
Chapter 5
Graphs and Equations

Abstract Although we have introduced the conceptual basis for multilevel analysis
in earlier chapters, it remains a statistical method; this chapter introduces the
statistical principles of MLA. This is done primarily through algebraic notation,
and the equations are linked to graphs where appropriate to help with the interpre-
tation. We build up the chapter from a single-level regression analysis to a random
intercept model and finally to a random slope model. We introduce the idea of
intraclass correlation and provide visual examples of typical patterns of covariance
between the intercept and slope residuals. We look at simple extensions to a third
level and the use of complex variance functions to account for heteroscedasticity,
and finally we draw comparisons between fixed effects and random effects models.

Keywords Multilevel analysis · Single-level regression · Random intercept model ·
Random slope model · Intraclass correlation · Variance · Covariance

Multilevel analysis is, as we have discussed, a form of regression analysis that is
appropriate when the assumption of independence of observations that underlies
ordinary regression models does not hold. The reason for this assumption being
violated is the influence of the context; Chap. 4 has introduced a variety of contexts
that may be important for our analyses and which may extend beyond ‘typical’
contexts such as neighbourhood, hospital or school to include, for example the
individual (for repeated measures or multiple responses) or time (for repeated
cross-sections).

We start this chapter with the basic, single-level, linear regression model and
show how we can change this into a multilevel model by adding the context. As the
chapter progresses, we cover a range of multilevel models and introduce some of the
commonly encountered ideas and terminology such as the intraclass correlation
coefficient and random slopes. Where possible we link these ideas to graphs as an
aid to interpretation.

The chapter works through the random intercept and random slope models based
on the example introduced in Chap. 3 concerning an investigation of the relationship
between the time spent on exercise each week and certain individual and contextual
characteristics. In this example, we have data that were collected in a health
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interview survey. The respondents’ addresses were geo-coded, and in this manner,
the respondents were allocated to neighbourhoods in the study area. We provide the
algebraic notation of the regression equations and introduce the basic terminology
cumulatively as we progress. For reference, this terminology is summarised in
Box 5.3 at the end of this chapter.

Ordinary Least Squares (Single-Level) Regression

Using a single-level regression model, we would regress the dependent variable, the
time spent exercising each week, on one or more independent variables ignoring the
neighbourhood in which people live, and how this may affect our outcome. Consider
a regression including only the respondent’s age; the regression equation is

yi ¼ β0 þ β1x1i þ e0i ð5:1Þ

In this equation, yi is the dependent variable. Note that for the single-level regres-
sion model, we do not pay any attention to the area of residence of each individual
and, as such, the dependent variable is uniquely identified by the subscript i. β0 is
used to denote the intercept—the number of minutes spent exercising by the reference
group: respondents for whom all independent variables take the value 0. (The value
0 may not always be the best choice; in terms of respondent’s age, for example we
would not be interested in the time spent exercising by respondents who are 0 years
old. To overcome this problem, we may choose to centre some of the independent
variables such as age, so that the intercept takes on a more meaningful value, such
as the time spent exercising by a respondent of average age. See Chap. 11 for an
example of this in practice.) x1i is the independent variable, in this case the age of
respondent i. β1 indicates the average change in time spent exercising per week
associated with a 1 year increase in age. e0i is the residual or error term.

This equation is illustrated graphically in Fig. 5.1. The time spent exercising tends
to decrease with increasing age; the extent to which there is a decrease is determined
by the slope β1. The error term e0i is the vertical distance between the regression line
and each observation; in other words, it is the difference between the time that we
would expect individual i to spend on exercise given their age, β0 + β1x1i, and the
time that they actually spent on exercise, yi.

Equation (5.1) is accompanied by an important assumption about the residuals
e0i namely that they are identically and independently distributed and can be
characterised by a normal distribution with mean 0 and variance σ2e0.

e0i � N 0, σ2e0
� � ð5:2Þ

In this equation, N indicates that the residuals are assumed to follow a normal
distribution with zero mean and variance σ2e0.
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As we described in Chap. 3, this error distribution is often seen as being nothing
more than a nuisance; it is, after all, the part which cannot be explained by our
model. But the assumption that the residuals are independent of each other is the one
that we are in danger of violating if there is a level missing from our model—
neighbourhood in this example. This leads us to the random intercept model.

