatically different from the age profiles of migrants
coming to rural areas (Wilson 2010). Moreover, the more finely a population is
disaggregated, the smaller the number of observations that are available for each
combination of classifying variables such as age, sex, and region. Random variation
starts to dominate, and the underlying propensities become lost in the noise.

Traditional demographic techniques, which were designed for national-level
datasets, are poorly suited to estimation and forecasting with sparse data. The most
traditional demographic approach to estimating rates is to simply divide the number
of observed events by the population at risk, and to do so separately for each
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combination of the classifying variables. When most cells have small numbers of
events, however, estimates obtained by considering each cell separately are erratic
and unreliable.

In response to these problems, demographers turn to some form of smoothing
or modelling. Estimates for each cell are informed by data for neighbouring cells,
and perhaps also by information about overall patterns. The classic method for
smoothing migration rates, for instance, is model migration schedules (Rogers
and Castro 1981). These allow demographers to construct typical age profiles for
migration by specifying only a handful of parameters. More recent alternatives
include splines, or other types of general-purpose statistical smoothing techniques.
A second general approach is to use log-linear models, which provide parsimonious
ways of representing the main patterns in the data (van Imhoff et al. 1997; Raymer
and Rogers 2007; Rogers et al. 2010).

Demographic estimation and forecasting models based on model life tables,
splines, or log-linear models have had many successes. But even these start to break
down when cell counts become very small (Bernard and Bell 2015; Baffour and
Raymer 2019). Standard log-linear models, for instance, cannot handle cell counts
of zero.

As statisticians have long recognized, the ability to extract complex patterns from
sparse datasets is a particular strength of Bayesian statistical methods (Gelman et al.
2014). Bayesian methods are, accordingly, becoming increasingly popular among
demographers carrying out subnational estimates and forecasts (Lynch and Brown
2010; Schmertmann et al. 2013; Bijak and Bryant 2016; Alexander et al. 2017;
Bryant and Zhang 2018). There are, of course, limits to how much can be inferred
from any given dataset, even with the best available methods. However, Bayesian
analyses also yield detailed measures of uncertainty, which can be used to inform
users about these limits.

In this chapter, we present Bayesian forecasts for one particular component
of local-level population change: internal migration, i.e., changes of residence
within national boundaries. Getting internal migration right is essential to local-
level forecasting, as internal migration is typically the biggest source of population
change for small geographical units.

To illustrate the ability of Bayesian methods to cope with sparse data, we have
chosen an extreme case: Iceland. The population of Iceland in 2018 was 348,450.
Once the internal migration data for Iceland are disaggregated by sex, single-year-
of-age, 8 regions of origin, 8 regions of destination, and calendar year, 66% of
cells have values of zero. Using single years of age and calendar years, rather than,
say, aggregating to 5-year units, increases sparsity. However, it reflects user needs.
Consumers of population forecasts often want forecasts for particular years, or for
age groups such as school ages that cannot be constructed from 5-year age-time
blocks.

We begin the chapter with a review of the Icelandic data and migration trends.
We then present a baseline model that tries to capture these trends in a parsimonious
way. We subject the baseline model to some model checking, using ‘replicate
data’ techniques. Based on these checks, we construct a revised, slightly more
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complicated model. We use held-back data to choose between the baseline and
revised models. We then present forecasts from the best-performing of the two
models.

Our recent book Bayesian Demographic Estimation and Forecasting (BDEF)
(Bryant and Zhang 2018) also includes a chapter on internal migration in Iceland.
However, the BDEF model uses confidentialised data, and has a component to
account for the confidentialisation process, which is the main focus of that chapter.
The BDEF component dealing with demographic rates is also simpler than the one
presented here, and is not subjected to model testing or model comparison.

10.2 Data

Our first dataset is counts of internal migrations by region of origin, region of
destination, single year of age (up to age 80+), sex, and calendar year. The data
were obtained from the Statistics Iceland website.1 The Statistics Iceland website
states that the data come from the Register of Migration Data, and that a person
is considered to have moved between regions if the person has stayed in the new
region for at least one month. Altogether, the migration dataset has 181,440 cells.

These 181,440 cells do not include ‘structural zeros’, that is, cells where the
count is zero by definition. In our case, since our definition of migration requires a
change of region, a cell is a structural zero if the region of origin for the cell equals
the region of destination. The figure of 66% of cells equalling zero cited above also
does not include structural zeros. Among the non-zero cells, the median value is 2,
and the maximum is 34.

