Skip to main content

Diffuse Midline Glioma – Diffuse Intrinsic Pontine Glioma

  • Chapter
  • First Online:
Book cover Brainstem Tumors

Abstract

Diffuse midline glioma, H3 K27M-mutant, formerly known as diffuse intrinsic pontine glioma (DIPG), is a malignant and infiltrative neoplasm of the pons. DIPG mainly affects the pediatric population and is associated with dismal prognosis, where less than 10% of sufferers survive beyond 2 years from diagnosis. The diagnosis was based upon the typical clinical presentation/progression and imaging features, and biopsy was discouraged at some point due to the associated surgical toxicity. The clinical interest and exponential growth in the number of molecular studies during the last decade have lead to the discovery of selective driver mutations. Consequently, biopsy regained popularity due to the importance of obtaining tissue for diagnostic and research purposes, and therapeutic trials are shifting from conventional strategies (radiation and chemotherapy) towards targeting unique molecular mechanisms. In this chapter, we present an overview of the current standards as well as the most important recent and clinically-relevant advances in the diagnosis and management of DIPG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

BBB:

Blood-brain barrier

CD44:

Cluster of differentiation 44

CED:

Convection-enhanced delivery

Cho/Cr:

Choline/creatine

CN:

Cranial nerve

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DIPG:

Diffuse intrinsic pontine glioma

DNA:

Deoxyribonucleic acid

DTI:

Diffusion tensor imaging

EGFR:

Epidermal growth factor receptor

EMA:

Epithelial membrane antigen

EZH2:

Enhancer of Zeste homologue 2

FA:

Fractional anisotropy

FLAIR:

Fluid attenuated inversion recovery

GFAP:

Glial fibrillary acidic protein

GFAPδ:

Glial fibrillary acidic protein delta

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

ICP:

Intracranial pressure

LPS:

Lansky play scale

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

mTOR:

Mammalian target of rapamycin

NAA:

N-acetyl aspartate

Olig2:

Oligodendrocyte transcription factor 2

PDGFR:

Platelet-derived growth factor receptor

PET:

Positron emission tomography

PNET:

Primitive neuroectodermal tumor

PPCs:

Precursor-like cells

PRC2:

Polycomb repressive complex 2

RTK:

Receptor tyrosine kinase

SAHA:

Vorinostat

SPECT:

Single photon emission computed tomography

SWI:

Susceptibility-weighted imaging

TMZ:

Temozolomide

T2∗-GRE:

T2∗-weighted gradient echo

WHO:

World Health Organization

References

  1. Henoch E. Fall VI. Sarcom des pons varoli. Charité-Ann. 1880:461–5.

    Google Scholar 

  2. Jacobi MP. Case of probable tumor of the pons. J Nerv Ment Dis. 1889;14(2):115–29.

    Article  Google Scholar 

  3. Williams P. Case of tumour of the pons. Bristol Med Chir J (1883). 1891;9(33):163–7.

    Google Scholar 

  4. Mills CK. Tumor of the pons varolii, with conjugate deviation of the eyes and rotation of the head. J Nerv Ment Dis. 1881;8(3):470–81.

    Article  Google Scholar 

  5. Weisenburg T. Extensive gliomatous tumor involving the cerebellum and the posterior portions of the medulla, pons and cerebral peduncle and the posterior limb of one internal capsule. J Am Med Assoc. 1909;53(25):2086–91.

    Article  Google Scholar 

  6. Zenner P. Two cases of tumor of the pons. J Nerv Ment Dis. 1910;37(1):27–36.

    Article  Google Scholar 

  7. Dmetrichuk J, Pendleton C, Jallo G, Quiñones-Hinojosa A. Father of neurosurgery: Harvey Cushing’s early experience with a pediatric brainstem glioma at the Johns Hopkins Hospital. J Neurosurg Pediatr. 2011;8(4):337–41.

    Article  PubMed  Google Scholar 

  8. Bailey P, Eisenhardt L. Spongioblastomas of the brain. J Comp Neurol. 1932;56(2):391–430.

    Article  Google Scholar 

  9. Cushing H. The surgical mortality percentages pertaining to a series of two thousand verified intracranial tumors: standards of computation. Arch Neurol Psychiatr. 1932;27(6):1273–80.