Random Intercept Model

In a random intercept regression model, we include an effect for each area that
impacts on all individuals in that area equally, regardless of their age.

yij ¼ β0 þ β1x1ij þ u0j þ e0ij ð5:3Þ

In this equation, the new terms introduced to Eq. (5.3) over and above those in
Eq. (5.1) are as follows. yij is our dependent or response variable: the outcome for
individual i living in neighbourhood j, the number of minutes per week spent
exercising. Our survey respondents are numbered from i ¼ 1, . . ., N and each lives
in one neighbourhood j ¼ 1, . . ., J. There are nj respondents in neighbourhood j so
N ¼PJ

j¼1nj . xpij are the independent or explanatory variables, again measured on
individual i in neighbourhood j. The subscript p is used simply to distinguish
between the different variables; for example x1ij might be the individual’s age in
years and x2ij a dummy variable indicating the subject’s sex (1 ¼ male, 0 ¼ female).
xpj are also independent variables, but these are measured at the contextual or
neighbourhood level; that is, they take the same value for all individuals living in
neighbourhood j. These variables may be directly observed or measured at the
neighbourhood level; for example, x3j may be the proportion of the surface area of

yi = β0 + β1x1i + e0i 
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Fig. 5.1 Ordinary least
square regression
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neighbourhood j that is characterised as being ‘green space’. Alternatively, the
contextual variables may represent an aggregation of individual measures; x4j may
be the average age of the respondents in neighbourhood j.

βp is the regression coefficient associated with xpij or xpj. So β1 would indicate the
average change in time spent exercising per week associated with a 1-year increase
in age and β2 would show the average effect of being male on the time spent
exercising (relative to that for the baseline category, female, for which x2ij ¼ 0).
u0j is the estimated effect or residual for area j. This is the difference that we expect to
see in the time spent exercising for an individual in neighbourhood j compared to an
individual in the average neighbourhood, after taking into account those (individual
or neighbourhood) characteristics that have been included in the model. The 0 in the
subscript denotes that this is a random intercept residual, a departure from the overall
intercept β0 applying equally to everyone in neighbourhood j regardless of individ-
ual characteristics. e0ij is the individual-level residual or error term for individual i in
neighbourhood j.

Figure 5.2 illustrates this equation graphically. As in Fig. 5.1, the time spent
exercising for someone living in an average area is shown as the heavy line, and this
relationship is determined by just the person’s age x1ij. The part of Eq. (5.3)
involving the β coefficients, β0 + β1x1ij, is called the fixed part of the model because
the coefficients are the same for everybody; the residuals at the different levels,
u0j + e0ij, are collectively termed the random part of the model as these values
depend on the individual and neighbourhood. The additional effect for inhabitants of
area j, u0j, applies to all inhabitants of the area regardless of age; people in the area
illustrated in Fig. 5.2 tend to do more exercise than average. The time we would
expect individual i to spend on exercise now depends on their area of residence and

yij = β0 + β1x1ij + u0j + e0ij 
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Fig. 5.2 Random intercept model
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is given by β0 + β1x1ij + u0j; this is shown in Fig. 5.2 as the grey line. The vertical
distance between the two lines, u0j, is constant (i.e., it does not depend on age).

In Fig. 5.2 we can see that the vertical distance from the observed time that person
i in area j spends on exercise, yij, and the average time that someone of this age would
spend on exercise, β0 + β1x1ij, is now broken down into a part that is due to the
difference between area j and the average, u0j, and a part that is due to the difference
between individual i and the average for area j, e0ij. Both the components have their
associated distributions and variances:

u0j � N 0, σ2u0
� �

e0ij � N 0, σ2e0
� � ð5:4Þ

In this equation, σ2u0 is the variance of the neighbourhood-level intercept residuals
u0j.