To provide a feel for the sparsity of the data, Fig. 10.1 shows migration counts
for three selected regions for a single year. The age profiles are jagged, and flows
not involving the Capital Region are tiny, with most age groups having counts of
zero.

In addition to migration counts, we also use a dataset giving resident population
counts at 1 January of each year. These counts are disaggregated by region, age,
sex, and year. The data were also obtained from the Statistics Iceland website.2 The
largest region in Iceland, Capital, had a population in 2018 of 222,484, and the
smallest, Westfjords, had a population of 6,994.

We divide the data into a training set and a test set. The training set covers
the years 1999–2008 and the test set covers the years 2009–2018. As we discuss
below, we build our models using the training set, and choose the best model based
on performance in the test set, before using the combined training and test sets to
construct our final forecasts.

1Table Internal migration between regions by sex and age 1986–2017—Division into municipali-
ties as of 1 January 2018, downloaded on 19 March 2019.
2Table Population by municipality, age and sex 1998–2018—Division into municipalites as of
1 January 2018, downloaded on 19 March 2019.
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Fig. 10.1 Number of migrations of females in 2008, for three selected regions. Each row shows
an origin region and each column shows a destination region: for example, row 2, column 1 shows
migration from Southwest to Capital

10.3 Empirical Patterns

We begin by looking a little more closely at the data, starting with regional
populations. Figure 10.2 shows regional population counts by age in 2008. Although
the age profiles are broadly similar across regions, there are some important
differences at the young adult ages. From about age 20, age profiles in most regions
bend downwards. In Capital Region, however, the profile bends upwards. Even
without seeing the migration data, we might suspect that young people are migrating
from other regions into Capital Region.

Figure 10.3 shows direct estimates of migration rates by age, for each combina-
tion of origin and destination. We use the term ‘direct estimate’ to mean estimates
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Fig. 10.2 Population aged 0–79, by single year of age and region in 2008. The regions are
arranged by population size, from top left to bottom right. Each panel has a different vertical scale.
The white vertical strips show ages 20–29

obtained by dividing the number of events in a given cell by the population at risk
for that cell, as opposed estimates obtained from a statistical technique that pools
information across cells. The estimated rates vary by two orders of magnitude across
age and region, so, for clarity, we display them on a log scale. Comparing across
columns, we can see that age-specific migration rates for migration into Capital
Region have a more pronounced peak at the young adult ages than age-specific
rates for migration into other regions. This is consistent with the observation that
Capital region has proportionally more young people than other regions.

One sort of difference not readily apparent in Fig. 10.3, however, is sex differ-
ences. Females and males in Iceland seem to have very similar migration patterns.

Figure 10.4 displays a different aspect of the data, showing trends in migration
between regions, for all age-sex groups combined. Once again, the rates are shown
on a log scale. Migration rates into Capital Region, in the first column, are much
higher than migration rates into any other region. There are hints of upward or
downward trends, most notably for migration between Northwest and East regions,
though in many cases it is difficult to be sure because of random variation in the
rates.

Finally, Fig. 10.5 gives the age profiles for migration in 1999 and 2008. There
appears to have been a slight shift in the age profile between these two years,
particularly in the young adult ages.
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Fig. 10.3 Direct estimates of migration rates, by region of origin, region of destination, age, and
sex, 1999–2008. Each row represents one origin region and each column represents one destination
region. The rates are shown on a log scale. To reduce variability, the figure uses 5-year age groups,
and uses average migration rates over the entire period 1999–2008

10.4 Baseline Model

10.4.1 Counts and Rates

Our baseline model tries to capture the main patterns in the migration data as simply
as possible. Let yijast denote migrations between regions i and j by people in age
group a and sex s during period t . As noted above, we define yijast ≡ 0 whenever
i = j . Let piast denote the number of people at the start of period t in the population
of region i, age group a and sex s. Let wiast denote the number of person-years lived
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Fig. 10.4 Direct estimates of migration rates, by region of origin, region of destination, and time,
1999–2008. Each row represents one origin region and each column represents one destination
region. The rates are shown on a log scale

during period t for the population of region i, age group a and sex s. Demographers
commonly approximate the number of person-years lived using

initial population + final population

2
× length of period,

which gives wiast = (piast + pi,a,s,t+1)/2. We assume that, within each cell,
migration counts follow a Poisson distribution,

yijast ∼ Poisson(γijastwiast ), (10.1)

where γijast is the underlying migration rate.
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Fig. 10.5 Direct estimates of
migration rates, by age, in
1999 and 2008
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Table 10.1 Priors for main
effects and interactions,
baseline model

