
A Template-Based Method
for the Generation of Attack Trees

Jeremy Bryans1, Lin Shen Liew2, Hoang Nga Nguyen1(B),
Giedre Sabaliauskaite2, Siraj Shaikh1, and Fengjun Zhou2

1 Coventry University, Coventry, UK
{ac1126,ac1222,aa8135}@coventry.ac.uk

2 Singapore University of Technology and Design, Singapore, Singapore
{linshen liew,giedre,fengjun zhou}@sutd.edu.sg

Abstract. Attack trees are used in cybersecurity analysis to give an
analyst a view of all the ways in which an attack can be carried out.
Attack trees can become large, and developing them by hand can be
tedious and error-prone. In this paper the automated generation of attack
trees is considered. The method proposed is based on a library of attack
templates – parameterisable patterns of attacks such as denial of service
or eavesdropping – and that also uses an abstract model of the network
architecture under attack. A pseudocode implementation of the method
is also presented. The example application given is from the automotive
domain and using an architecture consisting of linked CAN networks –
a network configuration found in virtually every current vehicle.

Keywords: Attack trees · Generation · Automotive · Cybersecurity

1 Introduction

Attack trees are a well-known graphical model for capturing and analysing
attacks on a system [12]. Their intuitive simplicity and ability to succinctly cap-
ture all attacks on a system have made them popular in many domains, including
SCADA systems [2], ATM security [4], the analysis of insider attacks [11] and
the automotive domain [1]. They give an analyst an overview of all the known
ways in which an attack can be carried out, and show how single attack steps
combine and build into complex attacks.

Attack trees are directed acyclic graphs with a single end node, which is the
goal of the attack. To construct an attack an analyst considers all the steps
which would immediately lead to the goal of the attack being realised. These
become the subgoals, or intermediate leaves of the tree. Each of these leaves is
now considered as a (sub)goal, and the steps that would lead to it’s realisation
are identified. The process is recursively repeated until the branches of the tree
cannot be further expanded. This process can be time-consuming, especially
for large attack trees [4] and several researchers have therefore investigated the
automatic generation of the trees [5,6,10,13].
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Within the literature, two main approaches to automating the generation
or synthesis of attack trees have developed: (i) model transformation and (ii)
semantic-based construction. In the model transformation approach, a target
system and attackers are modelled using either graphical [6] or formal [13] pre-
sentations as input. The desired target of the attackers is identified, and from
this the tree root from which the tree construction starts is established. In [6],
system models contain actors, processes, items and locations, and connections
between these elements to the desired target are utilised to develop the attack
tree. Similarly, systems and attackers in [13] are modelled in a process calculus
as input. They are first transformed into propositional formulae. Given a tar-
get location, these formulae are utilised to construct attack trees by means of
backwards-chaining search. While techniques in the model transformation app-
roach are automated, they suffer from lacking a basis for correctness. There is
no rigorous relation between generated attack trees and the attacks implicitly
implied from input models. In order to fill this gap, [10] proposed ATSyRA, an
interactive tool for synthesising attack trees from attack graphs. First, ATSyRA
generates all attack paths from the input graphs by model checking. Then, users
are required to specify a refinement relation between a set of actions to recur-
sively refine attack paths to eventually construct an attack tree. While ATSyRA
establishes the semantic connection between the constructed tree and the input
model via attack paths, it is not fully automated. To overcome this shortcoming,
[8] introduced an approach to extending an existing attack tree by means of a
library of attack trees. The extension is enabled by adding logical preconditions
and assertions to tree nodes. Then an attack tree from the library can be attached
to a node of the attack tree to be extended if certain relations between the pre-
conditions and assertions are satisfied. To this end, logical reasoning must be
employed. Similarly, [5] has proposed a different approach which is based on the
formal semantics of attack trees [7]. To this end, the synthesis problem becomes
that of generating attack trees from a given semantics, i.e., a set of attack traces.
It is reduced to a biclique problem, which is known to be NP-complete, and a
heuristic algorithm is suggested for the construction.

In this paper we propose a method for the generation of attack trees based
on templates: abstracted and parameterizable known patterns of attack, and
represent steps such as spoofing of one node by another, or eavesdropping on
traffic between two nodes, which together can be built up into an attack. The
method takes as input a description of the architecture of the network that is
being attacked and the set of templates.

These networks are modelled by graphs consisting of nodes and connectivity
information. Each node represents a component of the network. The network
information required includes the access points. These are the nodes within the
network that are exposed to attackers outside the network. We present a method
that applies each element from the library of attack patterns to the graphical
network model in order to form attack trees. We give as well an algorithm for
our method. Given a network and a set of templates, the algorithm can generate
all possible attacks conforming to the template library.
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The contributions in this paper are the template-based method for the gener-
ation of attack trees and it’s algorithm, and the automotive example demonstrat-
ing the method. The paper proceeds as follows: Sect. 2 begins with an introduc-
tion to automotive communication networks and attack trees. In Sect. 3 we give
the description of the template-based methodology for generating attack trees,
and in Sect. 4 we give the pseudo-code description of the generation algorithm
and briefly present the results of our automotive example.

2 Background

2.1 Automotive Communication Network

An automotive communication network facilitates the communication between
electronic control units (ECUs) within a vehicle. It is usually divided into sub-
networks of related ECUs. Depending on the communication requirements of
each subnetwork (such as bandwidth, time, etc.), different network types can
be employed such as CAN, CANFD, FLEXRAY, LIN, ETHERNET, etc. These
networks can be interconnected via Gateway ECUs which will coordinate the
traffic between them.

Fig. 1. An automotive internal network.

In this paper, we model an automotive communication network as a tuple
(NET,ECU,AP,net) where NET is a finite set of subnetworks, ECU is a finite
set of ECUs, AP ⊆ ECU identifies ECUs that are accessible to attackers (such
as OBD-II or TBOX), and net : NET → ℘(ECU) is a mapping to determine
to which subnetwork an ECU belongs. For example, the network in Fig. 1 is
modelled by Mf = (NETf ,ECUf ,APf ,netf ) where:
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– NETf = {CAN1,CAN2,CAN3,CAN4};
– ECUf = {ECM, TCU, ESC, SBW, SRS, ADS, Gateway, OBD-II, TBOX,

BCM, PEPS, AVM};
– APf = { OBD-II, TBOX};
– netf = {CAN1 �→ {ECM, TCU, ESC, SBW, SRS, Gateway},CAN2 �→{

TBOX, BCM, PEPS, AVM, Gateway
}
,CAN3 �→ {ADS, Gateway},

CAN4 �→ {OBD-II, Gateway}}.

2.2 Attack Trees

Attack trees contain a goal (the root of the tree), a set of sub-goals, structured
using the operators conjunction (AND) and disjunction (OR), and leaf nodes,
which represent atomic attacker actions. The AND nodes are complete when
all child nodes are carried out and the OR nodes are complete when at least
one child node is complete.

Extensions have been proposed using Sequential AND (or SAND) [7].
We follow the formalisation of attack trees given in [7,9]. If A is the set of
possible atomic attacker actions, the elements of the attack tree T are A ∪
{OR,AND,SAND}, and an attack tree is generated by the following grammar,
where a ∈ A:

t ::= a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)

Attack tree semantics have been defined by interpreting the attack tree as a
set of series-parallel (SP) graphs [7].

3 Methodology

We develop a method to generate attack trees from a network model and a
library of attack tree templates. Attack tree templates are building-blocks to
assemble an attack tree. Each template from the library represents an attack
step within the network which can be applied to different subnetworks and/or
ECUs. The adaptability of the attack to various subnetworks and ECUs can be
captured by using variables within the template. When the templates are fully
instantiated with concrete values from the sets of the network model, it provides
a concrete example of an attack on the network.

For example, attacks on a communication network can be categorised into
two passive or active attacks; eavesdropping and traffic analysis are two exam-
ples of passive attacks, while spoofing, replay and DoS (Denial of Service) are
active attacks. This is captured in Fig. 2. Variables are used in all the leaves
of this template which can be replaced by concrete values. Let us consider the
leaf Eavesdrop X:NET. The variables X can be replaced by any value from the
component NET of the network model. If we consider the network model Mf as
depicted in Fig. 1, X can be replaced by CAN1, CAN2, CAN3 or CAN4.

The connectivity between ECUs within the network will be represented in
attack tree templates using lists. When instantiated, a list of ECUs corresponds
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Attack

Passive

Eavesdrop
X:NET

TrafficAnalysis
X:NET

Active

Spoof
X:ECU

Replay
X:ECU

DoS
X:NET

Fig. 2. An initial attack template tree.

to the ability to send data from the first ECU in the list to next one, then the
next one, and so on until the data reaches the last ECU in the list. This means
consecutive ECUs in the list must belong to the same subnetwork. Gateway
ECUs may appear in the list to capture the connectivity between ECUs of dif-
ferent subnetworks. For example, if we consider the model Mf , a list of ECUs is
[ECM, TCU, Gateway, TBOX] where ECM is connected to TCU and TCU to
Gateway in CAN1, and Gateway to TBOX in CAN2.

The generation of attack trees starts with a specified template from the
library. This template has no closed variables. The generation is carried out
recursively. At each recursion, a leaf which may contain open variables is con-
sidered for expansion. When there are n > 0 assignments for the open variables,
this leaf node is converted into an OR node with n children with each child cor-
responding to one assignment. The assignments are copies of the leaf node where
the open variables are replaced by values. Each child is then replaced by a tem-
plate from the library where the name of the template root matches the name
of the child and the parameters of the root can be unified with the parameters
of the child. The unification of the parameters will give rise to an assignment of
closed variables of the template. The replacement of the child with the template
will also replace all closed variables with the values from the assignment. This
process is illustrated in Fig. 3. A white circle represents a node with variables
while a black one states that its variables have been replaced with values by
some assignment.

A special case of assignments is for unassigned lists. An assignment for an
unassigned list [X .. Y] is a list of constants from NET and ECU. The start and
the end of the list must satisfy any condition for X and Y. For example, consider
the network Mf . An unassigned list [ECM..Y:AP] must be assigned to a list of
ECUs from ECM to an ECU that is an access point, i.e, in APf . There are two
ECUs that Y can be assigned to: OBD-II and TBOX. Then, one of the list of
connected ECUs that [ECM..Y:AP] can be assigned to is [ECM, TCM, Gateway,
TBOX] where they are consecutively connected and the last ECU (TBOX) is an
access point. Obviously, this is not the only assignment. Two of other candidates
to assign this list to are [ECM, Gateway, TBOX] and [ECM, TCM, Gateway,
OBD-II].
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Assigned lists [X|Y] recursively describe a list with X as the head of the list
and Y as the remaining elements, i.e., the tail of the list. [ ] stands for an empty
list. An assigned list [X|Y] normally appears at the root of some templates. When
it is unified with a list of elements, X will be unified with the head and Y will
be unified with the tail. For example, if the list [ECM, TCM, Gateway, TBOX]
is unified with [X|Y], then X = ECM and Y = [TCM, Gateway, TBOX].

Fig. 3. Methodology.

3.1 Attack Tree Templates

More formally, nodes in an attack tree template may contain parameters which
are made of variables, list terms or constants (i.e., elements of NET and ECU
of a network model). Variables can be instantiated with node names. Let N be
a set of names for tree nodes, V a set of variables and C = NET ∪ ECU a set of
constants. The syntax of an attack tree template is defined below:

tree ::= leaf-node |
tree-nodeAND(tree, . . . , tree) |
tree-nodeSAND(tree, . . . , tree) |
tree-nodeOR(tree, . . . , tree)

leaf-node ::= n parameter∗

tree-node ::= n parameter∗

parameter ::= variable | list | c
variable ::= X[“ : ”type][/Y [“ : ”NET]][#Z[“ : ”ECU]]

type ::= NET | ECU | AP
list ::= unassigned-list | assigned-list

unassigned-list ::= [ variable “..” variable ]
assigned-list ::= [ variable “|” variable ]

where X,Y ∈ V , n ∈ N and c ∈ C.
Informally, an attack tree template is an attack tree in which each node

contains a name and possibly a list of parameters. A parameter can be a variable,
a constant (node names) or a list of variables and constants. Variables occurring
in the root node of an attack tree template are called closed variables. They may
reoccur in the descendants of the root. Once root variables are instantiated, their
values are propagated down to the descendant nodes correspondingly. In contrast
to closed variables, variables in a template that do not appear in its root are
called open.



A Template-Based Method for the Generation of Attack Trees 161

We postulate the following conditions on the occurrence of variables on an
attack tree template:

– Assigned lists can only appear at the root;
– Open variables can only appear at the leaves;
– Unassigned lists can only appear at the leaves.

The assignment of values to variables can be restricted with types, by using
the condition “: type”. This condition restricts a variable to be instantiated
with a constant of type NET, ECU or AP. For example, consider the network in
Fig. 1. Given X:NET, X can only be assigned to CAN1, CAN2, CAN3 or CAN4.
Given X:ECU, X can only be assigned to ECM, TCU, Gateway, OBD-II, BCM
or TBOX. AP stands for access points OBD-II and TBOX, i.e., places where
attackers can have cyber access to the network. Then, X:AP says that X can
only be assigned to OBD-II or TBOX. A further restriction can be introduced
to the assignment by “/ Y : NET”. Once Y is instantiated with a constant of
type NET, “X / Y:NET” states that X can only be assigned to an ECU within
the subnetwork Y. For example, “ X / Y:NET” where Y is CAN1 means that X
can only be assigned to ECM, TCU, or Gateway. Finally, one can require that X
is not assigned to an ECU by using the restriction #Z where Z is of type ECU.
Once Z is instantiated with an ECU, X cannot be assigned to that ECU.

3.2 A Simple Example

We illustrate our method on an automotive network, depicted in Fig. 4(a). It
contains two CAN buses: the powertrain, consisting of three ECUs: ECM (Engine
Control Module), TCU (Transmission Control Unit) and GW (the Gateway) and
the telematics bus, containing two ECUs: TBox (Telematics Box) accessible to
attackers and the same GW, which connects the two buses.

This network is modelled by a tuple (NETm,ECUm, APm,netf ) where:

– NETm = {CAN1,CAN2};
– ECUm = {ECM,TCU,GW,TBOX};
– APm = {TBOX}; and
– net = {CAN1 �→ {ECM,TCU,GW},CAN2 �→ {GW,TBOX}}.

We then consider a library of attack tree templates that focus on how to
compromise ECM. The library consists of two templates, depicted in Fig. 4(b)
and (c). The template (b) describes a compromise attack on ECM. Essentially,
this attack can be realised by starting compromising an ECU to which attackers
have access to (Z:AP). Then, the compromise attack can be propagated to the
next ECU connected to a compromised one until we reach ECM. This is described
by the unassigned list [Z:AP .. ECM]. The template (b) is also specified as the
start tree of the generation process. The template (c) describes how compromise
attack can be carried out from the first ECU to the last in the list [Z|L]. Note
that Z is the head of the list and L is the tail. On Fig. 4(c) the arrow between
the edges leading to the two nodes indicates that both nodes must be carried
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Gateway

ECM TCU

BCM

(a)

Compromise
ECM

CompromiseFromTo
[ Z:AP .. ECM ]

(b)

CompromiseFromTo
[ Z | L ]

TakeControl
Z

Reflash
Z

GainRoot
Z

CompromiseFromTo
L

(c)

Fig. 4. The compromise attack template tree.

out in order (a SAND node). Not joining the edges in Fig. 4(c) signifies an OR
node, and joining edges with a line (rather than an arrow) signifies that the root
node is an AND node.

This is done by taking control of the ECU Z at the head of the list and then
recursively taking control of the rest of the list. Taking control can be done by
either re-flashing or gaining root access to Z.

Initially, the construction starts with the template (b) in Fig. 4. The leaf of
this expanded tree “CompromiseFromTo [Z:AP .. ECM]” is now considered for
further expansion. It has an open parameter which is an unassigned-list. There
are two possible assignments for it; one is [ECM,GW,TBOX] and the other
is [ECM,TCU,GW,TBOX]. However, the second list is considered redundant
as ECM is directly connected and can communicate with GW without using
TCU. This is derived from the nature of CAN bus communication where ECUs
on the same bus are directly connected with each other. Therefore, the leaf is
appended with one child corresponding to the assignment of [Z:AP .. ECM] to
[ECM,GW,TBOX]. This child is then expanded by the template (c) in Fig. 4.
This template is used several times depending on the length of the list. Finally,
we obtain the tree1 which has height 9 and contains 17 nodes.

4 Implementation

We now present the algorithm used to implement our generation method (Algo-
rithm 1.) The inputs are (1) a model of the network structured as in Sect. 2
and (2) a library of attack tree templates and it produces an attack tree as the
output.

The algorithm starts with the initial tree InitTree from the input library in
line 2. It then loops as long as there is a leaf on the constructed tree and a

1 The tree can be viewed at https://tinyurl.com/s55u7qh.

https://tinyurl.com/s55u7qh
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Algorithm 1. Generating attack trees
1: function BuildTree(Model, Library)
2: tree ← InitTree ∈ Library
3: while ∃leaf ∈ tree, subtree ∈ Library: leaf matches subtree do
4: assignments ← getAssignments(leaf, Model)
5: Turn leaf into an “or” nodes
6: for each assignment of assignments do
7: assignedLeaf ← apply(assignment, leaf)
8: unification ← unify(subtree, assignedLeaf)
9: add apply(unification, subtree) as a child of leaf

10: end for
11: end while
12: return tree
13: end function

template, namely subtree, from the library that can be matched. In this loop,
all assignments for the variables of the leaf are first computed in line 4. Then
for each of the assignments, a unification of subtree and the application of the
assignment to the leaf is calculated in line 8. Then the subtree to which the
unification is applied is added as a child of the leaf in line 9. Note that the leaf
is now converted into an “or” node in line 5. The loop at line 3 will continue
until no more leaves and matching templates can be found.

The function apply replaces attack tree template variables with the corre-
sponding values in the input assignment, from the root to the leaves recursively.
unify in line 8 is a standard unification procedure. It tries to unify the root of
subtree with the leaf to which the considered assignment is applied. It yields a
unifier which can be considered as an assignment to the whole subtree.

getVarAssignments generates Cartesian product of all assignments for the
variables and unassigned lists in the input leaf.

Experiment
We briefly present the experimental result of our implementation on two exam-
ples, implemented in Python2 and carried out on a PC with a processor Intel
Core i5-4590 3.3 GHz with 8GB of memory.

We first rerun the mini example described in Sect. 3.2 which confirms the
output tree obtained in Sect. 3.2. Using Python “cProfile” module, the run-
time of this experiment is 0.025s and uses 19739 function calls. The second
experiment4 is to generate an attack tree for the automotive network Mf as
depicted in Fig. 1. It consists of 4 CAN bus networks with 12 ECUs. The template
library contains 21 attack tree templates, including the initial tree as depicted in
Fig. 2. In total, the run-time is 0.292s, using 574133 function calls. The generated
attack tree3 has 3756 nodes and of height 19. An attack example extracted
from the tree is an eavesdropping attack carried out at a compromised TCU.

2 The source code can be downloaded from https://tinyurl.com/uoptgfb.
3 The tree can be viewed at https://tinyurl.com/vzscydf.

https://tinyurl.com/uoptgfb
https://tinyurl.com/vzscydf
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Access was gained at the TBOX, then the gateway was compromised followed
by the TCU:
GainRoot(TBOX) → Reflash(GW)→ Reflash(TCU) → CollectDataFrom(TCU).

5 Conclusion

In this paper, we have proposed a practical method for identifying all the possible
attacks on a known system. We use a library of templates of the atomic attack
steps that can be taken against components in the system and give an algorithm
for building these into a tree capturing all the attacks. Future steps will include
adapting to other types of networks including wireless and ethernet, and also
mixed networks which include networks running under different protocols. We
also plan to integrate the automated attack tree generation work presented here
into work on model-based security test-case generation which currently assumes
the existence of the attack tree such as [3].
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