In Eq. (5.3) the fixed part of the model β0 + β1x1ij does not vary given a person’s
age x1ij. The total unexplained variation in the outcome (adjusted for age) is therefore
equal to the variance of u0j + e0ij or σ2u0 þ σ2e0; that is, some of the variation in time
spent exercising is due to differences between neighbourhoods and some is due to
the differences between individuals within neighbourhoods. Figure 5.2 shows how
the time spent exercising varies with age on average across all areas (black line) and
also in area j (grey line). Figure 5.3a shows the relationship for all areas in our
sample; each area is shown as a separate line. The variability between areas is then
the extent to which these lines are dispersed around the average; if the lines are close
together, then there is little variation between neighbourhoods and σ2u0 is small.
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Fig. 5.3 Random intercept model showing (a) variation between neighbourhoods and (b) variation
between individuals within a single neighbourhood
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Figure 5.3b shows the variability of the observations made on respondents living in
area j; these tend to be higher than average (given the individuals’ ages) since the
area mean is clearly higher than the population mean shown in Fig. 5.3a. However,
there is some variability in the tendency to exercise. Some people spend more time
exercising than the average for that age in the area whilst others spend less than
average—indeed, some spend less than the population average as there is consider-
able scattering around the average for area j. The variability between individuals
within areas is then the extent to which the observations are scattered around the
average for each area; if the observations are close to the line, then there is little
variation within neighbourhoods and σ2e0 is small.

The proportion of the total variance that is due to differences between
neighbourhoods is the intraclass correlation coefficient ρI:

ρI ¼
σ2u0

σ2u0 þ σ2e0
ð5:5Þ

ρI is a measure of the similarity between two people from the same neighbourhood
and will take a value between 0 and 1 inclusive. If there were no variation between
the area effects then all of the u0j would be equal (to zero) and σ2u0 would be zero
meaning that ρI ¼ 0. If there were no variation within neighbourhoods (following
adjustment for age), then the time spent exercising would be determined exactly by
age and neighbourhood alone. In this case, σ2e0 would be 0 and so we can see from
Eq. (5.5) that ρI ¼ 1; the exercise times of individuals from the same area would be
perfectly correlated. The size of ρI varies between studies and is very important for
power calculations; we return to a discussion of this in Chap. 6. Typically we might
expect somewhere around 2–5% of the total variation to arise due to differences
between contexts although there are notable exceptions in public health and health
services research when this proportion might be higher. Clustering within families or
households tends to be quite strong giving large intraclass correlation coefficients;
Cardol et al. (2005) found that 18% of the variance in the frequency of medical
contacts was attributable to the family, and Sacker et al. (2006) found 13–21% of the
variation in poor general health and 20–34% of the variation in limiting illness was
attributable to differences between households. For studies in which the data com-
prise repeated measures on individuals a large proportion of the variability is often at
the individual level (which is not the lowest level in a repeated measures design—see
Chap. 4). For example, Lipps and Moreau-Gruet (2010) found that over 90% of the
total variance in body mass index was at the individual (as opposed to measurement
occasion) level in a repeated measures analysis.

The model described by Eqs. (5.3) and (5.4) is the basic random intercept or
variance components model. These terms are used interchangeably which might be
confusing when reading studies that report multilevel analysis. There is, however, a
glossary of the terminology used in MLA (Diez-Roux 2002) which is useful to have
at hand when reading papers that use this technique. As with the single-level
regression model, there are certain implicit assumptions regarding the residuals.
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As well as assuming that the residuals at each level are independently and identically
distributed, the model is built on the assumption that the neighbourhood residuals u0j
are independent of the individual level residuals e0ij and that they are uncorrelated
with all of the independent variables (in this case x1ij). In a multilevel model
described by Eqs. (5.3) and (5.4), it is possible that there will be a correlation
between the independent variable x1ij and the neighbourhood residuals u0j. This
can be avoided by including the group (contextual) mean x2j ¼ ∑ix1ij, so that
Eq. (5.3) becomes

yij ¼ β0 þ β1x1ij þ β2x2j þ u0j þ e0ij ð5:6Þ

Random Slope Model

From Fig. 5.3a you will note that whilst the intercept—the point at which the lines
cross the vertical axis—varies between neighbourhoods, the slope is the same in all
areas. The lines are parallel, indicating that a fixed increase in age is associated with
the same average decline in time spent exercising in all areas. A random slope model
allows the relationship between the independent and dependent variables to differ
between contexts; we enable this by including an area effect for the slope (the
relationship between time spent on exercise and age) in addition to the area effect
for the intercept.