Term Prior

(Intercept) Exchangeable with known variance

region_orig Exchangeable with covariates

region_dest Exchangeable with covariates

age Local trend

sex Exchangeable with known variance

time Local level

region_orig:region_dest Exchangeable

region_dest:age Exchangeable with covariates

age:time Local level

Equation (10.1) allows for the fact that, for a given migration rate and exposure,
the actual number of migrations is a random quantity. Standard log-linear models
have no equivalent to Equation (10.1). This omission does not matter when cell
counts are large, and variation due to the randomness of individual events is
minor relative to variation due to differences in rates and exposures. However,
ignoring random variation becomes problematic when cell counts are small. One
consequence is the inability of such models to deal with cell counts of zero.

The migration rates γijast are modelled using

log γijast ∼ N(xijastβ, σ 2). (10.2)

Vector β contains a combination of main effects and interactions, which are listed
in Table 10.1. Vector xijast , which is composed of 0s and 1s, assigns the appropriate
elements of β to each value for γijast .

A main effect is a predicted difference for one variable that remains constant
across values for all the remaining variables. In our model, for instance, a sex
main effect is a female-male difference that remains constant across all possible
combinations of region, age, and time. An interaction is a predicted difference that
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varies across values for one or more other variables. The age-destination interaction
in our model, for instance, measures the way that migration age profiles vary across
regions of destination.

An important feature of Equation (10.2) is that xijastβ, the value for cell ijast

assembled from the various elements of β, is the expected value for log γijast , not
the actual value. The fact that Equation (10.2) uses a probability distribution implies
that actual values differ in general from expected values. The typical size of the
difference between actual and expected values is governed by the parameter σ . The
smaller the value of σ , the tighter the fit. The parameter σ is estimated as part of the
overall model-fitting process.

In models like that of Equations (10.1)–(10.2), the final estimate for each γijast

is a compromise between the predicted value calculated from xijastβ and the direct
estimate calculated from yijast and wiast . All else equal, the more observations there
are for cell ijast , that is, the higher the values of yijast and wiast , the closer the
final value will be to the direct estimate. Models like that of Equations (10.1)–
(10.2) perform a sort of local smoothing. Estimates are pulled towards the model
predictions in cells where counts are small, but are left more-or-less unchanged in
cells where counts are large. This is a sensible and effective way to smooth.

Effective smoothing is essential to demographic forecasting. A good forecast
is one that carries forward into the future genuine, long-lasting features of the
demographic series, and leaves out transient features or random noise.

10.4.2 Priors

Each main effect and interaction in β is given a prior distribution. In a Bayesian
analysis, a prior distribution is a way of representing information about the system
being modelled, beyond what is contained in the main datasets (Bryant and Zhang
2018, pp. 88–92). In our case, prior distributions allow us to encode some qualitative
features of migration rates, beyond what is contained in the yijast and wiast .

The prior for the sex effect βsex
s , for instance, is

βsex
s ∼ N(0, 1). (10.3)

This prior implies that, on a log scale, we expect female-male differences to be
values like 0.1, −0.5, or 1.1, but not values like −18 or 400. This prior understates
our actual knowledge. A differences of 0.1 on a log scale corresponds to a difference
of about 10% on the original scale, which is about as large as we would expect to
see for sex differences in Icelandic migration rates. In Bayesian terminology, our
prior for the sex effect is ‘weakly informative’. It places a constraint on the range
of values that a parameter can take, but only a soft constraint. However, even a
soft constraint can greatly speed up computations, and help the model distinguish
between random noise and genuine differences.
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The priors for the region-of-origin effect, region-of-destination effect, and origin-
destination interaction all have the same basic form as the prior for sex. In the
case of the region priors, however, the standard deviation parameter is estimated
from the data rather than specified in advance. Values for two sexes do not provide
enough information to estimate a standard deviation, but values for eight regions
do. In addition, the priors for origin and destination include two covariates. The
first covariate takes a value of 1 if the region is Capital, and 0 otherwise. The second
covariate equals the log of population counts in 2008. By including these covariates,
we are allowing for the fact that the Capital region is not like the other regions of
Iceland, and that, as emphasised by gravity models of migration (Anderson 2011),
migration rates tend to vary systematically with the population size of the origin
and destination regions. In principle, we could refine the predictions by allowing
the covariate to change over time, as regional population changed. However, this
would greatly complicate the forecasting process, and regional population sizes are
in any case relatively stable.

