
Chapter 9
Modelling Strategies

Abstract When devising a modelling strategy, researchers determine the steps they
will take to answer their research question or test their hypothesis. Two general
principles are important. Firstly, most of the steps that you would take in a single-
level regression analysis are also relevant for MLA. Secondly, start with simpler
models, for example in terms of the number of levels, and add further complexity as
required. The statistical model used depends on the measurement level of the
dependent variable. In a baseline model, the variances are estimated at each level.
After that we can start to analyse the fixed effects in a more exploratory manner or a
specific hypothesis can be tested. Disentangling context and composition and pro-
viding an indication of their relative importance are often the aims of the modelling
strategy. As the number of higher level units is often small, it may not be possible
simultaneously to analyse several contextual variables. We end this chapter by
discussing the interpretation of results in the light of a number of common
assumptions.

Keywords Multilevel analysis · Modelling strategy · Measurement level ·
Exploratory research · Hypothesis testing · Sample size · Assumptions

Before you actually start analysing your data, it is important to define a strategy for
your analysis or modelling strategy. The modelling strategy describes what you
intend to do when analysing the data and takes the form of a sequence of steps that
lead to an answer to your research question. The modelling strategy naturally comes
somewhere in the middle of the research cycle (Fig. 9.1). It is determined by the
research questions of your study, the hypotheses (where these exist) and the nature of
the data; as such, it reflects the logic of your research. After you have determined
your modelling strategy, you will undertake the analysis and write up the results in
tables and figures as necessary and in the main body of your report. The way that you
write up your research should follow the steps of your modelling strategy (see also
Chap. 10).

Many of the decisions you make when defining your modelling strategy are not
specific to multilevel analysis but are appropriate for data analysis in general.
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Everything that you have learned about single-level regression analysis is likely to
be important when you undertake a multilevel regression analysis.

Some important general advices are to start simple and only make your analysis
more complicated when you are happy that you have a clear understanding of the
results of your simpler analysis. This is not to say that we would argue in favour of
using inadequate statistical models purely on the grounds of simplicity. But, as an
approach to improve your understanding of the data and the research problem, it is a
useful step. How can you expect to understand and explain a complex model if you
do not have an understanding of a simpler underlying model?

Define the Data Structure

We discussed multilevel data structures in Chap. 4. The simplest multilevel data
structures are strict hierarchies with only two levels. Often our data structures in the
real world are more complicated, but again it is useful to start simple.

Simplification could be based on the frequencies of the occurrence of certain
combinations in the data. For example, although in reality your data might contain a
level below individual patients, such as that of the separate contacts patients make
with the health service, it may be that in your data 99% of patients only had one
contact. Or, if we were analysing pregnancy outcomes in different hospitals, we
would want to take into account that pregnancies are nested in women, with one
woman possibly having more than one pregnancy. However, if we have hospital data
from only 2 years, it could be that there is a very small number of women with more
than one pregnancy in the data set. A way of keeping things simple would be to
select initially only the first pregnancy that occurred of any women with two
pregnancies in the data set or to select one at random. That would result in a
two-level analysis instead of a three-level analysis with limited power to differentiate
between the levels of women and pregnancies. After conducting the analysis for a
two-level model, and once you are satisfied that the conclusions for this model are
clear, you can run a three-level model to check whether that alters the results. Given
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Fig. 9.1 The place of the
modelling strategy in the
research cycle
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that there would be little additional data—just the additional pregnancies of the few
women who had more than one pregnancy during the 2-year study period—we
would not expect substantial differences between the models. The most important
additional information is likely to be the ability to partition the variation between that
attributable to unexplained differences between women and that due to differences
between pregnancies within women. This means that it would probably make more
sense to report the results of the three-level analysis rather than the two-level
analysis. However, the sparsity of the data structure (the vast majority of women
only having one pregnancy during the study period and virtually no women with
more than two) may cause computational problems and a need to resort to reporting
the results from a two-level model.

The decision to simplify might also be based on a preliminary analysis of
variation, if this were to show that the variation at one of the levels in your dataset
was trivial. With simple hierarchical data, the inclusion of additional levels is not a
big problem, but with the more complicated data structures (such as cross-classified
and multiple membership models), it might be a wise first step at least to consider
leaving out levels that do not really contribute to the variation in the outcomes.

Often there are also deviations from strict hierarchies. A multiple membership
model could be simplified if only a few cases belong to more than one higher level
unit. If most patients usually see their own GP and only occasionally another GP,
you could assign them to their usual GP. (If there is a list system, then this would be
the GP to whose list that patient belongs.) Doing this simplifies the data structure to a
strict hierarchy and keeps the analysis simple.

