Skip to main content

Quality Criteria for Liver Stiffness Measurement by Transient Elastography

  • Chapter
  • First Online:

Abstract

Liver elastography offers the possibility of a quick, noninvasive, and painless evaluation of the liver with immediate results at bedside. Liver stiffness measurements (LSM) using transient elastography (TE) appear very easy to perform, however, several conditions must be respected to ensure an optimal evaluation. Thus, patient, operator, and examination characteristics have all been shown to influence the result of LSM. Food intake increases liver stiffness (LS), whereas recent withdrawal in alcoholics is associated with a decrease of LS. Around one hundred exams seem to be required before considering an operator as sufficiently trained for using e.g. a FibroScan device. The measurement site and the FibroScan probe must be correctly chosen to ensure the best quality of LSM. Finally, the intrinsic characteristics of the measurement, especially the IQR/M ratio, must be carefully checked to avoid overestimation of LS. Most of the results come from studies which have evaluated TE, with less data available for the other technologies such as 2D- and point shear wave elastography which require dedicated ultrasound knowledge. For TE, all operators should know and apply the quality criteria for LSM to ensure the reliability of the results and therefore the best management of patients in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D-SWE:

Two-dimensional shear wave elastography

CAP:

Controlled Attenuation Parameter

pSWE:

Point shear wave elastography

IQR/M:

Interquartile range/median ratio

SD/M:

Standard deviation/mean ratio

References

  1. Mederacke I, Wursthorn K, Kirschner J, Rifai K, Manns MP, Wedemeyer H, et al. Food intake increases liver stiffness in patients with chronic or resolved hepatitis C virus infection. Liver Int. 2009;29(10):1500–6.

    Article  PubMed  Google Scholar 

  2. Arena U, Lupsor Platon M, Stasi C, Moscarella S, Assarat A, Bedogni G, et al. Liver stiffness is influenced by a standardized meal in patients with chronic hepatitis C virus at different stages of fibrotic evolution. Hepatology. 2013;58(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  3. Kjaergaard M, Thiele M, Jansen C, Staehr Madsen B, Gortzen J, Strassburg C, et al. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal. PLoS One. 2017;12(4):e0173992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ratchatasettakul K, Rattanasiri S, Promson K, Sringam P, Sobhonslidsuk A. The inverse effect of meal intake on controlled attenuation parameter and liver stiffness as assessed by transient elastography. BMC Gastroenterol. 2017;17(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vuppalanchi R, Weber R, Russell S, Gawrieh S, Samala N, Slaven JE, et al. Is fasting necessary for individuals with nonalcoholic fatty liver disease to undergo vibration-controlled transient elastography? Am J Gastroenterol. 2019;114(6):995–7.

    Article  PubMed  Google Scholar 

  6. Barone M, Iannone A, Brunetti ND, Sebastiani F, Cecere O, Berardi E, et al. Liver stiffness and portal blood flow modifications induced by a liquid meal consumption: pathogenetic mechanisms and clinical relevance. Scand J Gastroenterol. 2015;50(5):560–6.

    Article  PubMed  Google Scholar 

  7. Berzigotti A, De Gottardi A, Vukotic R, Siramolpiwat S, Abraldes JG, Garcia-Pagan JC, et al. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS One. 2013;8(3):e58742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Alvarez D, Orozco F, Mella JM, Anders M, Antinucci F, Mastai R. Meal ingestion markedly increases liver stiffness suggesting the need for liver stiffness determination in fasting conditions. Gastroenterol Hepatol. 2015;38(7):431–5.

    PubMed  Google Scholar 

  9. Gersak MM, Badea R, Lenghel LM, Vasilescu D, Botar-Jid C, Dudea SM. Influence of food intake on 2-D shear wave elastography assessment of liver stiffness in healthy subjects. Ultrasound Med Biol. 2016;42(6):1295–302.

    Article  PubMed  Google Scholar 

  10. Petzold G, Porsche M, Ellenrieder V, Kunsch S, Neesse A. Impact of food intake on liver stiffness determined by 2-D shear wave elastography: prospective interventional study in 100 healthy patients. Ultrasound Med Biol. 2019;45(2):402–10.