The time effect has a local level model (Prado and West 2010, ch. 4),

βtime
t ∼ N(αtime

t , τ 2
time) (10.4)

αtime
t ∼ N(αtime

t−1 , ω2
time). (10.5)

A local level model is a generalisation of a random walk. Like a random walk, it
allows for random shifts in the long-term mean of the series, but unlike a random
walk, it also allows for one-off departures from this mean. The size of the long-term
shifts is governed by ωtime, and the size of the one-off departures is governed by
τtime. The ωtime and τtime parameters are both estimated from the data.

By using a local level model, we are ruling out the possibility of a long-term
upward or downward trend in overall migration rates. This assumption is based on
inspection of the Iceland data, as shown, for instance, in Fig. 10.4.

Age effects are modelled using a local trend model (Prado and West 2010, ch. 4),

β
age
a ∼ N(α

age
a , τ 2

age) (10.6)

α
age
t ∼ N(α

age
t−1 + δ

age
t−1 , ω2

age) (10.7)

δ
age
t ∼ N(δ

age
t−1 , ς2

age). (10.8)

A local trend model, through the parameter δ, allows for a persistent upward or
downward trend. However, because the δ can vary, the size and direction of the
trend can change. A local trend model thus allows for the fact that migration age
profiles bend upwards through the teens and early twenties, and downwards after
that.

Applying time-series models to age effects is an long-standing practice in
statistical demography (e.g. Alho and Spencer (2005, pp. 281–282) or Congdon
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(2008)). Time series models are based on the principle that neighbouring units are
more highly correlated than distant units, an idea which is just as valid for age
groups as it is for time periods.

The prior for the age-destination interaction has the same structure as the origin-
destination interaction, in that it uses a normal distribution with a standard deviation
that is estimated from the data. The prior also includes a covariate, the log of the
2008 population in each combination of age and destination. The prior for the age-
time interaction uses a separate local level model for each age group, sharing the
same τage:time and ωage:time across age groups.

All standard deviation parameters that are not specified in advance are given
priors constructed from half-t distributions. Half-t distributions are restricted to non-
negative values, and favour values near 0. In all cases, we use distributions with 7
degrees of freedom. In our experience, results are generally insensitive to the exact
choice of degrees of freedom, but a value of 7 provides a good tradeoff between
robustness and speed of convergence. (See Sect. 10.4.4 for a discussion of model
convergence.) We use scale parameters of 1 for σ and the main effects, and 0.5 for
interactions. In doing so, we are implying that we expect interactions to be smaller
than main effects (Gelman et al. 2008). All the priors for the standard deviations
are, nevertheless, relatively weak. The Prior Choice Recommendations page3 on
the website for the Bayesian modelling language Stan discusses the advantages and
disadvantages of the half-t prior and other priors.

10.4.3 Model Output

As with most Bayesian analyses, the output from the modelling is a sample from
the posterior distribution for the unknown quantities. In our case, the unknown
quantities are the γijast , the standard deviation σ , the main effects and interactions,

that is, βtime, βage:time, and so on, and the parameters for each of the priors
distributions.

We can use summaries of the posterior sample to describe the posterior distribu-
tion, in much the same way that a survey statistician uses summaries of a sample
survey to describe the population. Thus if sample values for a particular rate are
0.0021, 0.0032, . . . , 0.0019, and if the 50%, 2.5%, and 97.5% quantiles for these
values are 0.0025, 0.0018, and 0.0030, then we can use 0.0025 as a point estimate
for the rate and (0.0018, 0.0030) as a 95% ‘credible interval’. Under the assumptions
of the model, a 95% credible interval for a parameter has a 95% probability of
containing the true value for that parameter.

3https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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10.4.4 Calculations

Estimates for the parameters in the model are obtained using computational methods
known as Markov chain Monte Carlo (MCMC) (Gelman et al. 2014). Essentially,
we start with an approximate answer, and then use a Gibbs sampler (Gelman et al.
2014, ch. 11) to cycle through the following steps:

• Draw values for the migration rates γijast , conditional on yijast , wiast , and the
current values for all parameters other than the γijast .

