Skip to main content

Competition

  • Chapter
  • First Online:
Book cover Models of Tree and Stand Dynamics

Abstract

The term competition is used to describe individual tree or stand-level reactions to situations where the trees must share limited resources. Resource limitation at the stand level constrains total growth, productivity, and the maximum biomass that a site can support. In this chapter we focus on the reactions of individuals to resource limitation. We consider the distribution of resources among individuals in crowded stands, plastic reactions of trees to competition, and the combined effects of environment and plasticity on resource acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam A, Kilpelainen A, Kellomaki S (2010) Potential energy wood production with implications to timber recovery and carbon stocks under varying thinning and climate scenarios in Finland. Bioenergy Res 3(4):362–372

    Article  Google Scholar 

  • Bohlman S, Pacala S (2012) A forest structure model that determines crown layers and partitions growth and mortality rates for landscape scale applications of tropical forests. J Ecol 100: 508–518

    Article  Google Scholar 

  • Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. Ecology 60:849–872

    Article  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Change 51:259–305

    Article  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Crawley MJ (2007) Plant population dynamics. In: May RM, McLean AR (eds) Theoretical ecology. Oxford University Press, Oxford, pp 62–83

    Google Scholar 

  • de Kroon H, Hendriks M, van Ruijven J, Ravenek J, Padilla FM, Jongejans E, Visser EJW, Mommer L (2012) Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100(1):6–15

    Article  Google Scholar 

  • Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manage 295:97–108

    Article  Google Scholar 

  • Duursma RA, Mäkelä A (2007) Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree Physiol 27:859–870

    CAS  PubMed  Google Scholar 

  • Fischer R, Bohn F, de Paula MD, Dislich C, Groeneveld J, Gutierrez AG, Kazmierczak M, Knapp N, Lehmann S, Paulick S, Puetz S, Roedig E, Taubert F, Koehler P, Huth A (2016) Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecol Modell 326:124–133

    Article  CAS  Google Scholar 

  • Forrester DI, Guisasola R, Tang X, Albrecht AT, Dong TA, le Maire G (2014) Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies. For Ecosyst 1:1–17

    Article  Google Scholar 

  • Forrester DI, Ammer C, Annighöfer PJ, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, del Rìo M, Drössler L, Heym M, Hurt V, Löf M, Matović B, Meloni F, den Ouden J, Pach M, Pereira MG, Ponette Q, Pretzsch H, Skrzyszewski J, Stojanović D, Svoboda M, Ruiz-Peinaido R, Vacchiano G, Verheyen K, Zlatanov T, Bravo-Oviedo A (2017) Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. For Ecol Manage 405:112–133

    Article  Google Scholar 

  • Freschet GT, Bellingham PJ, Lyver PO, Bonner KI, Wardle DA (2013) Plasticity in above-and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. Ecol Evol 3(4):1065–1078

    Article  PubMed  PubMed Central  Google Scholar 

  • García O (2017) Cohort aggregation modelling for complex forest stands: spruce–aspen mixtures in British Columbia. Ecol Modell 343:109–122

    Article  Google Scholar 

  • García O (2014) Can plasticity make spatial structure irrelevant in individual-tree models? For Ecosyst 1(1):16

    Article  Google Scholar 

  • Grace JC, Jarvis P, Norman JM (1987) Modelling the interception of solar radiant energy in intensively managed stands. N Z J For Sci 17:193–209

    Google Scholar 

  • Härkönen S, Pulkkinen M, Duursma RA, Mäkelä A (2010) Estimating annual GPP, NPP and stem growth in Finland using summary models. For Ecol Manage 259:524–533

    Article  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton University Press, Princeton

    Google Scholar 

  • Ishii H, Kitaoka S, Fujisaki Y, Maruyama T, Koike T (2007) Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Tree Physiol 27:1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Iwasa Y, Andreasen V, Levin S (1987) Aggregation in model-ecosystems. 1. Perfect aggregation. Ecol Modell 37:287–302

    Article  Google Scholar 

  • Kokkila T, Mäkelä A, Franc A (2006) Comparison of distance-dependent and distance-independent stand growth models—is perfect aggregation possible? For Sci 26:623–635

    Google Scholar 

  • Laasasenaho J, Koivuniemi J (1990) Dependence of some stand characteristics on stand density. Tree Physiol 7:183–187

    Article  PubMed  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation use efficiency, carbon balance and partitioning. For Ecol Manage 95: 209–228

    Article  Google Scholar 

  • Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manage 207:59–74

    Article  Google Scholar 

  • Lindner M, Sievänen R, Pretzsch H (1997) Improving the simulation of stand structure in a forest gap model. For Ecol Manage 95:183–195

    Article  Google Scholar 

  • Lonsdale WM (1990) The self-thinning rule: dead or alive? Ecology 71:1373–1388

    Article  Google Scholar 

  • Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Modell 33:205–229

    Article  Google Scholar 

  • Mäkelä A, Vanninen P (1998) Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Can J For Res 28:216–227

    Article  Google Scholar 

  • Medlyn BE (2004) A MAESTRO Retrospective. In: Mencuccini M, Grace J, Moncrieff JB, McNaughton K (eds) Forests at the land-atmosphere interface. CABI, Oxfordshire, pp 105–121