yij ¼ β0 þ β1x1ij þ u0j þ u1jx1ij þ e0ij ð5:7Þ

The new term in this equation is u1j. This is the slope residual for neighbourhood
j that is associated with the independent variable x1ij. Just as u0j denotes a departure
from the overall intercept β0, u1j indicates the extent of a departure from the overall
slope β1 in a random slope model. In general, there may be a residual upj associated
with any of the independent variables xpij or xpj. However, not every slope will be
random and so there will not be slope residuals for every regression coefficient.

The fixed part of this model is, as before, β0 + β1x1ij, and this is shown as the black
line in Fig. 5.4. The random part is now given by u0j + u1jx1ij + e0ij which clearly
depends on the individual’s age x1ij. The grey line in Fig. 5.4 is determined by the
fixed part together with both area effects (the intercept residual u0j and the slope
residual u1j), i.e. β0 + β1x1ij + u0j + u1jx1ij. For the selected area, there is still a
tendency to exercise more than average; the light line in Fig. 5.4 is consistently
above the heavy line. But unlike the random intercept model in Fig. 5.2, the distance
between the two lines in Fig. 5.4 varies according to the person’s age; the increased
mean time spent exercising in area j is greater at younger ages than at older ages.
This means that the relationship between time spent exercising and age differs
between areas. On average, a 1-year increase in age is associated with a change of
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β1 in the time spent exercising, but in area j, each additional year is associated with a
difference of β1 + u1j minutes.

Just as the intercept residuals u0j have an associated variance (σ2u0 ), the slope
residuals u1j also have a variance (σ2u1). What is new, however, is the introduction of
a covariance (σu01) between the intercept residual and the slope residual for
each area.

u0j

u1j

" #
� N

0

0

" #
,

σ2u0 σu01

σu01 σ2u1

" # !

e0ij � N 0, σ2e0
� � ð5:8Þ

The covariance is a measure of the extent to which two variables change in the
same direction. We can use the covariance between u0j and u1j, along with the two
variances, to calculate the correlation between the two:

ρu01 ¼ σu01ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2u0σ

2
u1

p ð5:9Þ

The unexplained variance in Eq. (5.7) is now

var u0j þ u1jx1ij þ e0ij
� � ¼ σ2u0 þ x21ijσ

2
u1 þ 2x1ijσu01 þ σ2e0 ð5:10Þ

The term involving the covariance σu01 takes into account the fact that the
intercept and slope residuals, u0j and u1j, are not independent of each other. The
covariance matrix in Eq. (5.8)—the variances σ2u0 and σ