• Draw the main effects and interactions β, conditional on the γijast , and all other
parameters.

• Draw values for the remaining parameters, conditional on the γijast and β.

The output from this process is a series of draws from the posterior distribution.
The techniques used to draw values for each set of parameters vary according

to the conditional distribution of those parameters. Values for β, for instance, are
drawn straight from normal distributions. Values for the γijast , in contrast, are
obtained through a Metropolis-Hastings step, in which new values are proposed
and then accepted with probabilities that depend on the proposal distribution and on
the posterior probabilities of the current and proposed values (Gelman et al. 2014,
ch. 11). Values for standard deviation terms are drawn using a technique called slice
sampling (Neal 2003).

We use multiple sets of starting values, and construct an independent chain
starting from each set. Using multiple chains in this way can allow generation of
more draws for the same amount of time, since the chains can be run in parallel
on a multicore computer. It also provides a way of seeing whether the calculations
are working as intended. If all is well, the chains should all converge to the same
distribution of values. Depending on the quality of the initial approximate answers,
it may take some time before this convergence occurs. Values generated during
this initial burn-in period are discarded. Non-convergence across the chains can be
detected using a statistic generally referred to as ‘R-hat’ (Gelman et al. 2014, p.
285). A value for an R-hat much above 1 indicates non-convergence.

In a model with as many parameters as ours, it is not feasible to calculate R-hats
for all parameters. Instead, when a vector of parameters has more than 25 elements,
we sample 25 elements and calculate R-hats only for those. We consider the model
to have converged when the maximum of all observed R-hats is less than 1.1. By this
point, R-hats for most of the cells we are monitoring are usually indistinguishable
from 1.

For each model, we use 4 independent chains, each with a burnin of 15,000
iterations, and production of 15,000. We retain 1 out of every 60 iterations, yielding
a sample of 4 × 15,000 ÷ 60 = 1,000 draws from the posterior distribution.

The calculations are all carried out using our own open source R packages
dembase and demest. The R packages make use of C code for the most
computationally-intensive part of the estimation. The packages can be downloaded
from github.com/statisticsnz/R. All code for the Iceland migration example is
available at: github.com/bayesiandemography/iceland_migration.

http://github.com/statisticsnz/R
http://github.com/bayesiandemography/iceland_migration
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10.5 Model Checking Using Replicate Data

While building a model, we inevitably make many simplifications. Before we can
trust the output from the model, we need to verify that, despite these simplifications,
the model is still able to capture the substantively important features of the data. One
effective way to check for important omissions in a model is to generate replicate
data (Gelman et al. 2014, ch. 6). We illustrate with the example of regional time
trends.

Our baseline model has a single, shared time trend. In other words, all region-to-
region flows are assumed to shift upwards or downwards by the same percentage
from year to year. If this assumption is too strong, it could materially affect
forecasted values for future migration flows, which is an outcome of central
importance to users of the migration forecasts.

Some region-to-region variation in time trends is indeed visible in Fig. 10.4. But,
given the small numbers of observations, it is possible that these variations are
random noise, and that the data are in fact compatible with the assumption of a
single time trend.

To assess the compatibility of the data and the assumption of single time trend,
we generate 19 synthetic or ‘replicate’ datasets, using our baseline model. We then
compare the one actual dataset with the 19 replicate ones, to see if the actual dataset
looks distinctive or out-of-place. If it does, we conclude that the single time trend
assumption is too strong.

We generate a replicate dataset by randomly selecting a draw from the posterior
sample, plugging the γijast from that draw into Equation (10.1), and obtaining a
set of simulated yijast . Repeating this process 19 times yields 19 replicate datasets.
We could then, in principle, make 19 new versions of Fig. 10.4 and compare these
with the original Fig. 10.4. Instead, we work with summary values. We fit a straight
line to each of the 8 × 7 = 56 time series of origin-destination migration rates—
in other words, to time series like those shown in each panel of Fig. 10.4. We then
see whether the distribution of these slopes is similar across the actual and replicate
datasets.

Figure 10.6 shows the results from these calculations. The actual dataset is clearly
different from the replicate datasets. The baseline model fails to reproduce the
observed variability in regional time trends.