    Chapter  Google Scholar 

  • Mitchell KJ (1975) Dynamics and simulated yield of Douglas-fir. For Sci Monogr 17:1–37

    Google Scholar 

  • Norberg RA (1988) Theory of growth geometry of plants and self-thinning of plant populations: geometric similarity, elastic similarity, and different growth modes of plant parts. Am Nat 131:220–256

    Article  Google Scholar 

  • Norman JM, Welles JM (1983) Radiative transfer in an array of canopies. Agron J 75:481–488

    Article  Google Scholar 

  • Oker-Blom P, Pukkala T, Kuuluvainen T (1989) Relationship between radiation interception and photosynthesis in forest canopies: effect of stand structure and latitude. Ecol Modell 49:73–87

    Article  Google Scholar 

  • Osawa A, Sugita S (1989) The self-thinning rule: another interpretation of Weller’s results. Ecology pp 279–283

    Google Scholar 

  • Pacala SW, Canham CD, Silander JA (1993) Forest models defined by field measurements. 1. The design of a Northeastern forest simulator. Can J For Res 23:1980–1988

    Article  Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43

    Article  Google Scholar 

  • Poorter L, Oberbauer SF, Clark DB (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Am J Bot 82(10):1257–1263

    Article  Google Scholar 

  • Pregitzer KS (2002) Fine roots of trees–a new perspective. New Phytol 154(2):267–270

    Article  PubMed  Google Scholar 

  • Pretzsch H, Biber P, Schuetze G, Uhl EO, Roetzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5. https://doi.org/10.1038/ncomms5967

  • Purves DW, Lichstein JW, Strigul N, Pacala SW (2008) Predicting and understanding forest dynamics using a simple tractable model. Proc Natl Acad Sci U S A 105:17018–17022

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaniemi TK (2003) Evidence for size asymmetry of belowground competition. Basic Appl Ecol 4:239–247

    Article  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46(7): 626–637

    Google Scholar 

  • Reynolds JH, Ford ED (2005) Improving competition representation in theoretical models of self-thinning: a critical review. J Ecol 93(2):362–372

    Article  Google Scholar 

  • Snow GRS (1931) Experiments on growth and inhibition. II. New phenomena of inhibition. Proc R Soc Lond 108:305–316

    Google Scholar 

  • Sorrensen-Cothern KA, Ford ED, Sprugel DG (1993) A model of competition incorporating plasticity through modular foliage and crown development. Ecol Monogr 63(3):277–304

    Article  Google Scholar 

  • Sprugel DG (2002) When branch autonomy fails: Milton’s Law of resource availability and allocation. Tree Physiol 22:1119–1124

    Article  PubMed  Google Scholar 

  • Strigul N, Pristinski D, Purves D, Dushoff J, Pacala S (2008) Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 78:523–545

    Article  Google Scholar 

  • Valentine HT, Herman DA, Gove JH, Hollinger DY, Solomon DS (2000) Initializing a model stand for process-based projection. Tree Physiol 20(5–6):393–398

    Article  PubMed  Google Scholar 

  • Valentine HT, Green EJ, Mäkelä A, Amateis RL, Mäkinen H, Ducey MJ (2012) Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees 26:469–478

    Article  Google Scholar 

  • Valentine HT, Amateis RL, Gove JH, Mäkelä A (2013) Crown-rise and crown-length dynamics: application to loblolly pine. Forestry 86:371–375

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Asbjornsen H, Dahlgren RA (1995) Roots, nutrients and their relationship to spatial patterns. Plant Soil 168:113–123

    Article  Google Scholar 

  • Wang YP, Jarvis PG (1990) Description and validation of an array model – MAESTRO. Agric For Meteorol 51:257–280

    Article  Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    Article  CAS  PubMed  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Tree 5:360–364

    CAS  PubMed  Google Scholar 

  • Weiner J, Wright DB, Castro S (1997) Symmetry of below-ground competition between Kochia scoparia individuals. Oikos 79:85–91

    Article  Google Scholar 

  • Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. John Wiley & Sons, West Sussex

    Book  Google Scholar 

  • Weller DE (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol Monogr 57(1):23–43

    Article  Google Scholar 

  • Weller DE (1990) Will the real self-thinning rule please stand up? – a reply to Osawa and Sugita. Ecology 71(3)1204–1207

    Article  Google Scholar 

  • Weller DE (1991) The self-thinning rule: dead or unsupported? – a reply to Lonsdale. Ecology 72(2):747–750

    Article  Google Scholar 

  • Westoby M (1981) The place of the self-thinning rule in population dynamics. Am Nat 118(4): 581–587

    Article  Google Scholar 

  • White J (1981) The allometric interpretation of the self-thinning rule. J Theor Biol 89(3):475–500

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivation and natural conditions. J Biol Osaka City Univ 14:107–129

    Google Scholar 

  • Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manage 13(3):149–166

    Article  Google Scholar 

  • Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33(2):517–537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mäkelä, A., Valentine, H.T. (2020). Competition. In: Models of Tree and Stand Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-35761-0_6

Download citation

Publish with us

Policies and ethics