    Article  Google Scholar 

  10. Pilcher C. Spongioblastoma polare of the pons: clinicopathologic study of eleven cases. Arch Neurol Psychiatr. 1934;32(6):1210–29.

    Article  Google Scholar 

  11. Bray PF, Carter S, Taveras JM. Brainstem tumors in children. Neurology. 1958;8(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Whyte T, Colby JM, Layton JD. Radiation therapy of brain-stem tumors. Radiology. 1969;93(2):413–6. passim.

    Article  CAS  PubMed  Google Scholar 

  13. Reigel D, Scarff T, Woodford J. Biopsy of pediatric brain stem tumors. Childs Brain. 1979;5(3):329–40.

    CAS  PubMed  Google Scholar 

  14. Louis D, Ohgaki H, Wiestler O, Cavenee W. WHO classification of tumours of the central nervous system. Revised 4th ed. Geneva: WHO Press; 2016.

    Google Scholar 

  15. Jansen M, Van Vuurden D, Vandertop W, Kaspers G. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev. 2012;38(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  16. Walker D, Punt J, Sokal M. Brainstem tumors. In: Walker D, Perilongo G, Punt J, Taylor R, editors. Brain and spinal tumors of childhood. Oxford: Arnold Publisher; 2004. p. 291–313.

    Chapter  Google Scholar 

  17. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology. 2017;19(suppl_5):v1–v88.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241–8.

    Article  PubMed  Google Scholar 

  19. Cooney T, Lane A, Bartels U, Bouffet E, Goldman S, Leary SE, et al. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry Study. Neuro-Oncology. 2017;19(9):1279–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Guillamo J-S, Monjour A, Taillandier L, Devaux B, Varlet P, Haie-Meder C, et al. Brainstem gliomas in adults: prognostic factors and classification. Brain. 2001;124(12):2528–39.

    Article  CAS  PubMed  Google Scholar 

  21. Ueoka DI, Nogueira J, Campos JC, Maranhão Filho P, Ferman S, Lima MA. Brainstem gliomas—retrospective analysis of 86 patients. J Neurol Sci. 2009;281(1):20–3.

    Article  PubMed  Google Scholar 

  22. Jansen MH, Veldhuijzen van Zanten SE, Sanchez Aliaga E, Heymans MW, Warmuth-Metz M, Hargrave D, et al. Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro-Oncology. 2015;17(1):160–6.

    Article  PubMed  Google Scholar 

  23. Guillamo J-S, Doz F, Delattre J-Y. Brain stem gliomas. Curr Opin Neurol. 2001;14(6):711–5.

    Article  CAS  PubMed  Google Scholar 

  24. Laigle-Donadey F, Doz F, Delattre J-Y. Brainstem gliomas in children and adults. Curr Opin Oncol. 2008;20(6):662–7.

    Article  PubMed  Google Scholar 

  25. Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, et al. A clinicopathologic reappraisal of brain stem tumor classification. Cancer. 2000;89(7):1569–76.

    Article  CAS  PubMed  Google Scholar 

  26. Epstein FJ, Farmer J-P. Brain-stem glioma growth patterns. J Neurosurg. 1993;78(3):408–12.

    Article  CAS  PubMed  Google Scholar 

  27. Sandri A, Sardi N, Genitori L, Giordano F, Peretta P, Basso M, et al. Diffuse and focal brain stem tumors in childhood: prognostic factors and surgical outcome. Childs Nerv Syst. 2006;22(9):1127–35.

    Article  CAS  PubMed  Google Scholar 

  28. Patten J. The brain stem. In: Patten J, editor. Neurological differential diagnosis. 2nd ed. New York: Springer; 1996. p. 162–77.

    Chapter  Google Scholar 

  29. Hargrave D, Chuang N, Bouffet E. Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neuro-Oncol. 2008;86(3):313–9.

    Article  Google Scholar 

  30. Green A, Kieran M. Pediatric brainstem gliomas: new understanding leads to potential new treatments for two very different tumors. Curr Oncol Rep. 2015;17(3):436.

    Article  PubMed  CAS  Google Scholar 

  31. Garzón M, García-Fructuoso G, Guillén A, Suñol M, Mora J, Cruz O. Brain stem tumors in children and adolescents: single institutional experience. Childs Nerv Syst. 2013;29(8):1321–31.