10.6 Revised Model

In response to the results from the replicate data test, we construct a revised version
of our model that, in addition to all the terms in the baseline model, includes an
interaction between origin and time, and an interaction between destination and
time. The priors for these interactions have the same structure as the age-time
interaction in the baseline model. Each region has its own local level model, but
standard deviation terms are shared across regions.
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Fig. 10.6 Results of model checking for the baseline model. Using replicate data to test the ability
of the baseline model to describe regional time series. Each point shows the slope from a straight
line fitted to a time series for migration between a particular origin and destination. There are 56
points in each set. The first set of slopes are obtained from the actual dataset, and the remaining 19
are obtained from replicate datasets generated from the baseline model
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Fig. 10.7 Results of model checking for the revised model. An updated version of Fig. 10.6, using
replicate data generated from the revised model rather than the baseline model

Figure 10.7 shows the results from applying the replicate data test to the revised
model. The revised model performs much better than the baseline model. The
distribution of slopes from the actual data is indistinguishable from the distributions
generated under the replicate datasets.

In a full-scale analysis, we would repeat the test-and-revise process a few more
times. For instance, we might use replicate data to test whether the data were
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consistent with the assumption of no overall trend upwards or downwards. If it
turned out that the assumption was clearly violated, then we would extend the model
accordingly.

10.7 Forecasts

Our forecasts use exactly the same set of assumptions as our estimates. Indeed,
from a Bayesian point of view, there is no sharp distinction between forecasting
and estimation. Forecasting is just estimation with missing data (Bryant and Zhang
2018).

We construct the forecasts by extending forward in time each draw from the
posterior sample. With the baseline model, the process for extending the sth draw is
as follows.

1. Plug values τ
(s)

time and ω
(s)

time into Equations (10.4) and (10.5), and then apply the
equations iteratively to the end of the forecast period. This yields a forecasted set
of time effects.

2. Plug values τ
(s)

age:time and ω
(s)

age:time into the prior model for age-time interac-

tions, and iterate to obtain forecasted series of age-time interactions.
3. Plug the forecasted time effects, the forecasted age-time interactions, the non-

time-varying elements of β(s), and σ (s) into Equation (10.2). Use Equation (10.2)
to generate future values for the γijast .

Carrying out these steps for s = 1, . . . , S yields a posterior distribution for
migration rates for future years, which can be summarised and manipulated just
like any other posterior distribution. Because the forecasts use the same sample of
paramater values as the estimates, all the parameter uncertainty in the estimates
propagates through into the forecasts.

10.8 Model Choice Using Held-Back Data

We have two models: a baseline model that does not include region-time inter-
actions, and a revised model that does. At first sight, it might seem obvious
that we should use our revised model for forecasting, since the replicate data
checks imply that region-time interactions are needed to accurately reproduce the
historical data. However, while replicate data checks can suggest directions for
model improvement, they cannot provide definitive answers on which models will
yield the best forecasts. Complex models that do a better job of explaining historical
trends do not necessarily do a better job of predicting future values (Shmueli 2010).
We use tests based on held-back data to make the final decision on which model to
use.
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Model choice using held-back data proceeds as follows:

1. Split the data into a training set and a test set.
2. Use the training set to make forecasts about values in the test set—one forecast

for each model.
3. By comparing the forecasted values for the test set with the actual values,

evaluate the performance of the models.
4. Based on the comparisons, choose a best model.

As noted above, our training data set consists of data for the years 1999–2008, and
the test set consists of data for the years 2009–2018.

As well as providing a way of choosing a model, held-back data tests also give a
sense of how the models will perform in practice. For instance, if, when measured
against the test dataset, 80% credible intervals from a model only contain the true
values only 50% of the time, then we would expect that the model to be overly
optimistic in other settings as well.

The test data yields direct estimates of migration rates. We must be careful that
the forecasted rates from our model are comparable to the direct estimates, in that
they also reflect the randomness of the individual events. To do this, we take the
forecasted γijast , plug them into Equation (10.1), and use Poisson draws to obtain
forecasted migration counts. Dividing the forecasted migration counts by exposures
gives us the rates that we need.

Our first performance measure is median absolute error. This measure is con-
structed from the absolute differences between point forecasts and actual value from
the test dataset. We obtain point forecasts by taking the medians of the posterior
samples of the rates. The second measure is the proportion of values from the test
dataset that lie within the credible intervals. We use 80% credible intervals for
performance measurement, so ideally 80% or more of the test values should lie
within our intervals. The third measure is the median width of the credible intervals:
for the same coverage level, the narrower the intervals the better. We take medians
of the absolute errors and of the intervals widths, rather than means, because both
measures are highly skewed, with many small values and a few large values.

Ideally, we would like to make our comparisons at the lowest level of aggre-
gation, that is, to compare forecasted rates classified by origin, destination, age,
sex, and time with test-set rates classified in the same way. Unfortunately, with
such sparse data, it is difficult to form credible intervals with the required degree
of coverage, since a difference in migration counts of 1 or 2 can imply very
large differences in coverage. We instead work with rates classified only by origin,
destination, and time, which are considerably less lumpy.

When assessing the performance of the models, we do, however, distinguish
between flows out of Capital Region and flows out of other regions. The population
at risk of migration is so much larger for Capital Region than for other regions that
the job of estimating and predicting migration is much easier. We would therefore
expect model performance to differ between Capital Region and elsewhere.

Table 10.2 summarises the performance of the two models. The baseline and
revised models have similar levels of accuracy, as measured by median absolute
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Table 10.2 Comparison of performance of baseline and revised models, using 80 percent credible
intervals

Median abs. error Median width Coverage

Baseline: Capital 0.00044 0.00069 0.23

Baseline: Other 0.00075 0.00133 0.47

Revised: Capital 0.00056 0.00186 0.71

Revised: Other 0.00083 0.00238 0.73

error. Credible intervals from the baseline model are much narrower than credible
intervals from the revised model. However, as can be seen in the third column of
Table 10.2, the credible intervals from the baseline model are too narrow: they
contain the true value far less than 80% of the time. The credible intervals from
the revised model are much better calibrated, though not perfectly so.

Both models give more accurate predictions for flows from the Capital Region
than for flows from other regions. This is not surprising: predictions for the Capital
Region are based on more observations than the predictions for the other regions.

Forecasts from the revised model are less accurate than forecasts from the
baseline model. However, the revised model is much better calibrated than the
baseline model in that its actual coverage rate comes much closer to the nominal
rate. We therefore base our forecasts on the revised model.

10.9 Estimates and Forecasts from the Revised Model

We look now at estimates and forecasts from the revised model. The estimates
and forecasts are all based on data for the entire period 1999–2018. Figure 10.8
shows estimates of migration rates γijast for females in 2018. As well as the
modelled estimates, the figure also shows direct estimates, though, unlike the
modelled estimates, the direct estimates are aggregated to 5-year age groups, to
reduce variability.

Showing the direct estimates alongside the modelled estimates in Fig. 10.8 is a
form of reality check on the modelled estimates. If the direct estimates departed in
some systematic way from the modelled estimates, then we would suspect that the
model had missed out an important feature of the data.

We should not, however, expect 95% of the direct estimates to lie within the
95% credible intervals for the γijast . The direct estimates contain all of the original
random variability in yijast . The model tries, as much as possible, to strip away this
random variability.

Figure 10.8 illustrates the effects of the smoothing process discussed in
Sect. 10.4.1, whereby the modelled estimates stay close to the direct estimates
for flows involving Capital Region, where data are plentiful, and rely on predicted
values from Equation 10.2 for other flows where data are scarce. This is typical
behaviour for Bayesian hierarchical models. To obtain a sensible estimate of
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Fig. 10.8 Modelled and direct estimates of migration rates γijast , by region of origin (rows),
region of destination (columns), and age, for females in 2018. The modelled estimates come
from the revised model, using data from the combined training and test datasets. The estimates
are shown on a log scale. The grey bands represent 95% credible intervals and the white lines
represent posterior medians, for single years of age. The dots represent direct estimates for 5-year
age groups. The black dots represent estimates greater than 0, and the grey dots at the bottom of
each panel represent estimates equal to 0, which are undefined on a log scale. As discussed in the
text, we would not expect 95% of the direct estimates to lie within the 95% credible intervals for
the γijast

γijast for each cell, the model not only uses information coming from the direct
estimate for that cell, but also borrows information from all other cells. When data
are plentiful such that the direct estimate is reliable, information from the direct
estimate outweighs information from other cells. When data are scarce such that
the direct estimate is unreliable, information from other cells receives a larger
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weight. For instance, in the panel for flows from East to Northwest, the direct
estimate is nonzero for age group 25–29, and is zero for all other age groups. It is
highly unlikely that the true underlying migration rates follow such an extreme age
profile. The rates estimated by combining the East-Northwest data with information
borrowed from other cells are much more plausible.