    Article  PubMed  Google Scholar 

  11. Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One. 2014;9(5):e97355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yin M, Talwalkar JA, Glaser KJ, Venkatesh SK, Chen J, Manduca A, et al. Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. Am J Roentgenol. 2011;197(1):64–70.

    Article  Google Scholar 

  13. Zhang J, Arena C, Pednekar A, Lambert B, Dees D, Lee VV, et al. Short-term repeatability of magnetic resonance elastography at 3.0T: effects of motion-encoding gradient direction, slice position, and meal ingestion. J Magn Reson Imaging. 2016;43(3):704–12.

    Article  PubMed  CAS  Google Scholar 

  14. EASL-ALEH Clinical Practice Guidelines. Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol. 2015;63(1):237–64.

    Article  Google Scholar 

  15. Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L, et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (Long Version). Ultraschall Med. 2017;38(4):e16–47.

    Article  PubMed  Google Scholar 

  16. Sasso M, Beaugrand M, de Ledinghen V, Douvin C, Marcellin P, Poupon R, et al. Controlled attenuation parameter (CAP): A novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36(11):1825–35.

    Article  PubMed  Google Scholar 

  17. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022–30.

    Article  PubMed  Google Scholar 

  18. Silva M, Costa Moreira P, Peixoto A, Santos AL, Lopes S, Goncalves R, et al. Effect of meal ingestion on liver stiffness and controlled attenuation parameter. GE Port J Gastroenterol. 2019;26(2):99–104.

    Article  PubMed  Google Scholar 

  19. Singh S, Facciorusso A, Loomba R, Falck-Ytter YT. Magnitude and kinetics of decrease in liver stiffness after antiviral therapy in patients with chronic hepatitis C: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(1):27–38. e4

    Article  PubMed  Google Scholar 

  20. Facciorusso A, Garcia Perdomo HA, Muscatiello N, Buccino RV, Wong VW, Singh S. Systematic review with meta-analysis: change in liver stiffness during anti-viral therapy in patients with hepatitis B. Dig Liver Dis. 2018;50(8):787–94.

    Article  PubMed  CAS  Google Scholar 

  21. Mueller S, Millonig G, Sarovska L, Friedrich S, Reimann FM, Pritsch M, et al. Increased liver stiffness in alcoholic liver disease: differentiating fibrosis from steatohepatitis. World J Gastroenterol. 2010;16(8):966–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Trabut JB, Thepot V, Nalpas B, Lavielle B, Cosconea S, Corouge M, et al. Rapid decline of liver stiffness following alcohol withdrawal in heavy drinkers. Alcohol Clin Exp Res. 2012;36(8):1407–11.

    Article  PubMed  CAS  Google Scholar 

  23. Gelsi E, Dainese R, Truchi R, Marine-Barjoan E, Anty R, Autuori M, et al. Effect of detoxification on liver stiffness assessed by fibroscan((R)) in alcoholic patients. Alcohol Clin Exp Res. 2011;35(3):566–70.

    Article  PubMed  Google Scholar 

  24. Gianni E, Forte P, Galli V, Razzolini G, Bardazzi G, Annese V. Prospective evaluation of liver stiffness using transient elastography in alcoholic patients following abstinence. Alcohol Alcohol. 2017;52(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  25. Mueller S, Englert S, Seitz HK, Badea RI, Erhardt A, Bozaari B, et al. Inflammation-adapted liver stiffness values for improved fibrosis staging in patients with hepatitis C virus and alcoholic liver disease. Liver Int. 2015;35(12):2514–21.

    Article  PubMed  CAS  Google Scholar 

  26. Thiele M, Rausch V, Fluhr G, Kjærgaard M, Piecha F, Mueller J, et al. Controlled attenuation parameter and alcoholic hepatic steatosis: diagnostic accuracy and role of alcohol detoxification. J Hepatol. 2018;68(5):1025–32.

    Article  PubMed  CAS  Google Scholar 

  27. Castéra L, Foucher J, Bernard P-H, Carvalho F, Allaix D, Merrouche W, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51(3):828–35.