The first steps in the analysis of a cross classified data structure could be to
analyse the two hierarchies separately first, as was done for example by Chum and
O’Campo (2013). They studied the determinants of cardiovascular disease in resi-
dential neighbourhoods and the neighbourhoods where people worked. This gave a
first impression of the variation at different levels. The prevalence of CVD clustered
more strongly in residential than in work neighbourhoods. Their strategy was to
estimate the variance attributable to each level in three models (individuals nested in
residential neighbourhoods, work neighbourhoods and the cross classification of the
two). Their next step was then to analyse the fixed effects associated with the
characteristics of the two contexts in this cross-classified structure.

The information that can be gained through the use of a cross-classified data
structure depends to some extent on the degree of overlap between the two hierar-
chies. If there is considerable overlap, then the results from the two-level models are
unlikely to differ since there would be little difference between the hierarchical data
structures used in each. However, when there is less overlap, the results may differ if
one context is more important than the other. In either case, using a cross-classified
model will help to gain an understanding of the relative importance of the contexts,
which may in itself relate to one of your research questions.
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Measurement Level and Distribution of the Dependent
Variable

The measurement level and the distribution define the statistical model that should
be used. If the dependent variable is continuous and approximately normally dis-
tributed, then linear regression is appropriate. It may be that a transformation is
necessary to make the outcome follow an approximate normal distribution; you
should remember that such transformations make your job of explaining the model
and the parameter estimates more difficult. With a dichotomous variable, you will
normally choose logistic regression. Often an ordinal dependent variable, such as
self-rated health, can be dichotomised to make the analysis simpler. It should be
noted, however, that this results in a loss of information. It is up to you as the
researcher to decide whether this loss of information is acceptable; this will in part
depend on the field of research and what is currently seen as ‘good practice’. Often
we only find out whether this loss of information is important after comparing the
analysis of a dichotomised dependent variable with, for example, an ordered logit
analysis. Such analyses are often best undertaken as a form of sensitivity analysis
(in this case it is the sensitivity to the choice of analytical model that you are testing).
When the results of two competing analyses are not materially different, it can be
enough to say so in a sentence or two. The choice of which set of results to present as
your main results then amounts to a trade-off between the need to explain a more
complex model and the added information that such a model may bring.

The results of a linear regression model are often not seriously affected by
violations of the distributional assumptions. As a consequence, a first step in your
analysis could again be to use a simpler model, such as linear regression, and only
when you have a fuller understanding of your data and the relationships between
variables progress to more complicated models, such as ordered logits in the case of
ordinal variables or Poisson models in the case of count variables.

The Baseline Model

Defining the baseline model comes early in your modelling strategy. It is often called
the null model or empty model. This suggests that the baseline, against which we
will evaluate further models, is always a model that contains no individual variables.
This is, however, not necessarily the case. For example, if the main focus of your
analysis is the relationship between income and access to specialised care, and if you
know that access to specialised care is also dependent on age, you might decide to
use a model including only age as the baseline.

In a study of body mass index (BMI) among women in nearly 33,000 commu-
nities in 57 countries, Corsi et al. (2012) adjusted their baseline model for the age of
the women. Given that BMI is known to be related to age, and the countries studied
have a range of rather different demographic profiles (and there are probably even
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greater differences between the communities within those countries), it is only
possible to interpret the variation in BMI at the levels of communities and countries
after accounting for differences in the age structure.

It often makes sense to adjust the baseline model for age and sex when studying
health outcomes. For example, Voigtländer et al. (2010) made such an adjustment to
their baseline model when analysing the influence of regional and neighbourhood
deprivation on self-rated health. Another example is provided by Deraas et al. (2014)
who fitted a baseline model including age and sex in their study of the influence of
primary care on unplanned hospital admissions.

Cole et al. (2009) studied mental health outcomes and musculoskeletal disorders
in a cohort of healthcare workers. They had five measurements per worker. They
adjusted their baseline model for year of observation to take changes in the preva-
lence of health problems over time into account when estimating the variance at
hospital and regional level.

The baseline model consists of limited information such as the overall average of
the dependent variable (and relationships with key variables of interest such as age
and sex) and the variances at the different levels. In previous chapters, we have
discussed how to interpret the variation at the different levels in the study (see
Chap. 6: Apportioning variation in multilevel models).

Exploratory Research and Hypothesis Testing

The modelling strategy differs according to the aims of the research and the research
questions. We distinguish here between exploratory research and hypothesis testing
research.

In exploratory research, the research question is only partly specified. The
dependent or outcome variable is specified, but the independent variables are not.
An example of an exploratory research question would be: does hospital length of
stay vary between hospitals and which characteristics of hospitals explain this
variation? The dependent variable is length of stay and the independent variables
are not specified. A useful modelling strategy in a case like this would be as follows:

1. Estimate a random intercept model to verify if there is indeed variation between
hospitals in length of stay of the patients. This null or baseline model might
already include some basic patient characteristics that are known to be related to
length of stay and without which any analysis would be deemed to be incomplete:
perhaps the patient’s age and sex. In an exploratory analysis, it may be more
appropriate not to include any covariates in the null model.

2. Then add the individual-level variables, such as diagnosis, comorbidities or
treatment. Adding the individual-level variables might reduce the variation
between hospitals because of differences in case-mix (differences in the compo-
sition of the patient population) between hospitals.
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3. The next step is to add hospital characteristics to see which variables at this level
relate to length of stay. These could include the size of the hospital or the degree
of specialisation.

4. At this stage, it might be interesting to explore random slopes for some of the
individual-level variables. For example, the relationship between the age of the
patients and length of stay might vary between hospitals. In an exploratory
analysis, the slope variation can be a source of new hypotheses about how
hospitals influence length of stay.

5. Finally, you could consider introducing selected cross-level interactions. Your
choice of the interactions to include might be informed by your findings regarding
the random slopes. If, for example, you have seen that the effect of age on length
of stay varies between contexts, then you could explore whether this was due to
an interaction between the patient’s age and a hospital characteristic such as the
size of the hospital. Alternatively you may have a particular interest in examining
cross-level interactions involving pre-specified individual or contextual variables.
If this were the case, then these key variables would usually be mentioned in your
research question, and it might be more appropriate to undertake this analysis
before looking for random slopes in step 4.

Changes in the amount of variation at the different levels should be evaluated at
each step. In an exploratory analysis, you might want to use a stepwise procedure,
selecting those variables that matter for the outcome of your study, such as forward
or backward selection of significant variables. As with any exploratory analysis, you
should be aware that performing multiple tests at a given level of significance means
that you are likely to encounter statistically ‘significant’ results by chance.

In hypothesis testing research, we specify not only the dependent variable but
also one or more independent variables. An example of a research question related to
a hypothesis could be: is more social capital in neighbourhoods related to better self-
rated health among the people who live there? The first step is the same as in
exploratory research: estimate an appropriate baseline model to see how the variation
in self-rated health is apportioned between individuals and neighbourhoods. Again,
this baseline model might include some variables that are known to be correlated
with self-rated health. At this point you can either introduce the contextual variable
of interest (social capital in this example) or the individual variables. In the following
sequence, we start with the contextual variable(s) of interest.

1. Add the contextual variable to the baseline model and see if there is a significant
relationship with the outcome variable. If not the hypothesis is refuted. However,
its effect could be masked by differences in the composition of the population of
neighbourhoods. Hence, it might be worthwhile checking what happens to the
effect if individual-level variables are added.

2. Add the relevant individual-level variables to the previous model and see whether
the effect of the contextual variable stays the same or disappears. If there was an
effect of the contextual variable and that disappears when individual variables are
taken into account, then the apparent contextual effect was the result of differ-
ences in the composition of the neighbourhood populations.
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3. In hypotheses testing research, you might also have specific ideas about cross-
level interactions. Your hypothesis might be that the effect of social capital is
stronger for people who have lived in their neighbourhood for a longer time. We
would assume that the length of residence (an individual level variable) would
already have been included in the model in step 2, in which case the next step
would be to include the cross-level interaction between neighbourhood social
capital (the contextual variable) and length of residence. It is not necessary first to
fit a random slope model to test whether the effect of length of residence varies
randomly between contexts.

Context and Composition

In Chap. 7 we discussed a very common modelling strategy, aimed at disentangling
contextual effects and compositional effects. As is clear from the previous section,
an attempt to make a distinction between contextual and compositional influences is
a goal common to many modelling strategies in multilevel research.

Modelling the Effects of Higher Level Characteristics

In Chap. 3 we defined higher level units as units that can be sampled. Sample size is
thus an issue not only at the lowest level but also at the higher levels. We have many
lower level units nested within fewer higher level units. The number of higher level
units is often restricted by the fact that in reality they form an entire population.
Think of neighbourhoods within a city; the number of neighbourhoods is restricted
by the size of the city and perhaps the administrative definitions with which we are
working. The number of EU member states is equally restricted at any one time to
the number of countries that are in the EU. Another restriction is more pragmatic;
when the higher level units are organisations, such as schools, and you want to study
students nested in schools, the effort needed to include more schools in a study is
often considerable.

The number of higher level units has consequences if the focus of the research is
on the effect of higher level characteristics. This number should then be sufficient to
estimate a mean, a variance and the effect of the relevant variables of interest at that
level. As a rule of thumb, the number of units that you need is approximately ten
times the number of variables you want to include in the analysis. This means that if
you want to include ten variables to test your hypothesis about the characteristics of
hospitals and how they influence an outcome at patient level, you would need at least
a hundred hospitals. Alternatively, if you want to analyse the effect of characteristics
of the healthcare systems of EUmember states on access to healthcare, the maximum
number of higher level units (at the time of writing) is 28. As such, the number of
country-level variables that could be included in an analysis is only two or three.
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This limitation on the number of contextual variables that can be included in an
analysis has consequences for the design of studies and for the modelling strategy.
For the design of a study where the effects of higher level characteristics are
important, it is more important to increase the number of higher level units (if this
is possible) than the number of lower level units (Snijders and Bosker 2012). In
terms of a modelling strategy, this means that we have to be careful not to include too
many independent higher level characteristics at the same time. In the example of the
analysis of 28 EU member states in which we wish to study the effect of healthcare
systems on access to healthcare, we would probably want to include one confounder,
such as the wealth of a country, along with one characteristic of the healthcare
system at a time. We could repeat the analysis several times using each relevant
healthcare system characteristic individually and compare the results. We would not
be able to analyse the effects of several characteristics at the same time. This also
excludes the possibility of adding a contextual variable with several categories since
this would be operationalised by introducing a series of dummy variables. We would
consequently have to be more careful in formulating our conclusions which would
be based more on weighting the results against our hypotheses and background
knowledge than on strict statistical criteria.

In Chap. 10 we will give some examples of studies where the authors were not
sufficiently aware of this problem and, as a consequence, introduced more contextual
variables than the available number of higher level units could support.

Random Effects at Higher Levels

In all of the models considered in this book, we have assumed that the higher level
effects are all normally distributed. (This may be after an appropriate transformation;
for example, in a multilevel logistic regression, we assume that the log odds ratios
associated with membership of the higher level units are normally distributed.) This
assumption is convenient but not always appropriate. Austin (2005, 2009) has
considered the impact of this assumption and found that an inappropriate assumption
of normality at the higher level does not appear to have implications for the
estimation of fixed effects, but it may lead to biased or incorrect estimates of the
variances. This then has consequences for assessment of the importance of different
levels in a model or for studies in which the residuals themselves are of some
importance (such as studies of institutional performance).

One way in which the distribution of higher level residuals may appear
non-normal is due to the presence of outliers. Multilevel data may contain outliers
in the same way that the data for traditional regression models may be outlying; the
difference is that in a multilevel model, the outliers may be at any level in the model.
Methods have been developed for the detection and treatment of outliers at higher
levels (Langford and Lewis 1998; Lewis and Langford 2001). These essentially rely
on including a fixed effect for a context regarded as outlying; this removes the
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impact of this unit on the estimation of the higher level variance whilst including the
lower level units (such as individuals) in the analysis.

Interpreting the Results in the Light of Common
Assumptions

As we said at the beginning of this chapter, a number of assumptions are the same as
in single-level regression analysis. We will briefly illustrate this with an example of a
hypothetical intervention study. We have chosen the example of an intervention
study to be able to address some assumptions that are typically made in such studies.
The example is the evaluation of an intervention to reduce BMI. Individuals have
been randomised to the intervention and control groups, and we have pre- and post-
intervention measures for everyone in the study. Individuals are nested within
communities (e.g. neighbourhoods or schools). A slightly different study design of
a community intervention would be possible, in which it would be the communities
(and all individuals within them) rather than the individuals that would be
randomised to the intervention and control groups. The structure of the data is that
of a three-level model with measurement occasions nested in individuals, clustered
within areas (a repeated measures design). To make the intervention and control
groups comparable, we adjust for age, sex and educational status (basic/higher).
Algebraically the model can be written as shown in Eq. (9.1).

yijk ¼ β0þβ1x1jkþβ2x2jkþβ3x3jkþβ4x4jkþβ5x5ijkþβ6x4kx5ijkþ v0kþu0jkþ e0ijk

v0k �N 0,σ2v0
� �

u0jk �N 0,σ2u0
� �

e0ijk �N 0,σ2e0
� �

ð9:1Þ

Here yijk is the primary outcome, BMI, at measurement occasion (pre- or post-
intervention) i for individual j in community k. x1jk, x2jk and x3jk are individual-level
covariates relating to the person’s baseline age, sex and educational status; these do
not change between measurement occasions. x4jk denotes whether the individual is in
the intervention (coded 1) or control (coded 0) groups, and x5ijk indicates whether the
measurement occasion was pre- (coded 0) or post- (coded 1) intervention. The term
x4jkx5ijk is then the cross-level interaction picking out the post-intervention measure-
ment occasion in the intervention group. The coefficient associated with this term,
β6, is the parameter of interest, indicating the success or otherwise of the interven-
tion. In addition to the individual characteristics, the model takes into account that
there may have been a baseline difference in BMI between the intervention and
control groups and that there may be a population change in BMI between the two
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measurement occasions; neither of these events should mistakenly be ascribed to an
intervention effect. We also model the variances at the three levels.

First of all we will consider some assumptions underlying the fixed part of the
model that was used to make the groups comparable. For these assumptions, it is
irrelevant whether we are discussing an intervention study or an observational study.
The parameter estimates are given in Table 9.1.

One assumption made in the model described in Eq. (9.1) is that the effect of age
on BMI is linear for all ages. This is an assumption that can be tested easily by
comparing this model with one where we also add age squared or a model where we
recode age into a number of categories. Another assumption is that the effect of age
on BMI is the same regardless of sex or education level and that the effect of
education is the same for men and women. These assumptions can be tested by
using interaction terms between these variables. Alternatively, if the study is
powered for this, we could consider stratified analyses by key variables such as
gender. Often a stratified analysis will give you a better impression of the size and
direction of the interaction effect and whether this differs between groups. (This is at
the cost of power; there will obviously be fewer observations in each of the strata
than in the overall analysis.) However, as the stratified analysis takes more space in
the tables, you may decide to report the version with the interaction effect and use the
stratified analysis as a valuable step in your own interpretation of the interaction.

Next consider the impact of the intervention itself. An assumption here is that the
intervention is equally effective regardless of age, sex or education level. It is
conceivable that, and may be worth testing whether, the intervention is differentially
effective for older and younger people, men and women or more and less educated
people. Knowing not just whether an intervention has worked but for which groups it
appears to be more or less successful is important if we subsequently want to
improve or tailor the intervention and if we are interested in the impact of the
intervention on inequalities. We can examine differential impacts on subgroups by
introducing the appropriate interaction terms (between the intervention and the
subgroup of interest) into the model.

Table 9.1 Parameter
estimates for the evaluation of
a hypothetical intervention
on BMI

Parameter Coefficient (SD)

Fixed part

Constant 25.155 (0.052)

Age �0.510 (0.015)

Male 0.315 (0.042)

Higher education �1.015 (0.042)

Intervention �0.048 (0.044)

Time ¼ post 0.018 (0.018)

Intervention � (time ¼ post) �0.195 (0.025)

Random part

Community-level variance 0.090 (0.019)

Individual-level variance 1.961 (0.044)

Measurement occasion variance 0.396 (0.008)
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There are also some assumptions implicit in the way the random part of the model
has been formulated. In this model we have assumed that the variance in BMI is the
same regardless of age, sex and educational level. This can be tested by estimating
the variances separately for age groups, men and women and educational categories.
Another assumption is that the variance is unchanged by the intervention. The model
that was estimated, shows a decrease in mean BMI in the intervention group, but it is
possible that the intervention has changed the variance. An example would be if the
intervention had a greater impact on those with higher BMI; this would result not just
in the decrease in BMI seen in the intervention group following the intervention but
also a reduction in variance in the same group.

All of the above assumptions may be reasonable and may be supported by the
data. But if the data does not support these assumptions, then fitting the alternative
models may impact on estimates in unpredictable ways. In an example such as this,
we have an extremely important single parameter—the intervention effect—and
cannot say with certainty that changes to the model would not alter the magnitude
or statistical significance of this estimate. In short, it is unlikely that your modelling
strategy will test every aspect of your model, but it is important that you are aware of
your underlying assumptions.

Conclusions

The modelling strategy for a multilevel analysis begins with the research question
and hypothesis that the study is addressing. Simplifications to the model that you are
fitting will help you to gain a better understanding of the data and an idea of your
answer, with further detail being provided by the complexity that you subsequently
add. There will inevitably be assumptions underlying any choices that we make
during the construction of a modelling strategy, including which models we consider
and which we do not. Whilst it may not be necessary formally to test every
assumption, it is important that we are aware of the assumptions that we have
made and what their consequences might be—even if the answer is that their
consequences may be unpredictable.
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