As can be seen by comparing across columns, the age profiles for modelled
migration rates differ across destinations. The profile for Capital Region has a
sharper peak at the young adult ages than the profile for East Region, for instance,
which in turn has sharper peak than South Region. These differences would be
difficult to see using direct estimates alone.

The overall level of migration also differs substantially from flow to flow, though
this is partly obscured by the use of a log scale.

Figure 10.9 shows estimates and forecasts of migration rates into Capital region
for females in selected single-year age groups. As is apparent in the figure, there is
substantial uncertainty about underlying migration rates for young adults, even for
years where data are available. Uncertainty does, nevertheless, grow further out into
the forecast period.

Although, within each age group, migration rates are similar across regions, there
are nevertheless differences. Migration rates appear to be higher for young adults
from Westfjords, for instance, than they are for young adults from the Northeast.

With Fig. 10.10 we shift from the largest region of Iceland to the smallest. The
vertical scale for Fig. 10.10 covers a much smaller range than the vertical scale for
Fig. 10.9. People are much less likely to migrate to Westfjords Region than they are
to Capital Region.

The data available for directly measuring migration into Westfjords are accord-
ingly very limited. Between 1999 and 2018, for instance, there was not a single
case of a 10-year-old migrating from Northwest Region to Westfjords. The model,
nevertheless, yields estimates and forecasts that are intuitively reasonable. It implies,
for instance, that underlying propensity for 10-year-olds in Northwest Region to
migrate to Westfjords has been low, and will continue to be low, but is not zero. The
model also virtually ignores the apparent spikes in migration rates suggested by the
direct estimates. The model’s behaviour in such cases is sensible, given the small
counts that give rise to these spikes.

Switching from the training dataset for 1999–2008 to the full dataset for 1999–
2018 produces only small differences in estimates for the same years. Figure 10.11
shows some representative examples. There do not appear to have been any major
shifts in migration trends between the training period and the test period.

10.10 Discussion

It is still common in demography departments and statistics agencies to encounter
rules of thumb stating that demographic rates cannot be calculated unless every
cell in a table has, say, at least 5 observations, or at least 30 observations. In this
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Fig. 10.9 Migration rates to Capital Region from other regions, for females in selected single-year
age groups. The grey bands represent 95% credible intervals and the white lines represent posterior
medians. The black lines represent direct estimates

chapter, we have broken all such rules. Of the 181,440 cells in our migration dataset,
only 11,298 have 5 or more observations, and only 9 have 30 or more. And yet,
while there is scope for further checking and refinement, the held-back data tests
suggest that our revised model is already attaining respectable levels of accuracy
and coverage. Moreover, using credible intervals or other uncertainty measures,
consumers of the forecasts can be given guidance on how much trust to place in
the rates, including rates calculated from small counts.

The availability of new methods for estimating and forecasting with sparse,
complicated datasets, such as the methods we present in this paper, should prompt
demographers and statisticians to rethink conventional rules of thumb about what
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Fig. 10.10 Migration rates to Westfjords from other regions, for females in selected single-year
age groups. The grey bands represent 95% credible intervals and the white lines represent posterior
medians. The black lines represent direct estimates

is achievable in demographic forecasting. Users of demographer forecasts are
demanding ever-more detail. Demographers and statisticians increasingly have the
tools to meet these demands.

Of the remaining obstacles to the use of methods like the ones in this chapter,
perhaps the most important is computation. Running all of the calculations in this
chapter currently takes around 18 hours on a desktop computer. With these sorts of
computation times, scaling up from 8 regions to 80 or 800 is difficult.

Speeding up computations is, however, a solvable problem. Our experience over
several years is that improving algorithms and code yields steady improvements in
speed, and we still have a long list of additional modifications to try. Moreover, the
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Fig. 10.11 Estimates based on the full dataset vs estimates based only on the training set. The
dark grey lines show 95% credible intervals from fitting the revised model to the training set, and
the light grey lines show 95% credible intervals from fitting the revised model to the full dataset.
The black dots are direct estimates. Each panel shows a randomly-selected combination of origin,
destination, age, and sex

rapid rise in distributing computing gives new options for attaining speed through
brute force. We suspect that, before long, 80 or 800 regions will be well within
reach.
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