Skip to main content

Application of Reinforcement and Deep Learning Techniques in Brain–Machine Interfaces

  • Chapter
  • First Online:
Advances in Motor Neuroprostheses

Abstract

From early adoption in rehabilitation, the brain–machine interfaces (BMIs) have dovetailed into applications empowering humans in controlling external devices such as prosthesis and wheelchairs with a high level of autonomy. The success of such brain–machine interfaces depends on the decoding algorithms that translate the brain activity into the human’s intention or cognition state. Taking advantage of this decoding, a machine can have a robust perception of human’s cognitive state and modify its actions accordingly. This decoding process can be viewed as a machine learning problem where features of brain activities are mapped to some labeled events or classes in a controlled environment. This mapping traditionally relies on the subject and task-specific signal processing approaches. Thus, the conventional machine learning methods fail to generalize well and transfer the learned features between different tasks and subjects, especially in out-of-the-lab applications. Recently, deep learning (DL) has shown great success in learning the patterns from very large data and generalizing well on different applications. With respect to brain activity analysis, deep learning and reinforcement learning (RL) techniques can significantly simplify analysis pipelines and facilitate better generalization between subjects, tasks, and also learn intricate coupled dynamics. In this regard, this paper provides information on the state of the art and challenges in implementing deep learning and reinforcement learning algorithms in brain–machine interfaces. In order to demonstrate the use of deep learning techniques in BMIs, we also present a case study of physical human–robot interaction where the brain activity is used to classify the task difficulty while interacting with the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Teplan et al., Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  2. R.P.N. Rao, Brain-Computer Interfacing: An Introduction (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  3. S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, Signal processing techniques applied to human sleep EEG signals—a review. Biomed. Signal Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  4. K.A. Guru, E.T. Esfahani, S.J. Raza, R. Bhat, K. Wang, Y. Hammond, G. Wilding, J.O. Peabody, A.J. Chowriappa, Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff. BJU Int. 115(1), 166–174 (2015)

    Article  Google Scholar 

  5. A.H. Memar, E.T. Esfahani, Physiological measures for human performance analysis in human-robot teamwork: case of tele-exploration. IEEE Access 6, 3694–3705 (2018)

    Article  Google Scholar 

  6. M. Rahman, W. Karwowski, M. Fafrowicz, P.A. Hancock, Neuroergonomics applications of electroencephalography in physical activities: a systematic review. Front. Hum. Neurosci. 13, 182 (2019)

    Article  Google Scholar 

  7. M.-K. Kim, M. Kim, E. Oh, S.-P. Kim, A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. 2013, 13 pp. (2013)

    Google Scholar 

  8. P. Zarjam, J. Epps, N.H. Lovell, Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans. Auton. Ment. Dev. 7(4), 301–310 (2015)

    Article  Google Scholar 

  9. E.T. Esfahani, V. Sundararajan, Using brain-computer interfaces to detect human satisfaction in human-robot interaction. Int. J. Humanoid Rob. 08(01), 87–101 (2011)

    Article  Google Scholar 

  10. X. Mao, W. Li, C. Lei, J. Jin, F. Duan, S. Chen, A brain–robot interaction system by fusing human and machine intelligence. IEEE Trans. Neural Syst. Rehabil. Eng. 27(3), 533–542 (2019)

    Article  Google Scholar 

  11. G.K. Karavas, D.T. Larsson, P. Artemiadis, A hybrid BMI for control of robotic swarms: preliminary results, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 5065–5075

    Google Scholar 

  12. K.K. Ang, K.S.G. Chua, K.S. Phua, C. Wang, Z.Y. Chin, C.W.K. Kuah, W. Low, C. Guan, A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46(4), 310–320 (2015)

    Article  Google Scholar 

  13. P. Ofner, A. Schwarz, J. Pereira, G. Müller-Putz, Decoding movements of the upper limb from EEG, in cuttingEEG (2017)

    Google Scholar 

  14. N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, K.A. Robbins, The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16 (2015)

    Article  Google Scholar 

  15. W. Zhang, C. Tan, F. Sun, H. Wu, B. Zhang, A review of EEG-based brain-computer interface systems design. Brain Sci. Adv. 4(2), 156–167 (2018)

    Google Scholar 

  16. M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice (MIT Press, Cambridge, 2014)

    Book  Google Scholar 

  17. M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald, E. Muharemagic, Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1 (2015)

    Google Scholar 

  18. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    Google Scholar 

  19. R. Yannick, B. Hubert, A. Isabela, G. Alexandre, F. Jocelyn et al., Deep learning-based electroencephalography analysis: a systematic review (2019). Preprint. arXiv:1901.05498

    Google Scholar 

  20. A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Google Scholar 

  21. R.S. Sutton, A.G, Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 2018)

    Google Scholar 

  22. E.A. Pohlmeyer, B. Mahmoudi, S. Geng, N.W. Prins, J.C. Sanchez, Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PloS One 9(1), e87253 (2014)

    Google Scholar 

  23. I. Iturrate, R. Chavarriaga, L. Montesano, J. Minguez, J.d.R. Millán, Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Sci. Rep. 5, 13893 (2015)

    Google Scholar 

  24. E. Imatz-Ojanguren, E. Irigoyen, T. Keller, Reinforcement learning for hand grasp with surface multi-field neuroprostheses, in International Joint Conference (Springer, Berlin, 2016), pp. 313–322

    Google Scholar 

  25. N.W. Prins, J.C. Sanchez, A. Prasad, Feedback for reinforcement learning based brain–machine interfaces using confidence metrics. J. Neural Eng. 14(3), 036016 (2017)

    Google Scholar 

  26. A.H. Memar, E.T. Esfahani, EEG correlates of motor control difficulty in physical human-robot interaction: a frequency domain analysis, in 2018 IEEE Haptics Symposium (HAPTICS) (IEEE, 2018), pp. 229–234

    Google Scholar 

  27. C. Berka, D.J. Levendowski, M.N. Lumicao, A. Yau, G. Davis, V.T. Zivkovic, R.E. Olmstead, P.D. Tremoulet, P.L. Craven, EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(5), B231–B244 (2007)

    PubMed  Google Scholar 

  28. R.W. Homan, J. Herman, P. Purdy, Cerebral location of international 10-20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)

    Google Scholar 

  29. A. Gramfort, M. Luessi, E. Larson, D.A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen et al., MEG and EEG data analysis with MNE-python. Front. Neurosci. 7, 267 (2013)

    Article  Google Scholar 

  30. R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, T. Ball, Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  31. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  32. K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (IEEE, 2008), pp. 2390–2397

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan T. Esfahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjunatha, H., Esfahani, E.T. (2020). Application of Reinforcement and Deep Learning Techniques in Brain–Machine Interfaces. In: Vinjamuri, R. (eds) Advances in Motor Neuroprostheses. Springer, Cham. https://doi.org/10.1007/978-3-030-38740-2_1

Download citation

Publish with us

Policies and ethics