2
u1 and the covariance σu01—

conveys a variety of information about the different relationships between time spent
exercising and age for the neighbourhoods in our study. Figure 5.5 shows how
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various patterns in the covariance matrix can be translated into different graphs
illustrating these relationships. The fixed part of the model β0 + β1x1ij is the same in
each graph, and so the black line—denoting the relationship in the average area—
does not change. Firstly, Fig. 5.5a shows that if the variance of the slope is very small
or zero then we are back to a random intercept model. The lines for the
neighbourhoods are parallel to each other since the relationship between exercise
and age does not vary between contexts. Figure 5.5b illustrates a moderate slope
variance and a positive covariance between the intercept and slope residuals for each
area. In general, areas with a large (small) intercept residual u0j will tend to have a
large (small) slope residual u1j, meaning that areas with intercepts higher than
average will tend to have slopes that are more positive (or less negative) than
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Fig. 5.5 Random slope model with differing covariance matrices showing (a) small (or zero) slope
variance; (b) moderate intercept and slope variance, positive covariance; (c) moderate intercept and
slope variance, negative covariance; (d) moderate intercept and slope variance, small (or zero)
covariance; (e) large intercept variance, moderate slope variance, positive covariance; and (f)
moderate intercept variance, large slope variance, positive covariance
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average. If the inhabitants of an area tend to do more exercise than average this will
usually be the case at all ages, but this benefit is most pronounced at older ages. This
leads to the general pattern of lower variability between areas at younger ages and
increased variability at older ages. Equation (5.10) shows how the unexplained
variance will increase with age if the covariance σu01 is positive. In Fig. 5.5c the
covariance between the intercept and slope is negative, meaning that areas with
higher intercepts tend to have lower (or more negative) slopes. This leads to a pattern
of increased variability between neighbourhoods at young ages and decreased
variability at older ages. Figure 5.5d illustrates a case in which the covariance
between the intercept and slope residuals is very small or zero (centred around age
50 years: see Box 5.1); in such a case, there is no relationship between the two.
Unlike Fig. 5.5b, c, the knowledge that the mean time spent exercising at age
50 years in one particular area is higher than average does not impart any further
information about whether the slope will be flatter or steeper than average. The lines
for the neighbourhoods cross quite randomly. In Fig. 5.5e, we can see the impact of
increasing the intercept variance for the model seen in Fig. 5.5b, and Fig. 5.5f
demonstrates the effect of increasing the slope variance again from that seen in
Fig. 5.5b. The former tends to increase the average effect or distance from the heavy
line (the average area) whilst the latter tends to increase the difference between areas
in the strength of the relationship between exercise and age.

The interpretation of the covariance given above is a slight simplification since
this actually depends on the centring of the independent variable. This means that the
size, and even the sign, of the covariance can change if the independent variable is
centred around a different value although neither the data nor the pattern of conver-
gence or divergence of areas will change. See Box 5.1 for an explanation.

Box 5.1 The Effect of Centring on the Covariance
In the equations in this chapter, x1ij is the age of individual i in neighbourhood
j, taking values dependent on the sample. In Eq. (5.1), β0 is the intercept and
denotes the time spent on exercise for an individual for whom all covariates are
equal to zero; in other words, this is the mean time spent on exercise by a
person who is 0 years old. Since this is almost certainly outside the range of
our data, we can choose to centre age around another value as an aid to
interpretation. To centre around age 50 years, we would replace x1ij by
x�1ij ¼ x1ij � 50, so that the random slope model in Eq. (5.7) becomes

yij ¼ β�0 þ β1x
�
1ij þ u�0j þ u1jx

�
1ij þ e0ij

The new intercept, β�0, now indicates the mean time spent on exercise by a
50-year old. The estimate of the slope, β1, has not changed and nor have the
slope residuals u1j. The u�0j are the random intercept residuals which now
represent area effects for 50-year olds (as opposed to the u0j which were the

(continued)
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Box 5.1 (continued)
area effects for those aged 0 years). You can see from the random slope model
in Fig. 5.4 that magnitude of the area effect, or the distance from the grey (area-
specific) line to the black (population) line, differs by age. So changing the
intercept in a random slope model also alters the area-specific intercept
residual.

Since the intercept residuals change if we change the intercept, their
variance also changes and so does the covariance between the intercept and
slope. For a centred model, the level 2 variances and covariances given in
Eq. (5.8) become

u�0j
u1j

� �
� N

0

0

� �
,

σ�2u0 σ�u01
σ�u01 σ2u1

" # !

It is straightforward to show that in this example σ�2u0 ¼ σ2u0 þ 100σu01 þ
2500σ2u1 and σ�u01 ¼ σu01 þ 50σ2u1. The implication of this is that the centring
of a variable with a random coefficient will change the covariance and
therefore the correlation between the intercept and slope residuals.

The interpretation of random slopes will vary according to the substantive nature
of the research but always depends on the nature of the covariance. Damman et al.
(2011) give a series of examples of random slope models examining the relationship
between healthcare experiences and patient characteristics in a sample of patients
drawn from 32 family practices in the Netherlands. They showed a negative covari-
ance between the practice-level intercept and the residual for the patient’s age,
indicating less variability between practices for older patients; similarly variation
decreased with increasing patient health status. Although the relationship between
educational level and patient experiences could be seen to vary across practices,
there was no correlation between the average experience and the slope across
educational level. Finally, a positive correlation between the practice-level intercept
and the residual for the patient’s ethnicity suggested greater variation in experiences
between practices for migrant patients than for those from a Dutch background.

Three-Level Model

The two-level random intercept model described by Eqs. (5.3) and (5.4) can easily be
extended to include a third level. Assume that the J neighbourhoods are themselves
nested within K towns, and we believe it plausible that people’s exercise habits may
differ between towns as well as between neighbourhoods within towns. The time
spent exercising by individual i living in neighbourhood j of town k, yijk, then
includes an effect or residual for town k, v0k, and is given by

Three-Level Model 81



yijk ¼ β0 þ β1x1ijk þ v0k þ u0jk þ e0ijk ð5:11Þ

The residuals at the three levels are assumed to be independently normally
distributed:

v0k � N 0, σ2v0
� �

u0jk � N 0, σ2u0
� �

e0ijk � N 0, σ2e0
� � ð5:12Þ

It is now possible to allow the coefficient of age to vary across towns instead of
(or as well as) neighbourhoods by introducing a slope residual v1k in the same
manner as we did for the neighbourhood level above.

Heteroscedasticity

In linear multilevel models, as with single-level models, we can allow for
heteroscedasticity (also known as complex level 1 variation). The two-level random
intercept model described by Eqs. (5.3) and (5.4) makes the assumption that the level
1 variance σ2e0 is constant and independent of the person’s age x1ij. It may be that this
assumption is too simplistic and inappropriate, and instead of the observations being
randomly distributed around the line for each area as in Fig. 5.3b, we find that there
is more variability in the amount of exercise undertaken by older respondents. Such a
scenario is illustrated in Fig. 5.6.

Heteroscedasticity of this kind can be accommodated by including a further
residual term at level 1, e1ij, in a manner analogous to the inclusion of a random
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Fig. 5.6 Random intercept
model showing variation
between individuals within
neighbourhoods, with the
variance dependent on the
respondent’s age
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slope at level 2: it is only the interpretation that is different. Equations (5.3) and (5.4)
now become:

yij ¼ β0 þ β1x1ij þ u0j þ e0ij þ e1ijx1ij ð5:12Þ

and

u0j � N 0, σ2u0
� �

e0ij

e1ij

" #
� N

0

0

" #
,

σ2e0 σe01

σe01 σ2e1

" # !
ð5:13Þ

The unexplained variation in the outcome is now given by the variance of the
random part u0j + e0ij + e1ijx1ij which is given by σ2u0 þ σ2e0 þ 2x1ijσe01 þ x21ijσ

2
e1 .

Although the variance between areas is constant, the variance between individuals
within areas differs according to the individual’s age.

In a single-level regression model, ignoring heteroscedasticity in the data will
result in unbiased parameter estimates, but the standard errors associated with these
estimates may be incorrect meaning that tests of significance may be misleading. In a
multilevel regression model, the failure to model heteroscedasticity that is present in
the data may result in the erroneous detection of a random slope (Snijders and
Berkhof 2008).

Fixed Effects Model

We introduced the fixed effects model as an alternative to MLA in Chap. 3 and show
its algebraic representation here to highlight the differences between the multilevel
and fixed effects approaches. Since the fixed effects model introduces a series of
J � 1 dummy variables to model the effect of the neighbourhoods it is an extension
of the single level models described by Eqs. (5.1) and (5.2). We let xpi take the
value 1 if individual i lives in neighbourhood p, p ¼ 2, . . ., J, and 0 otherwise.
Equation (5.1) then becomes

yi ¼ β0 þ β1x1i þ
XJ
p¼2

βpxpi þ e0i ð5:14Þ

The parameters associated with the dummy variables, βp, now denote the differ-
ence between the mean time spent exercising in neighbourhood p compared to
neighbourhood 1 (the baseline). There is only one term in the random part of
Eq. (5.14)—e0i—as no assumptions are made about the distribution of the area
effects βp.
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When we introduced the fixed effects model in Chap. 3, we mentioned that such
models may change the interpretation of the (fixed part) regression parameters. This
is because under the fixed effects model, the higher level units are regarded as
nuisance parameters and all associated contextual effects are removed from the
analysis. However, as described in Chap. 2 when considering the transformation
from micro-level to macro-level, the contextual variables available to us include the
mean of the characteristics measured at the individual level. The fixed effects model
effectively centres all our level 1 independent variables around their mean, so
Eq. (5.14) is more appropriately written as

yij ¼ β0 þ β1 x1ij � x1j
� �þXJ

p¼2

βpxpij þ e0ij ð5:15Þ

where x1j is the average of the x1ij for neighbourhood j. Whilst the parameter estimate
β1 in the multilevel models indicates the association between the time spent exercis-
ing and the individual’s age, in the fixed effects model β1 represents the association
between the time spent exercising and the extent to which an individual’s age differs
from the average age of respondents in their neighbourhood. These two effects, and
their interpretations, are not necessarily the same (Leyland 2010).

We have tried to ensure that we are internally consistent in terms of the algebraic
notation that we use in this book. However, some papers use alternative notations;
we describe a common alternative in Box 5.2.

Box 5.2 Alternative Notation Used in MLA
To a large extent the alternative notation used is a substitution of one letter or
symbol for another which is trivial if confusing. However, multilevel models
are sometimes broken down into separate equations representing distinct parts
of the model. This box details the equivalence of the notation that we use in
this book to that used by Diez-Roux (2002). We can expand the random slope
model given by Eqs. (5.7) and (5.8) to include a contextual variable x2j and the
cross-level interaction between the individual and contextual variables x1ijx2j:

yij ¼ β0 þ β1x1ij þ β2x2j þ β3x1ijx2j þ u0j þ u1jx1ij þ e0ij

The equivalent notation

Yij ¼ γ00 þ γ10Iij þ γ01Gj þ γ11IijGj þ U0j þ U1jIij þ εij

represents a substitution of γ00 for β0, γ10 for β1 and Iij for x1ij etc. and is also
sometimes written as

(continued)
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Box 5.2 (continued)

Yij ¼ b0j þ b1jIij þ εij

where

b0j ¼ γ00 þ γ01Gj þ U0j

b1j ¼ γ10 þ γ11Gj þ U1j

Rankings and Institutional Performance

The higher level residuals in multilevel models are also termed effects because, in
the simple case of a random intercept model, the residuals represent the estimated
effect of a higher level unit on all of the individuals (level 1 units) contained in that
higher level unit. If the levels in a model include an institution such as a care home,
school or hospital, then we might like to provide some comparison of institutions to
identify those that are performing well or poorly in comparison to their peers—a
“league table” of performance. Although the use of performance indicators requires
careful consideration and should not be adopted universally (Smith 1995), it is clear
that if they are to be used, then their construction should be methodologically sound
and that necessitates the use of MLA (Goldstein and Spiegelhalter 1996; Marshall
and Spiegelhalter 2001).

In a random intercepts model such as that identified by Eqs. (5.3) and (5.4), the
level 2 residual u0j is our estimate of the effect of institution j. As mentioned in
Chap. 3, the estimates of the u0j are shrunk towards zero, the mean for all hospitals.
The extent of this shrinkage is dependent on the number of observations that we have
for any given hospital. The u0j are not known with certainty, hence the need to
estimate them. They can typically be plotted together with a measure of uncertainty
such as 95% confidence intervals as shown in Fig. 5.7, previously shown as Fig. 2.5;
the smaller the confidence interval, the more certain we are about the estimate.
Hospital effects in this example comprise the hospital residual u0j added to the mean
score for all hospitals, and these are plotted in rank order from the hospital with the
lowest mean score (following adjustment for the patient’s age, sex, education and
physical and mental health) on the left to that with the highest score on the right.
Typically there is substantial overlap between the estimates for different hospitals as
is the case in Fig. 5.7, meaning that despite having a higher mean score, it is difficult
to say with any certainty that one particular hospital is better than a hospital a few
positions lower in the rankings.

The production of a measure of institutional performance following adjustment
for patient characteristics using a random intercept model can be illustrated by
Fig. 5.5a. Although the outcome varies according to the individual’s age, the
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hospital effect—the distance between the line for any particular hospital and the
fixed part of the model (the black line)—is the same for all ages. As a consequence
the ranking of the hospitals—the ordering of the lines from lowest to highest—is the
same at all ages. With a random slope model, this becomes more complicated;
Fig. 5.5d illustrates how the lines in a random slope model may cross each other
meaning that the ranking of hospitals will differ according to the patients’ age. In the
random slopes model defined by Eqs. (5.7) and (5.8), the random part of the model is
given by u0j + u1jx1ij; this is the composite residual and clearly varies according to
the age of the individual x1ij. So in a random slope model, it is unlikely that a single
league table would capture all of the differences in rankings, but effects can be
estimated (together with confidence intervals) and rankings produced for any
given age.

The use of 95% confidence intervals around the residuals in plots such as Fig. 5.7
enables the reader to gauge whether the estimate for any particular unit differs
significantly from the effect for the average level 2 unit. Depending on the intended
use of such a plot, it may make more sense to adjust the confidence intervals so as to
enable comparisons between pairs or sets of units; Goldstein and Healy (1995)
describe the mechanics of making such an adjustment.

Conclusion

This chapter has introduced the algebraic notation for the models that are detailed in
the rest of the book. The notation system is flexible in that it can readily be extended
to include some of the more complex models that were described in Chap. 4. There

Fig. 5.7 Hospital performance scores (and confidence intervals) for patients’ experience of their
room and stay (78 hospitals; 22,000 patients). (Source: Sixma et al. 2009)
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are three reasons for needing to understand the algebraic representation of multilevel
models. Firstly, it provides a concise means to describe your work in a manner that
would enable others to replicate your models. Secondly, it facilitates an understand-
ing of the models used by other researchers when reading literature relevant to your
own research. And finally, the algebraic elements introduced in this chapter are the
basic building blocks of multilevel regression models constructed using MLwiN, the
software used in the practical section of this book (Chaps. 11–13).

Box 5.3 Basic Terminology
This box summarizes the terminology for the various algebraic terms used in
the models in this chapter.

yij is the dependent variable: the outcome for individual i living in
neighbourhood j. Individuals are numbered from i ¼ 1, . . ., N and each lives
in one neighbourhood j ¼ 1, . . ., J. There are nj individuals from

neighbourhood j so N ¼PJ
j¼1nj.

xpij are the independent variables, measured on individual i in
neighbourhood j. The subscript p is used to distinguish between the variables.

xpj are independent variables, measured at the neighbourhood level; this
variable takes the same value for all individuals living in neighbourhood j.

β0 is used to denote the intercept.
βp is the regression coefficient associated with xpij or xpj.
u0j is the estimated effect or residual for area j. This is the difference in the

outcome for an individual in neighbourhood j compared to an individual in the
average neighbourhood, after taking into account those characteristics that
have been included in the model. The 0 in the subscript denotes that this is a
random intercept residual, a departure from the overall intercept β0 applying
equally to everyone in neighbourhood j regardless of individual
characteristics.

upj is the slope residual for neighbourhood j that is associated with the
independent variable xpij or xpj. Just as u0j denotes a departure from the overall
intercept β0, upj indicates the extent of a departure from the overall slope in a
random slope model.

e0ij is the individual-level residual or error term for individual i in
neighbourhood j.

σ2u0 is the variance of the neighbourhood-level intercept residuals u0j.
σ2up is the variance of the neighbourhood-level slope residuals upj.
σu0p is the covariance between the neighbourhood-level intercept residuals

u0j and slope residuals upj.
σ2e0 is the variance of the individual-level errors e0ij.
ρI is the intraclass correlation coefficient or the proportion of the total

variation in the outcome that is attributable to differences between areas.
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