    Article  PubMed  Google Scholar 

  32. Soler D, Borzyskowski M. Lower urinary tract dysfunction in children with central nervous system tumours. Arch Dis Child. 1998;79(4):344–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barkovich A, Krischer J, Kun L, Packer R, Zimmerman R, Freeman C, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–83.

    Article  PubMed  Google Scholar 

  34. Löbel U, Sedlacik J, Sabin ND, Kocak M, Broniscer A, Hillenbrand CM, et al. Three-dimensional susceptibility-weighted imaging and two-dimensional T2∗-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology. 2010;52(12):1167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. A review. J Neurosurg Pediatr. 2009;3(4):259–69.

    Article  PubMed  Google Scholar 

  36. Ramos A, Hilario A, Lagares A, Salvador E, Perez-Nuñez A, Sepulveda J. Brainstem gliomas. Semin Ultrasound CT MR. 2013;34(2):104–12.

    Article  PubMed  Google Scholar 

  37. Hayward RM, Patronas N, Baker EH, Vézina G, Albert PS, Warren KE. Inter-observer variability in the measurement of diffuse intrinsic pontine gliomas. J Neuro-Oncol. 2008;90(1):57–61.

    Article  Google Scholar 

  38. Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2011;52(2):188–95.

    Article  PubMed  Google Scholar 

  39. Prabhu SP, Ng S, Vajapeyam S, Kieran MW, Pollack IF, Geyer R, et al. DTI assessment of the brainstem white matter tracts in pediatric BSG before and after therapy. Childs Nerv Syst. 2011;27(1):11–8.

    Article  PubMed  Google Scholar 

  40. Poussaint TY, Kocak M, Vajapeyam S, Packer RI, Robertson RL, Geyer R, et al. MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro-Oncology. 2011;13(4):417–27.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Löbel U, Sedlacik J, Reddick WE, Kocak M, Ji Q, Broniscer A, et al. Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol. 2011;32(2):315–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lober RM, Cho YJ, Tang Y, Barnes PD, Edwards MS, Vogel H, et al. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neuro-Oncol. 2014;117(1):175–82.

    Article  Google Scholar 

  43. Poussaint TY, Vajapeyam S, Ricci KI, Panigrahy A, Kocak M, Kun LE, et al. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2016;18(5):725–34.

    Article  CAS  PubMed  Google Scholar 

  44. Zukotynski KA, Vajapeyam S, Fahey FH, Kocak M, Brown D, Ricci KI, et al. Correlation of 18F-FDG PET and MRI apparent diffusion coefficient histogram metrics with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2017;58(8):1264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thakur S, Karimi S, Dunkel I, Koutcher J, Huang W. Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR Am J Neuroradiol. 2006;27(4):806–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro-Oncology. 2011;13(8):904–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laprie A, Pirzkall A, Haas-Kogan DA, Cha S, Banerjee A, Le TP, et al. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(1):20–31.

    Article  PubMed  Google Scholar 

  48. Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol. 2001;22(7):1306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nadvi S, Ebrahim FS, Corr P. The value of 201 thallium-SPECT imaging in childhood brainstem gliomas. Pediatr Radiol. 1998;28(8):575–9.

    Article  CAS  PubMed  Google Scholar 

  50. Epstein F, Wisoff JH. Intrinsic brainstem tumors in childhood: surgical indications. J Neuro-Oncol. 1988;6(4):309–17.

    Article  CAS  Google Scholar 

  51. Epstein F, McCleary EL. Intrinsic brain-stem tumors of childhood: surgical indications. J Neurosurg. 1986;64(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  52. Gleason CA, Wise BL, Feinstein B. Stereotactic localization (with computerized tomographic scanning), biopsy, and radiofrequency treatment of deep brain lesions. Neurosurgery. 1978;2(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  53. Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):1026–30.

    CAS  PubMed  Google Scholar 

  54. Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, et al. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007;107(1 Suppl):1–4.

    PubMed  Google Scholar 

  55. de León FC-P, Perezpena-Diazconti M, Castro-Sierra E, Guerrero-Jazo F, Gordillo-Dominguez L, Gutierrez-Guerra R, et al. Stereotactically-guided biopsies of brainstem tumors. Childs Nerv Syst. 2003;19(5-6):305–10.

    Article  Google Scholar 

  56. Dellaretti M, Touzet G, Reyns N, Dubois F, Gusmão S, Pereira JLB, et al. Correlation among magnetic resonance imaging findings, prognostic factors for survival, and histological diagnosis of intrinsic brainstem lesions in children. J Neurosurg Pediatr. 2011;8(6):539–43.

    Article  PubMed  Google Scholar 

  57. Rajshekhar V, Moorthy RK. Status of stereotactic biopsy in children with brain stem masses: insights from a series of 106 patients. Stereotact Funct Neurosurg. 2010;88(6):360–6.

    Article  PubMed  Google Scholar 

  58. Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, et al. Biopsy in a series of 130 pediatric diffuse intrinsic pontine gliomas. Childs Nerv Syst. 2015;31(10):1773–80.

    Article  PubMed  Google Scholar 

  59. Samadani U, Judy KD. Stereotactic brainstem biopsy is indicated for the diagnosis of a vast array of brainstem pathology. Stereotact Funct Neurosurg. 2003;81(1-4):5–9.

    Article  PubMed  Google Scholar 

  60. Pincus DW, Richter EO, Yachnis AT, Bennett J, Bhatti MT, Smith A. Brainstem stereotactic biopsy sampling in children. J Neurosurg Pediatr. 2006;104(2):108–14.

    Article  Google Scholar 

  61. Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107(5 Suppl):392–9.

    PubMed  Google Scholar 

  62. Phi JH, Chung H-T, Wang K-C, Ryu SK, Kim S-K. Transcerebellar biopsy of diffuse pontine gliomas in children: a technical note. Childs Nerv Syst. 2013;29(3):489–93.

    Article  PubMed  Google Scholar 

  63. Wang ZJ, Rao L, Bhambhani K, Miller K, Poulik J, Altinok D, et al. Diffuse intrinsic pontine glioma biopsy: a single institution experience. Pediatr Blood Cancer. 2015;62(1):163–5.

    Article  PubMed  Google Scholar 

  64. Walker DA, Liu J, Kieran M, Jabado N, Picton S, Packer R, et al. A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro-Oncology. 2013;15(4):462–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kambhampati M, Perez JP, Yadavilli S, Saratsis AM, Hill AD, Ho C-Y, et al. A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget. 2015;6(14):12740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang TY, Piunti A, Lulla RR, Qi J, Horbinski CM, Tomita T, et al. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017;5(1):28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014;14(10):651.

    Article  CAS  Google Scholar 

  69. Dellaretti M, Reyns N, Touzet G, Dubois F, Gusmão S, Pereira JLB, et al. Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact Funct Neurosurg. 2012;90(2):79–83.

    Article  PubMed  Google Scholar 

  70. Carai A, Mastronuzzi A, De AB, Messina R, Cacchione A, Miele E, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584–8.

    Article  PubMed  Google Scholar 

  71. Alcantara SL, Chen J, Kwon C, Jackson E, Li Y, Burns D, et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 2009;15(1):45–56.

    Article  CAS  Google Scholar 

  72. Wang Y, Yang J, Zheng H, Tomasek G, Zhang P, McKeever P, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15(6):514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bohman L-E, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, et al. Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery. 2010;67(5):1319–28.

    Article  PubMed  Google Scholar 

  74. Monje M, Mitra S, Freret M, Raveh T, Kim J, Masek M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A. 2011;108(11):4453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  76. Epstein F. A staging system for brain stem gliomas. Cancer. 1985;56(S7):1804–6.

    Article  CAS  PubMed  Google Scholar 

  77. Bugiani M, van Zanten SEV, Caretti V, Schellen P, Aronica E, Noske DP, et al. Deceptive morphologic and epigenetic heterogeneity in diffuse intrinsic pontine glioma. Oncotarget. 2017;8(36):60447.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol. 2014;128(4):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoffman L, DeWire M, Ryall S, Buczkowicz P, Leach J, Miles L, et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016;4:1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yoshimura J, Onda K, Tanaka R, Takahashi H. Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo). 2003;43(8):375–82.

    Article  Google Scholar 

  81. Sufit A, Donson AM, Birks DK, Knipstein JA, Fenton LZ, Jedlicka P, et al. Diffuse intrinsic pontine tumors: a study of primitive neuroectodermal tumors versus the more common diffuse intrinsic pontine gliomas. J Neurosurg Pediatr. 2012;10(2):81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T. H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol. 2013;139(3):345–9.

    Article  CAS  PubMed  Google Scholar 

  83. Lulla R, Saratsis A, Hashizume R. Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv. 2016;2(3):e1501354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schwartzentruber J, Korshunov A, Liu X, Jones D, Pfaff E, Jacob K, et al. Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.

    Article  CAS  PubMed  Google Scholar 

  85. Wu G, Broniscer A, McEachron T, Lu C, Paugh B, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Puntonet J, Dangouloff-Ros V, Saffroy R, Pagès M, Andreiuolo F, Grill J, et al. Historadiological correlations in high-grade glioma with the histone 3.3 G34R mutation. J Neuroradiol. 2018;45(5):316–22.

    Article  PubMed  Google Scholar 

  87. Lewis P, Müller M, Koletsky M, Cordero F, Lin S, Banaszynski L, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015;129(5):669–78.

    Article  CAS  PubMed  Google Scholar 

  89. Cohen K, Pollack I, Zhou T, Buxton A, Holmes E, Burger P, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-Oncology. 2011;13(3):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lobon-Iglesias M, Giraud G, Castel D, Philippe C, Debily M, Briandet C, et al. Diffuse intrinsic pontine gliomas (DIPG) at recurrence: is there a window to test new therapies in some patients? J Neuro-Oncol. 2018;137(1):111–8.

    Article  CAS  Google Scholar 

  92. Khuong-Quang D, Buczkowicz P, Rakopoulos P, Liu X, Fontebasso A, Bouffet E, et al. K27M mutation in histone H3. 3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fontebasso A, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset P, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46(5):462–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taylor K, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44.

    Article  CAS  PubMed  Google Scholar 

  97. Gilbertson R, Hill D, Hernan R, Kocak M, Geyer R, Olson J, et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res. 2003;9(10 Pt 1):3620–4.

    CAS  PubMed  Google Scholar 

  98. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic Pontine Glioma. Cancer Cell. 2017;32(4):520–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Levin V, Edwards M, Wara W, Allen J, Ortega J, Vestnys P. 5-Fluorouracil and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) followed by hydroxyurea, misonidazole, and irradiation for brain stem gliomas: a pilot study of the Brain Tumor Research Center and the Childrens Cancer Group. Neurosurgery. 1984;14(6):679-81.

    PubMed  Google Scholar 

  100. Jenkin R, Boesel C, Ertel I, Evans A, Hittle R, Ortega J, et al. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J Neurosurg. 1987;66(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  101. Hibi T, Shitara N, Genka S, Fuchinoue T, Hayakawa I, Tsuchida T, et al. Radiotherapy for pediatric brain stem glioma: radiation dose, response, and survival. Neurosurgery. 1992;31(4):643–51.

    CAS  PubMed  Google Scholar 

  102. Shrieve D, Wara W, Edwards M, Sneed P, Prados M, Cogen P, et al. Hyperfractionated radiation therapy for gliomas of the brainstem in children and in adults. Int J Radiat Oncol Biol Phys. 1992;24(4):599–610.

    Article  CAS  PubMed  Google Scholar 

  103. Kretschmar C, Tarbell N, Barnes P, Krischer J, Burger P, Kun L. Pre-irradiation chemotherapy and hyperfractionated radiation therapy 66 Gy for children with brain stem tumors. A phase II study of the Pediatric Oncology Group, Protocol 8833. Cancer. 1993;72(4):1404–13.

    Article  CAS  PubMed  Google Scholar 

  104. Packer R, Boyett J, Zimmerman R, Albright A, Kaplan A, Rorke L, et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer. 1994;74(6):1827–34.

    Article  CAS  PubMed  Google Scholar 

  105. Fleischhack G, Siegler N, Zimmermann M, Warmuth-Metz M, Kortmann R, Massimino M, et al. Concomitant therapy of nimotuzumab and standard radiotherapy for the treatment of newly diagnosed diffuse intrinsic pontine gliomas in children and adolescents: Dipg. 05. Neuro Oncol. 2010;12(6):ii9.

    Google Scholar 

  106. Haas-Kogan D, Banerjee A, Poussaint T, Kocak M, Prados M, Geyer J, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro-Oncology. 2011;13(3):298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kivivuori S, Riikonen P, Valanne L, Lönnqvist T, Saarinen-Pihkala U. Antiangiogenic combination therapy after local radiotherapy with topotecan radiosensitizer improved quality of life for children with inoperable brainstem gliomas. Acta Paediatr. 2011;100(1):134–8.

    Article  PubMed  Google Scholar 

  108. Massimino M, Bode U, Biassoni V, Fleischhack G. Nimotuzumab for pediatric diffuse intrinsic pontine gliomas. Expert Opin Biol Ther. 2011;11(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  109. Negretti L, Bouchireb K, Levy-Piedbois C, Habrand J, Dhermain F, Kalifa C, et al. Hypofractionated radiotherapy in the treatment of diffuse intrinsic pontine glioma in children: a single institution’s experience. J Neuro-Oncol. 2011;104(3):773–7.

    Article  Google Scholar 

  110. Pollack I, Stewart C, Kocak M, Poussaint T, Broniscer A, Banerjee A, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2011;13(3):290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolff J, Kortmann R, Wolff B, Pietsch T, Peters O, Schmid H, et al. High dose methotrexate for pediatric high grade glioma: results of the HIT-GBM-D pilot study. J Neuro-Oncol. 2011;102(3):433–42.

    Article  CAS  Google Scholar 

  112. Chassot A, Canale S, Varlet P, Puget S, Roujeau T, Negretti L, et al. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neuro-Oncol. 2012;106(2):399–407.

    Article  CAS  Google Scholar 

  113. Fontanilla H, Pinnix C, Ketonen L, Woo S, Vats T, Rytting M, et al. Palliative reirradiation for progressive diffuse intrinsic pontine glioma. Am J Clin Oncol. 2012;35(1):51–7.

    Article  PubMed  Google Scholar 

  114. Warren K, Bent R, Wolters P, Prager A, Hanson R, Packer R, et al. A phase 2 study of pegylated interferon α-2b (PEG-Intron (®)) in children with diffuse intrinsic pontine glioma. Cancer. 2012;118(14):3607–13.

    Article  CAS  PubMed  Google Scholar 

  115. Wolff J, Rytting M, Vats T, Zage P, Ater J, Woo S, et al. Treatment of recurrent diffuse intrinsic pontine glioma: the MD Anderson Cancer Center experience. J Neuro-Oncol. 2012;106(2):391–7.

    Article  CAS  Google Scholar 

  116. Aguilera D, Mazewski C, Hayes L, Jordan C, Esiashivilli N, Janns A, et al. Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatr Hematol Oncol. 2013;35(1):e42–6.

    Article  PubMed  Google Scholar 

  117. Bailey S, Howman A, Wheatley K, Wherton D, Boota N, Pizer B, et al. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy–results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer. 2013;49(18):3856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bradley K, Zhou T, McNall-Knapp R, Jakacki R, Levy A, Vezina G, et al. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children’s oncology group phase 2 study. Int J Radiat Oncol Biol Phys. 2013;85(1):e55–60.

    Article  CAS  PubMed  Google Scholar 

  119. Janssens G, Jansen M, Lauwers S, Nowak P, Oldenburger F, Bouffet E, et al. Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):315–20.

    Article  PubMed  Google Scholar 

  120. Kebudi R, Cakir F, Agaoglu F, Gorgun O, Ayan I, Darendeliler E. Pediatric diffuse intrinsic pontine glioma patients from a single center. Childs Nerv Syst. 2013;29(4):583–8.

    Article  PubMed  Google Scholar 

  121. Zaky W, Wellner M, Brown R, Blüml S, Finlay J, Dhall G. Treatment of children with diffuse intrinsic pontine gliomas with chemoradiotherapy followed by a combination of temozolomide, irinotecan, and bevacizumab. Pediatr Hematol Oncol. 2013;30(7):623–32.

    Article  CAS  PubMed  Google Scholar 

  122. Massimino M, Biassoni V, Miceli R, Schiavello E, Warmuth-Metz M, Modena P, et al. Results of nimotuzumab and vinorelbine, radiation and re-irradiation for diffuse pontine glioma in childhood. J Neuro-Oncol. 2014;118(2):305–12.

    CAS  Google Scholar 

  123. Müller K, Schlamann A, Guckenberger M, Warmuth-Metz M, Glück A, Pietschmann S, et al. Craniospinal irradiation with concurrent temozolomide for primary metastatic pediatric high-grade or diffuse intrinsic pontine gliomas. A first report from the GPOH-HIT-HGG Study Group. Strahlenther Onkol. 2014;190(4):377–81.

    Article  PubMed  Google Scholar 

  124. Zaghloul M, Eldebawy E, Ahmed S, Mousa A, Amin A, Refaat A, et al. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiol Oncol. 2014;111(1):35–40.

    Article  Google Scholar 

  125. Epelman S, Odone V, Gorender E, Medeiros RSS, Martins L. Phase II study of nimotuzumab and radiotherapy in children and adolescents with newly diagnosed diffuse intrinsic pontine gliomas (DIPG). J Clin Oncol. 2015;33(15_suppl):10061.

    Article  Google Scholar 

  126. Rizzo D, Scalzone M, Ruggiero A, Maurizi P, Attinà G, Mastrangelo S, et al. Temozolomide in the treatment of newly diagnosed diffuse brainstem glioma in children: a broken promise? J Chemother. 2015;27(2):106–10.

    Article  CAS  PubMed  Google Scholar 

  127. Vanan M, Eisenstat D. DIPG in children-what can we learn from the past? Front Oncol. 2015;5:237.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hankinson T, Patibandla M, Green A, Hemenway M, Foreman N, Handler M, et al. Hypofractionated radiotherapy for children with diffuse intrinsic pontine gliomas. Pediatr Blood Cancer. 2016;63(4):716–8.

    Article  PubMed  Google Scholar 

  129. Hummel T, Salloum R, Drissi R, Kumar S, Sobo M, Goldman S, et al. A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J Neuro-Oncol. 2016;127(1):53–61.

    Article  CAS  Google Scholar 

  130. Janssens G, Gandola L, Bolle S, Mandeville H, Ramos-Albiac M, Benghiat H, et al. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: a matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur J Cancer. 2017;73:38–47.

    Article  PubMed  Google Scholar 

  131. La Madrid AM, Santa-María V, Cruz OM, Mora J, Puerta PR, Guillen AQ, et al. Second re-irradiation for DIPG progression, re-considering “old strategies” with new approaches. Childs Nerv Syst. 2017;33(5):849–52.

    Google Scholar 

  132. Macy M, Kieran M, Chi S, Cohen K, MacDonald T, Smith A, et al. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: a Pediatric Oncology Experimental Therapeutics Investigators’ Consortium study. Pediatr Blood Cancer. 2017;64(11):e26621.

    Article  CAS  Google Scholar 

  133. Yoshida K, Sulaiman NS, Miyawaki D, Ejima Y, Nishimura H, Ishihara T, et al. Radiotherapy for brainstem gliomas in children and adults: a single-institution experience and literature review. Asia Pac J Clin Oncol. 2017;13(2):e153–e60.

    Article  PubMed  Google Scholar 

  134. Mandell L, Kadota R, Freeman C, Douglass E, Fontanesi J, Cohen M, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–64.

    Article  CAS  PubMed  Google Scholar 

  135. Janssens G, Gidding C, Van EL, Oldenburger F, Erasmus C, Schouten-Meeteren A, et al. The role of hypofractionation radiotherapy for diffuse intrinsic brainstem glioma in children: a pilot study. Int J Radiat Oncol Biol Phys. 2009;73(3):722–6.

    Article  PubMed  Google Scholar 

  136. Allen J, Siffert J, Donahue B, Nirenberg A, Jakacki R, Robertson P, et al. A phase I/II study of carboplatin combined with hyperfractionated radiotherapy for brainstem gliomas. Cancer. 1999;86(6):1064–9.

    Article  CAS  PubMed  Google Scholar 

  137. Freeman C, Kepner J, Kun L, Sanford R, Kadota R, Mandell L, et al. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas? Int J Radiat Oncol Biol Phys. 2000;47(3):561–4.

    Article  CAS  PubMed  Google Scholar 

  138. Bernier-Chastagner V, Grill J, Doz F, Bracard S, Gentet J, Marie-Cardine A, et al. Topotecan as a radiosensitizer in the treatment of children with malignant diffuse brainstem gliomas: results of a French Society of Paediatric Oncology Phase II Study. Cancer. 2005;104(12):2792–7.

    Article  CAS  PubMed  Google Scholar 

  139. Jennings M, Sposto R, Boyett J, Vezina L, Holmes E, Berger M, et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children’s Cancer Group. J Clin Oncol. 2002;20(16):3431–7.

    Article  CAS  PubMed  Google Scholar 

  140. Jalali R, Raut N, Arora B, Gupta T, Dutta D, Munshi A, et al. Prospective evaluation of radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys. 2010;77(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  141. Sirachainan N, Pakakasama S, Visudithbhan A, Chiamchanya S, Tuntiyatorn L, Dhanachai M, et al. Concurrent radiotherapy with temozolomide followed by adjuvant temozolomide and cis-retinoic acid in children with diffuse intrinsic pontine glioma. Neuro-Oncology. 2008;10(4):577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Korones D, Fisher P, Kretschmar C, Zhou T, Chen Z, Kepner J, et al. Treatment of children with diffuse intrinsic brain stem glioma with radiotherapy, vincristine and oral VP-16: a Children’s Oncology Group phase II study. Pediatr Blood Cancer. 2008;50(2):227–30.

    Article  PubMed  Google Scholar 

  143. Kim C, Kim S, Phi J, Lee M, Kim I, Kim I, et al. A prospective study of temozolomide plus thalidomide during and after radiation therapy for pediatric diffuse pontine gliomas: preliminary results of the Korean Society for Pediatric Neuro-Oncology study. J Neuro-Oncol. 2010;100(2):193–8.

    Article  CAS  Google Scholar 

  144. Michalski A, Bouffet E, Taylor R, Hargrave D, Walker D, Picton S, et al. The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J Neuro-Oncol. 2010;100(1):81–8.

    Article  CAS  Google Scholar 

  145. Bouffet E, Raquin M, Doz F, Gentet J, Rodary C, Demeocq F, et al. Radiotherapy followed by high dose busulfan and thiotepa: a prospective assessment of high dose chemotherapy in children with diffuse pontine gliomas. Cancer. 2000;88(3):685–92.

    Article  CAS  PubMed  Google Scholar 

  146. Khan O, La NT. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol. 2012;90(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  147. Dawson M, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  148. Grasso C, Tang Y, Truffaux N, Berlow N, Liu L, Debily M, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lapin DH, Tsoli M, Ziegler DS. Genomic insights into diffuse intrinsic pontine glioma. Front Oncol. 2017;7:57.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hummel T, Wagner L, Ahern C, Fouladi M, Reid J, McGovern R, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer. 2013;60(9):1452–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20(12):1394–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mohammad F, Weissmann S, Leblanc B, Pandey D, Højfeldt J, Comet I, et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 2017;23(4):483–92.

    Article  CAS  PubMed  Google Scholar 

  153. Piunti A, Hashizume R, Morgan M, Bartom E, Horbinski C, Marshall S, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med. 2017;23(4):493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Truffaux N, Philippe C, Paulsson J, Andreiuolo F, Guerrini-Rousseau L, Cornilleau G, et al. Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma. Neuro-Oncology. 2015;17(7):953–64.

    Article  CAS  PubMed  Google Scholar 

  155. Qaddoumi I, Kocak M, Pai AP, Armstrong G, Wetmore C, Crawford J, et al. Phase II trial of erlotinib during and after radiotherapy in children with newly diagnosed high-grade gliomas. Front Oncol. 2014;4:67.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhou Z, Singh R, Souweidane M. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol. 2017;15(1):116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Barua N, Lowis S, Woolley M, O’Sullivan S, Harrison R, Gill S. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir. 2013;155(8):1459–65.

    Article  CAS  PubMed  Google Scholar 

  158. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–50.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Singleton W, Collins A, Bienemann A, Killick-Cole C, Haynes H, Asby D, et al. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int J Nanomedicine. 2017;12:1385–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George I. Jallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noureldine, M.H.A., Shimony, N., Jallo, G.I. (2020). Diffuse Midline Glioma – Diffuse Intrinsic Pontine Glioma. In: Jallo, G., Noureldine, M., Shimony, N. (eds) Brainstem Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-38774-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38774-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38773-0

  • Online ISBN: 978-3-030-38774-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics