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1 Introduction

When numerically solving partial differential equations, numerical errors are likely
to impact not only solution accuracy, but also the stability/robustness of the
computation. This is particularly the case in eddy-resolving approaches to turbulent
flows, such as large-eddy simulation (LES) and direct numerical simulation (DNS).
Also, in the so-called implicit LES / under-resolved DNS strategies [1], where
numerical error (specifically dissipation) provides small-scale regularisation in lieu
of a turbulence model, understanding the nature of numerical errors is crucial.
These typically appear in the form of dispersion and diffusion errors, where the
former distorts the solution, while the latter is responsible for its damping. A useful
framework for the assessment of such numerical errors is the eigensolution analysis
technique [2, 3].
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We present the first eigenanalysis of hybridisable discontinuous Galerkin (HDG)
methods. This is also one of the first studies to consider viscous diffusion effects in
the eigenanalysis of discontinuous SEM (spectral element methods), as it addresses
the advection-diffusion equation in one dimension. Focus is given to the temporal
analysis approach [2, 5], which is suited for problems with periodic boundary
conditions. The spatial analysis [3, 4], suited for inflow-outflow problems, will
be considered in subsequent studies. Here, we offer preliminary results on (i)
the effects of the Peclét number (a cell-based Reynolds number), and (ii) the
interplay between upwind (numerical) dissipation and viscous (physical) diffusion.
We highlight how these results improve upon our understanding and practice of
implicit LES / under-resolved DNS approaches.

We note that, although a non-modal eigenanalysis strategy better suited for turbu-
lence computations has been recently proposed [6], the present work will focus on
more fundamental aspects and follow therefore the classical eigenanalysis. Finally,
the results presented here are representative of a broader class of discontinuous
SEM, given the well established connections within this class—see e.g. [7].

This paper is organized as follows. Section 2 introduces the HDG discretisation
as applied to the linear advection-diffusion equation in one dimension. Section 3
details the temporal eigenanalysis framework and presents our preliminary results.
Finally, in Sect. 4, our conclusions are summarised and future research topics are
outlined.

2 HDG Discretisation

In one dimension, the linear advection-diffusion equation is given by

∂u

∂t
+ a

∂u

∂x
= μ

∂2u

∂x2
, (1)

where the advection velocity a and the viscosity μ are positive constants. This
equation can be written in conservation form through the flux function f (u, g) =
au − μg, as the system

∂u

∂t
+ ∂f

∂x
= 0 , (2)

g − ∂u

∂x
= 0 , (3)

where g is the auxiliary gradient variable. The discretisation procedure is similar to
that of traditional DG methods.
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After the (1D) physical domain is partitioned into non-overlapping elemental
regions � of size h, the numerical solution and its gradient are locally approximated
by polynomial expansions in the form

u|� =
P∑

j=0

ûj (t) φj (ξ) , g|� =
P∑

j=0

ĝj (t) φj (ξ) , (4)

where φj are polynomial basis functions of degree up to P , defined in the standard
domain �st = [−1, 1]. A linear mapping relation is assumed between the physical
coordinate x of element � and the coordinate ξ ∈ �st .

Multiplying Eqs. (2)–(3) by φi , integrating over element � and applying integra-
tion by parts leads respectively to

h

2

∫

�st

∂u

∂t
φi dξ +

(
f̃ φi

)⊕
� =

∫

�st

f
∂φi

∂ξ
dξ , (5)

h

2

∫

�st

gφi dξ +
∫

�st

u
∂φi

∂ξ
dξ = (

ũφi

)⊕
� , (6)

where � and ⊕ denote the left and right boundaries of element �, in that order. As
typical, expansions in (4) are to be inserted into (5)–(6), which are then required to
hold for i = 0, . . . , P . Note that the integrals above have been moved to �st and
interface quantities ũ and f̃ have been introduced. The state average ũ is peculiar to
HDG in that it represents a uniquely defined interface variable whose value stems
indirectly from the enforced continuity of the numerical flux f̃ . This continuity
ensures local conservation for HDG methods, regardless of the chosen flux formula.

For the advection-diffusion problem at hand, the interface fluxes on either side
of a given element (cf. Fig. 1, left diagram) can be taken in the form

f̃⊕ = f (̃u⊕, g⊕) − τ (̃u⊕ − u⊕) , (7)

f̃� = f (̃u�, g�) − τ(u� − ũ�) , (8)

Fig. 1 Notation adopted for
the element viewpoint (left)
and the interface viewpoint
(right)
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in which

u⊕ =
P∑

j=0

ûj φj (+1) , g⊕ =
P∑

j=0

ĝj φj (+1) , (9)

u� =
P∑

j=0

ûj φj (−1) , g� =
P∑

j=0

ĝj φj (−1) . (10)

Also, τ = β|a| + σ is a stabilisation constant combining an upwinding parameter β

and a penalty term σ that accounts for the partially diffusive character of the model
equation considered. This work however assumes σ = 0 as it focuses on advection-
dominated cases, which are typically stable without the penalty term σ , even within
the context of turbulence simulations [8].

Flux formulas (7)–(8) are inspired in Ref. [9]. In the case of pure advection (with
σ = 0), the interface solution variable becomes the simple average ũ = uL⊕ + uR� of
the adjacent states from the left (L) and right (R) elements sharing the considered
interface. Under this case, it is also easy to show that the fluxes in (7)–(8) recover
those used in traditional DG methods, whereby HDG exactly reproduces DG. This
does not hold, however, when diffusion is taken into account, in which case ũ is
only implicitly defined from the flux continuity condition enforced at interfaces,
f̃ L⊕ = f̃ R� , namely

aũ − μgL⊕ − τ
(
ũ − uL⊕

)
= aũ − μgR� − τ

(
uR� − ũ

)
, (11)

where gL⊕ and gR� depend on values of ũ at two other interfaces via (6). The diagram
on the right-hand-side of Fig. 1 should help clarify the notation adopted.

Using vectors û = {û0, . . . , ûP }T and ĝ = {ĝ0, . . . , ĝP }T , the flux continuity
condition (11) becomes

ũ = 1

2

(
φ̂T⊕ûL + φ̂T�ûR

)
+ μ

2τ

(
φ̂T�ĝR − φ̂T⊕ĝL

)
, (12)

where φ̂⊕ = {φ̂0(+1), . . . , φ̂P (+1)}T and φ̂� = {φ̂0(−1), . . . , φ̂P (−1)}T . Like-
wise, (6) can be written as

h

2
Mĝ + Dû = φ̂⊕ũ⊕ − φ̂�ũ� , (13)

in which matrices M and D have been introduced, namely

Mi,j =
∫

�st

φiφj dξ , Di,j =
∫

�st

∂φi

∂ξ
φj dξ . (14)



Viscous Diffusion Effects in the Eigenanalysis of (Hybridisable) DG Methods 375

Finally, (5) becomes

h

2
M

dû

dt
+ φ̂⊕f̃⊕ − φ̂�f̃� = aDû − μDĝ , (15)

with

f̃⊕ = aũ⊕ − μφ̂T⊕ĝ − τ (̃u⊕ − φ̂T⊕û) , (16)

f̃� = aũ� − μφ̂T�ĝ − τ(φ̂T�û − ũ�) . (17)

Note that (12) is a scalar equation written from the point of view of a given interface,
whereas (13) and (15) are vector equations written from the viewpoint of an arbitrary
element � of size h.

It is now convenient to eliminate ĝ and work with variables û and ũ alone. This
can be done by solving (13) for ĝ and substituting the resulting expression in both
(12) and (15). The former substitution leads, after some algebra, to

(
β + m⊕⊕ + m��

Pe

)
ũ − m�⊕

Pe
ũL� − m⊕�

Pe
ũR⊕ = φ̂T⊕BL⊕ûL + φ̂T�BR�ûR , (18)

where Pe = |a|h/μ denotes the Péclet number, for which a uniform mesh spacing
is assumed. Moreover, four scalar constants ‘m’ have been introduced, defined as

m⊕⊕ = φ̂T⊕M−1φ̂⊕ , m�� = φ̂T�M−1φ̂� , m�⊕ = φ̂T⊕M−1φ̂� , m⊕� = φ̂T�M−1φ̂⊕ .
(19)

In addition, the following matrices appear in (18)

BL⊕ = β

2
I + M−1D

Pe
, BR� = β

2
I − M−1D

Pe
. (20)

Note that (18) relates the solution vectors û of two adjacent elements (�L and �R)
with the three interface states ũ associated to the boundaries of these elements.

The second step consists in using ĝ from (13) into (15), not forgetting to take the
fluxes (16)–(17) into account. After some more algebra, one arrives at

h

2a
M

dû

dt
+ Aû = A⊕φ̂⊕ũ⊕ + A�φ̂�ũ� , (21)

whose matrices now introduced are given by

A = β
(
	⊕⊕ + 	��

)
+

(
2 Pe−1N − I

)
D , (22)

A⊕ = (
β − 1

)
I + 2 Pe−1N , A� = (

β + 1
)
I − 2 Pe−1N , (23)
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where

	⊕⊕ = φ̂⊕ φ̂T⊕ , 	�� = φ̂� φ̂T� , N =
(
	⊕⊕ − 	�� − D

)
M−1 . (24)

Note that (21) links the solution vector û and its time derivative to the two interface
variables ũ at the boundaries of the considered element.

In the actual context of simulations, (21) would be first solved (analytically) for
û after an implicit time-stepping scheme is chosen. This is possible since it entails
expressing dû/dt in terms of û at the current as well as previous time levels. The
next step would be to insert the resulting expression for û into (18), from which a
scalar equation whose only unknowns are ũ at various interfaces is obtained. This
equation is finally used for the assembly of a global system given suitable boundary
conditions, which can be solved via direct or iterative techniques. Since the system’s
solution grants ũ for all interfaces, û can be obtained locally for each element from
the time-discrete version of (21). The reader is referred to [9] for the details of this
procedure. In this work, however, as we are interested in the eigenanalysis of HDG,
a different strategy is adopted, as outlined next.

3 Temporal Eigenanalysis

In the eigenanalysis of spectral element methods [2, 5], it is typical to assume wave-
like solutions in the form û ∝ exp[i(κx − ωt)], whereby ûL = û exp(−iκh) and
ûR = û exp(+iκh). Here, û is the solution vector of a “central” element, whereas ûL

and ûR refer to solution vectors of neighbouring elements from the left (L) and from
the right (R), respectively. For the HDG formulation, an additional assumption can
be made regarding a wave-like behaviour for ũ. We assume that ũL� = ũ exp(−iκ ′h)

and ũR⊕ = ũ exp(+iκ ′h), where now ũ is the interface variable shared by two
adjacent elements, whereas ũL� and ũR⊕ refer to interface variables at the nearest
interfaces from the left/right (L/R). This second assumption is only natural given
the connection between û and ũ. Actually, we now show that κ ′ = κ , which is not
surprising.

We start from (21) assuming wave-like behaviour for û, obtaining

(
−i

ωh

2a
M + A

)
û = A⊕φ̂⊕ũ⊕ + A�φ̂�ũ� , (25)

which uniquely defines û from ũ⊕ and ũ�. If the above is written for another
element, say, the adjacent element from the right (a translation x �→ x + h), one
has

(
−i

ωh

2a
M + A

)
û exp(iκh) = A⊕φ̂⊕ũ⊕ exp(iκ ′h) + A�φ̂�ũ� exp(iκ ′h) ,

(26)



Viscous Diffusion Effects in the Eigenanalysis of (Hybridisable) DG Methods 377

which then implies
(

−i
ωh

2a
M + A

)
û

exp(iκh)

exp(iκ ′h)
= A⊕φ̂⊕ũ⊕ + A�φ̂�ũ� =

(
−i

ωh

2a
M + A

)
û ,

(27)

where (25) has been used on the right-hand side. Comparing the left- and right-
most expressions above leads to exp(iκ ′h) = exp(iκh), which means κ ′h = κh +
2nπ , for n integer. This phase ambiguity can be sorted out by the evaluation of the
x-derivative of (25) at x + h, given by

iκ

(
−i

ωh

2a
M + A

)
û exp(iκh) = iκ ′ (A⊕φ̂⊕ũ⊕ + A�φ̂�ũ�

)
exp(iκ ′h) ,

(28)

which yields κ ′ = κ . This last step about the phase is, however, not really
necessary to the eigenanalysis because only the complex exponential factors appear
throughout the relevant equations, hence knowing that exp(iκ ′h) = exp(iκh) is
sufficient.

In the remainder of the study, orthonormal Legendre basis functions are assumed,
whereby M = I . We note that numerical dispersion and diffusion eigencurves,
which are the focus of the study, do not change depending on the basis functions
adopted, provided that exact integrations are used in the spatial discretisation.

In the temporal analysis, an eigenvalue problem is set where, given a real-
valued wavenumber κ , multiple (P + 1) eigenvalues of the relevant eigenmatrix
are associated to admissible complex-valued numerical frequencies ω = ω(κ). The
procedure to obtain this eigenvalue problem is described below.

We begin from (18), assuming ũL� = ũ exp(−iκh) and ũR⊕ = ũ exp(iκh), to find

ũ =
(
φ̂T⊕BL⊕ûL + φ̂T�BR�ûR

)
b−1 , (29)

with scalar b = b(κh; Pe, β) defined as

b = β +
[
m⊕⊕ + m�� − m⊕� exp(iκh) − m�⊕ exp(−iκh)

]
Pe−1 . (30)

Then, (29) is used into (21), relating the solution vector û at a given element to the
state vectors of its left (ûL) and right (ûR) neighbours. From the wave-like behaviour
of û and the relations ûL = û exp(−iκh) and ûR = û exp(+iκh), one can arrive at

− i
h û = Z û , (31)

where 
 = ω/a and matrix Z = Z(κh; Pe, β) is given by

Z = 2b−1[A⊕	⊕�B� exp(iκh) + A�	�⊕B⊕ exp(−iκh)+
+A⊕	⊕⊕B⊕ + A�	��B� − Ab] ,

(32)
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in which 	⊕⊕ and 	�� are given by (24), whereas

	⊕� = φ̂⊕φ̂T� , 	�⊕ = φ̂�φ̂T⊕ . (33)

In (31), we have the desired eigenvalue problem of size P + 1, which thus supports
this same number of eigenvalues λj . These are related to the (normalised) numerical
frequencies 
j via


jh = iλj {Z(κh)} . (34)

Typically, one of the eigenvalues represents the so-called primary eigenmode, while
the remaining ones can be regarded as secondary as they simply replicate the
behaviour of the primary mode on shifted wavenumber ranges. This formally allows
us to focus on the analysis of the primary eigenmode and on its dispersion and
diffusion eigencurves. The reader is referred to [2, 5] for the concepts relevant to
the separation of primary and secondary modes adopted in this work.

Once the primary mode is identified, the scheme’s numerical diffusion behaviour
can be assessed in wavenumber space through the imaginary part of 
∗h, where
the asterisk subscript denotes the primary mode from (34). Note that numerical
diffusion is especially relevant to turbulence computations as it impacts not only
accuracy, but also stability. Note that eigencurves are entirely defined by the
polynomial order P , the upwinding parameter β and, in case viscosity is present, the
normalised Péclet number Pe� = |a| h̄/μ, with h̄ = h/(P +1). Standard upwinding
is here assumed.

Figure 2 depicts a comparison between HDG’s primary dissipation curves for
pure advection and for advection-diffusion at Pe� = 100 for P = 1, 4 and 7. As
explained further below, this is about the lowest value of Pe� one achieves (domain-
wise) in a turbulent flow computation. However, at this Pe�, viscous effects are
still somewhat weak in regular (linear-scale) plots of 
ih̄ vs. κh̄, where 
i is the
absolute value of 
 ’s imaginary part. This is especially true for P ≤ 4. Hence,
Fig. 2 also shows these plots in log-log scale, highlighting what happens at well-
resolved wavenumbers.

The log-log plots in Fig. 2 are revealing. They make clear that HDG’s numerical
diffusion follows the correct diffusive behaviour up to a certain wavenumber, here-
inafter named κc, beyond which upwind dissipation overcomes viscous diffusion.
The exact diffusive behaviour, as derived from our model problem, is given by


ih̄ = (κh̄)2/ Pe� or log10(
ih̄) = 2 log10(κh̄) − log10(Pe�) , (35)

showing that, as Pe� increases, the reference line of exact diffusive behaviour shifts
downwards, reducing the value of κch̄. Also, for a given number of DOFs, i.e. fixed
h̄, increasing the discretisation order increases κc. This type of analysis reveals how
upwind dissipation and viscous diffusion complement each other, allowing also
for the estimation of the wavenumber κc after which upwinding dominates. The
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Fig. 2 Normalised numerical diffusion in bilinear (left) and log-log plots (right) for P = 1, P = 4
and P = 7 (top to bottom), with/without viscosity (dashed/full curve), the former considering
Pe� = 100. The exact diffusive behaviour is shown as a dotted parabola/line (left/right plots)
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latter, though important for small-scale regularisation and stability, is not entirely
physical in the sense of subgrid-scale modelling. Hence, kc values could be used
as quality criteria for implicit LES / under-resolved DNS approaches based on
discontinuous SEM. For transitional flows, where small numerical dissipation is
particularly important, this kind of analysis might prove very useful. Although
specific estimates would be needed for different schemes, the analysis strategy
should be similar.

Finally, it is now explained why Pe� = 100 is about the lowest Péclet value one
may find in a turbulent flow simulation. As candidates for very small Pe�, one could
think of the near-wall region of turbulent boundary layers, given the low velocity and
small mesh spacing in typical wall-resolved LES. For the viscous sublayer, where
u+ < 5, the streamwise Peclét number can be evaluated using wall quantities:

Pe� = u(y) h̄

ν
= u+ h̄+

ν
uτ δν = u+ h̄+ , (36)

where by definition ν = uτ δν , being uτ the friction velocity and δν the associated
viscous lengthscale. Our argument is then concluded since 50 < �x+ = h̄+ < 150
in typical wall-resolved LES or under-resolved DNS approaches, cf. e.g. [10].

4 Concluding Remarks

We presented a preliminary study of the numerical dispersion and diffusion
characteristics of HDG methods for linear advection-diffusion problems using
the temporal eigenanalysis technique. To the authors’ knowledge, this is the first
eigenanalysis of HDG methods, and also one of the first of such analyses of a
discontinuous SEM to consider viscous diffusion effects, cf. also [11].

It was shown that, for the range of Péclet numbers encountered in under-
resolved turbulence simulations, upwind (numerical) dissipation dominates viscous
(physical) diffusion in the smallest resolved scales. Only in the large scales,
the effect of viscous diffusion becomes significant. The wavenumber beyond
which upwind dissipation overcomes viscous diffusion, and its dependence on the
polynomial order, can be estimated through eigenanalysis, and this can be used as
quality criterion for LES and DNS in general, and for implicit LES/under-resolved
DNS in particular.

Future work includes further analysing the interplay between viscous and upwind
diffusion, investigating other numerical fluxes (e.g. over-upwinding β � 1,
nearly central fluxes β ≈ 0, non-zero viscous stabilization σ 
= 0), and testing
eigenanalysis against actual turbulence simulations. Finally, the dispersion-diffusion
characteristics of HDG methods for spatially developing simulations could be
investigated using spatial eigenanalysis techniques.
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