    PubMed  Google Scholar 

  28. Pang JX, Pradhan F, Zimmer S, Niu S, Crotty P, Tracey J, et al. The feasibility and reliability of transient elastography using Fibroscan(R): a practice audit of 2335 examinations. Can J Gastroenterol Hepatol. 2014;28(3):143–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vuppalanchi R, Siddiqui MS, Van Natta ML, Hallinan E, Brandman D, Kowdley K, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology. 2018;67(1):134–44.

    Article  PubMed  Google Scholar 

  30. Perazzo H, Fernandes FF, Soares JC, Fittipaldi J, Cardoso SW, Grinsztejn B, et al. Learning curve and intra/interobserver agreement of transient elastography in chronic hepatitis C patients with or without HIV co-infection. Clin Res Hepatol Gastroenterol. 2016;40(1):73–82.

    Article  PubMed  Google Scholar 

  31. Boursier J, Konate A, Guilluy M, Gorea G, Sawadogo A, Quemener E, et al. Learning curve and interobserver reproducibility evaluation of liver stiffness measurement by transient elastography. Eur J Gastroenterol Hepatol. 2008;20(7):693–701.

    Article  PubMed  Google Scholar 

  32. Carrion JA, Puigvehi M, Coll S, Garcia-Retortillo M, Canete N, Fernandez R, et al. Applicability and accuracy improvement of transient elastography using the M and XL probes by experienced operators. J Viral Hepat. 2015;22(3):297–306.

    Article  PubMed  CAS  Google Scholar 

  33. Gradinaru-Tascau O, Sporea I, Bota S, Jurchis A, Popescu A, Popescu M, et al. Does experience play a role in the ability to perform liver stiffness measurements by means of supersonic shear imaging (SSI)? Med Ultrason. 2013;15(3):180–3.

    Article  PubMed  Google Scholar 

  34. Lee ES, Lee JB, Park HR, Yoo J, Choi JI, Lee HW, et al. shear wave liver elastography with a propagation map: diagnostic performance and inter-observer correlation for hepatic fibrosis in chronic hepatitis. Ultrasound Med Biol. 2017;43(7):1355–63.

    Article  PubMed  Google Scholar 

  35. Boursier J, Isselin G, Fouchard-Hubert I, Oberti F, Dib N, Lebigot J, et al. Acoustic radiation force impulse: a new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur J Gastroenterol Hepatol. 2009;22(9):1074–84.

    Article  Google Scholar 

  36. Fraquelli M, Baccarin A, Casazza G, Conti CB, Giunta M, Massironi S, et al. Liver stiffness measurement reliability and main determinants of point shear-wave elastography in patients with chronic liver disease. Aliment Pharmacol Ther. 2016;44(4):356–65.

    Article  PubMed  CAS  Google Scholar 

  37. Wong VW, Vergniol J, Wong GL, Foucher J, Chan AW, Chermak F, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2012;107(12):1862–71.

    Article  PubMed  Google Scholar 

  38. de Ledinghen V, Wong VW, Vergniol J, Wong GL, Foucher J, Chu SH, et al. Diagnosis of liver fibrosis and cirrhosis using liver stiffness measurement: comparison between M and XL probe of FibroScan(R). J Hepatol. 2012;56(4):833–9.

    Article  PubMed  Google Scholar 

  39. Myers RP, Pomier-Layrargues G, Kirsch R, Pollett A, Duarte-Rojo A, Wong D, et al. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology. 2012;55(1):199–208.

    Article  PubMed  Google Scholar 

  40. Durango E, Dietrich C, Seitz HK, Kunz CU, Pomier-Layrargues GT, Duarte-Rojo A, et al. Direct comparison of the FibroScan XL and M probes for assessment of liver fibrosis in obese and nonobese patients. Hepat Med. 2013;5:43–52.

    PubMed  PubMed Central  Google Scholar 

  41. Wong VW, Irles M, Wong GL, Shili S, Chan AW, Merrouche W, et al. Unified interpretation of liver stiffness measurement by M and XL probes in non-alcoholic fatty liver disease. Gut. 2019;68(11):2057–64.

    Article  PubMed  CAS  Google Scholar 

  42. Berger A, Shili S, Zuberbuhler F, Hiriart JB, Lannes A, Chermak F, et al. Liver stiffness measurement with fibroscan: use the right probe in the right conditions! Clin Transl Gastroenterol. 2019;10(4):e00023.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boursier J, Konate A, Gorea G, Reaud S, Quemener E, Oberti F, et al. Reproducibility of liver stiffness measurement by ultrasonographic elastometry. Clin Gastroenterol Hepatol. 2008;6(11):1263–9.

    Article  PubMed  Google Scholar 

  44. Kim SU, Kim JK, Park JY, Ahn SH, Lee JM, Baatarkhuu O, et al. Variability in liver stiffness values from different intercostal spaces. Liver Int. 2009;29(5):760–6.

    Article  PubMed  Google Scholar 

  45. Kaminuma C, Tsushima Y, Matsumoto N, Kurabayashi T, Taketomi-Takahashi A, Endo K. Reliable measurement procedure of virtual touch tissue quantification with acoustic radiation force impulse imaging. J Ultrasound Med. 2011;30(6):745–51.

    Article  PubMed  Google Scholar 

  46. Beland MD, Brown SF, Machan JT, Taliano RJ, Promrat K, Cronan JJ. A pilot study estimating liver fibrosis with ultrasound shear-wave elastography: does the cause of liver disease or location of measurement affect performance? AJR Am J Roentgenol. 2014;203(3):W267–73.

    Article  PubMed  Google Scholar 

  47. Samir AE, Dhyani M, Vij A, Bhan AK, Halpern EF, Mendez-Navarro J, et al. Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology. 2015;274(3):888–96.

    Article  PubMed  Google Scholar 

  48. Coco B, Oliveri F, Maina AM, Ciccorossi P, Sacco R, Colombatto P, et al. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat. 2007;14(5):360–9.

    Article  PubMed  CAS  Google Scholar 

  49. Arena U, Vizzutti F, Abraldes JG, Corti G, Stasi C, Moscarella S, et al. Reliability of transient elastography for the diagnosis of advanced fibrosis in chronic hepatitis C. Gut. 2008;57(9):1288–93.

    Article  PubMed  CAS  Google Scholar 

  50. Millonig G, Reimann FM, Friedrich S, Fonouni H, Mehrabi A, Büchler MW, et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology. 2008;48(5):1718–23.

    Article  PubMed  Google Scholar 

  51. Millonig G, Friedrich S, Adolf S, Fonouni H, Golriz M, Mehrabi A, et al. Liver stiffness is directly influenced by central venous pressure. J Hepatol. 2010;52(2):206–10.

    Article  PubMed  Google Scholar 

  52. Petta S, Maida M, Macaluso FS, Di Marco V, Camma C, Cabibi D, et al. The severity of steatosis influences liver stiffness measurement in patients with nonalcoholic fatty liver disease. Hepatology. 2015;62(4):1101–10.

    Article  PubMed  Google Scholar 

  53. Boursier J, de Ledinghen V, Sturm N, Amrani L, Bacq Y, Sandrini J, et al. Precise evaluation of liver histology by computerized morphometry shows that steatosis influences liver stiffness measured by transient elastography in chronic hepatitis C. J Gastroenterol. 2014;49(3):527–37.

    Article  PubMed  CAS  Google Scholar 

  54. Rausch V, Peccerella T, Lackner C, Yagmur E, Seitz HK, Longerich T, et al. Primary liver injury and delayed resolution of liver stiffness after alcohol detoxification in heavy drinkers with the PNPLA3 variant I148M. World J Hepatol. 2016;8(35):1547–56.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mueller S, Nahon P, Rausch V, Peccerella T, Silva I, Yagmur E, et al. Caspase-cleaved keratin-18 fragments increase during alcohol withdrawal and predict liver-related death in patients with alcoholic liver disease. Hepatology. 2017;66(1):96–107.

    Article  PubMed  CAS  Google Scholar 

  56. Boursier J, Zarski JP, de Ledinghen V, Rousselet MC, Sturm N, Lebail B, et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology. 2013;57(3):1182–91.

    Article  PubMed  Google Scholar 

  57. Myers RP, Crotty P, Pomier-Layrargues G, Ma M, Urbanski SJ, Elkashab M. Prevalence, risk factors and causes of discordance in fibrosis staging by transient elastography and liver biopsy. Liver Int. 2010;30(10):1471–80.

    Article  PubMed  Google Scholar 

  58. Lucidarme D, Foucher J, Le Bail B, Vergniol J, Castera L, Duburque C, et al. Factors of accuracy of transient elastography (fibroscan) for the diagnosis of liver fibrosis in chronic hepatitis C. Hepatology. 2009;49(4):1083–9.

    Article  PubMed  Google Scholar 

  59. Schwabl P, Bota S, Salzl P, Mandorfer M, Payer BA, Ferlitsch A, et al. New reliability criteria for transient elastography increase the number of accurate measurements for screening of cirrhosis and portal hypertension. Liver Int. 2015;35(2):381–90.

    Article  PubMed  Google Scholar 

  60. Boursier J, Cassinotto C, Hunault G, Shili S, Lebigot J, Lapuyade B, et al. Criteria to determine reliability of noninvasive assessment of liver fibrosis with virtual touch quantification. Clin Gastroenterol Hepatol. 2019;17(1):164–71. e5

    Article  PubMed  Google Scholar 

  61. Fang C, Jaffer OS, Yusuf GT, Konstantatou E, Quinlan DJ, Agarwal K, et al. Reducing the number of measurements in liver point shear-wave elastography: factors that influence the number and reliability of measurements in assessment of liver fibrosis in clinical practice. Radiology. 2018;287(3):844–52.

    Article  PubMed  Google Scholar 

  62. Procopet B, Berzigotti A, Abraldes JG, Turon F, Hernandez-Gea V, Garcia-Pagan JC, et al. Real-time shear-wave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol. 2015;62(5):1068–75.

    Article  PubMed  Google Scholar 

  63. Thiele M, Madsen BS, Procopet B, Hansen JF, Moller LMS, Detlefsen S, et al. Reliability criteria for liver stiffness measurements with real-time 2D shear wave elastography in different clinical scenarios of chronic liver disease. Ultraschall Med. 2017;38(6):648–54.

    Article  PubMed  Google Scholar 

  64. Caussy C, Alquiraish MH, Nguyen P, Hernandez C, Cepin S, Fortney LE, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology. 2018;67(4):1348–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wong VW, Petta S, Hiriart JB, Camma C, Wong GL, Marra F, et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J Hepatol. 2017;67(3):577–84.

    Article  PubMed  Google Scholar 

  66. Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(6):1717–30.

    Article  PubMed  Google Scholar 

  67. Popescu A, Bota S, Sporea I, Sirli R, Danila M, Racean S, et al. The influence of food intake on liver stiffness values assessed by acoustic radiation force impulse elastography-preliminary results. Ultrasound Med Biol. 2013;39(4):579–84.

    Article  PubMed  Google Scholar 

  68. Simkin P, Rattansingh A, Liu K, Hudson JM, Atri M, Jang HJ, et al. Reproducibility of 2 liver 2-dimensional shear wave elastographic techniques in the fasting and postprandial states. J Ultrasound Med. 2019;38(7):1739–45.

    Article  PubMed  Google Scholar 

  69. Koizumi Y, Hirooka M, Kisaka Y, Konishi I, Abe M, Murakami H, et al. Liver fibrosis in patients with chronic hepatitis C: noninvasive diagnosis by means of real-time tissue elastography—establishment of the method for measurement. Radiology. 2011;258(2):610–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Boursier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boursier, J. (2020). Quality Criteria for Liver Stiffness Measurement by Transient Elastography. In: Mueller, S. (eds) Liver Elastography. Springer, Cham. https://doi.org/10.1007/978-3-030-40542-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40542-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40541-0

  • Online ISBN: 978-3-030-40542-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics