
Chapter 4
Multilevel Data Structures

Abstract This chapter covers different data structures for which multilevel model-
ling is appropriate, giving examples of each. The first such structure is the strict
hierarchy, which may be the structure that first comes to mind when you think about
multilevel models: patients who are treated in hospitals or individuals living in
certain areas. Then there are multistage sampling designs and the evaluations of
community interventions, in which it is the study design that imposes the hierarchi-
cal structure on the data. There are studies that collect data over time, either through
repeated cross-sections or through repeated measures on an individual. This intro-
duces another hierarchy to the data. Such models can be expanded to include
multiple responses: more than one measure on each individual. These can be
analysed simultaneously and considered as being nested within individuals. Then
there are structures which are not strictly hierarchical. Firstly, the cross-classified
model, in which there is an overlap between different classifications meaning that
units at one level are not nested neatly within units at another level. Secondly, the
multiple membership model in which an individual at one level can be a member of a
number of different units at a higher level. Thirdly, the correlated cross-classified
model, used when cross-classifications are repeated over time. Finally, this chapter
briefly covers some further structures that can be modelled as multilevel structures.
The idea of including these further structures is to make the reader aware of the range
of models that could potentially be fitted to data rather than to cover them in detail.

Keywords Multilevel analysis · Hierarchy · Community interventions · Time
dependent data · Multiple responses · Cross-classified models · Multiple membership
models

In Chap. 3, we considered why levels were important and what might constitute a
level in your data. We now expand on these ideas as we show a wide range of data
structures that can be considered to be hierarchical and for which MLA is therefore
the appropriate form of analysis. We draw largely on the model classifications used
by Duncan et al. (1996) and Subramanian et al. (2003).
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Strict Hierarchies: The Basic Model

We start off with the strict hierarchies. A lot of the theory and practice of multilevel
modelling was developed in educational research in which the aim was to determine
whether the shared environment of the school that pupils attended contributed to
educational attainment, after adjusting for differences between schools in pupil
characteristics (Aitken and Longford 1986; Goldstein 1986). From there it is not a
big leap to consider a design of, for example, patients nested within hospitals
(Fig. 4.1). The hierarchies have a pyramid structure with patients at the lower level
(level one) nested within hospitals at the higher level (level two). The lowest level—
the patient level in this example—is the level at which the outcome is measured. The
reason for considering a multilevel model for these data is because the outcome for
an individual patient may be influenced by the hospital that they attend or, in general,
the shared context means that the patient outcomes may well be correlated, violating
the standard regression assumption of independence. So whilst there is variability
between patient outcomes, some of this variability may be due to differences
between hospitals. The ability to partition variation into that attributable to different
levels is an important feature of multilevel models. It is easy to think of examples of
these basic models, whether they be patients in hospitals, survey respondents in
residential neighbourhoods or GPs nested within practices.

We might have a three-level model in which the individuals at level one are the
persons for whom we have measured a response (Fig. 4.2). These individuals are
clustered within households at level two and then within neighbourhoods at level
three. The idea of all of these strict hierarchies is that we have many units at one level
nested within fewer units at the next level. Of course, the real world is not restricted
to two or three levels and nor need our multilevel models be; the inclusion of relevant
contexts may increase the number of levels that we need to consider. For example, in
a study of diagnostic practice style in Alberta, Canada, Yiannakoulis et al. (2009)
used a model including not only the individual physicians, for whom the outcome of
diagnostic style was recorded, and the facilities in which they worked but also the
municipality and census division—a strict hierarchy of four levels. And when
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Fig. 4.1 Basic two-level model
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Fig. 4.2 Basic three-level model
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exploring the consumption of tobacco in India, Subramanian et al. (2004) included
household, local areas, districts and states as relevant contexts for the survey
respondents in a five-level model.

It is important to note two features of these basic designs. Firstly, we do not need
to have a balanced design. Our sample does not need to have the same number of
patients in every hospital, or the same number of individuals in every household, or
the same number of households in every neighbourhood. Secondly, the examples
that we have discussed have the person as the lowest level, whether this is a patient,
survey respondent or physician. Although this is a common occurrence, and there
have been instances in previous chapters where we have referred to the individual
and level one as though the two were synonymous, this need not necessarily be the
case. For example, in a study of the variation in the use of drug-eluting stents (DESs)
in the treatment of coronary heart disease in Scotland, Austin et al. (2008) took into
account the fact that patients may have more than one lesion treated during a
procedure by using lesions as the lowest level (the level at which the outcome,
DES use, is measured) with these in turn nested within patients, operators and
hospitals. The use of a multilevel model in this instance took into account the
possible clustering of DES use within patients. And in periodontology, in a study
of factors influencing the closure of pockets observed at different sites around teeth,
Tomasi et al. (2007) used a hierarchy of sites within teeth within patients, patients
forming the highest level in this analysis.

It may also be the case that data are not available at the individual level but rather
are aggregated to an administrative area level. Such data restriction may reflect
issues surrounding data confidentiality, whereby agencies are unwilling to release
potentially identifiable individual data, or may just represent the constraints of
official data systems. Cavalini and Ponce de Leon (2008) undertook an ecological
analysis of the association between various socio-economic, political and healthcare
indicators and differing morbidity and mortality outcomes in Brazil. With no data on
individuals they used the levels of municipality, region and state; the outcomes were
all measured at municipality level. No matter whether the data we have refer to
individuals, aggregations of individuals or are collected within individuals, the
lowest level is always the level at which the outcome is measured.

Multistage Sampling Designs

For a multistage sampling design, the hierarchy is imposed during data collection.
The structure of the survey dictates the hierarchical design and straight away this
implies that MLA is necessary. If the survey design is a simple random sample,
individuals are selected from a sampling frame (for example, from a population
register or hospital discharge register). In a two-stage sample high level sampling
units are first selected, perhaps towns or municipalities, and then within each high
level unit a sample of individuals is drawn. Individuals are nested within the higher-
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level sampling units, and this nesting must be taken into account because of the
potential for contextual influences on any outcomes. The data hierarchy will appear
similar to those seen in Figs. 4.1 and 4.2. An example of such a design is the health
interview survey in Belgium, as described by Demarest et al. (2013).

The primary reason for using multistage sampling is usually related to cost. It may
be considerably cheaper to send interviewers to conduct several interviews within
selected municipalities than conducting single interviews across a number of munic-
ipalities. Statistical methods were developed to permit the analysis of data collected
from multistage samples; relatively simple sandwich estimators can be used which
correct the standard error of the estimates to take the clustered sample design into
account (Froot 1989). As described in Chap. 3, one effect of a multilevel data
structure is to reduce the effective sample size which will in turn increase standard
errors and confidence intervals. We return to the impact of clustering on power
calculations in Chap. 6. The use of techniques such as sandwich estimators assumes
that the hierarchical data structure is a nuisance—something for which we must
make allowances but in which we have no substantive interest. But this is an over-
simplification and is rarely the case; social epidemiology as a discipline is built on
such substantive interests as the reasons for variations in health between areas. This
is where we can start to explore the role of composition—who lives in the areas—
and the context, or what it is about the areas themselves that lead to differences in
outcomes between areas. These issues are explored further in Chap. 7.

Evaluating Community Interventions and Cluster
Randomised Trials

There are a number of reasons for conducting an intervention at the community
level; that is, when the community (as opposed to the individual) is the unit of
allocation or randomisation. These include the impossibility or impracticality of
introducing the intervention at an individual level (for example, in the case of water
fluoridation), the desire to avoid contamination between intervention and control
subjects, or as a cheaper and non-stigmatising means of targeting higher risk groups
(Leyland 2010). In health services research, a cluster randomised approach may be
the only appropriate means of evaluating certain interventions such as those relating
to organisational change (Campbell and Grimshaw 1998). But whatever the rationale
underlying the design of the study, if the intervention is at the group level and
outcomes are measured at the individual level, then the data are hierarchical and
must be analysed using MLA (Koepsell et al. 1992). Sample size or power calcula-
tions for cluster randomised trials differ from those for standard trials and are
covered in Chap. 6.
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Designs Including Time

We can think of two different types of designs including time: repeated cross-
sections and repeated measures or panel data (Duncan et al. 1996; Subramanian
et al. 2003). A repeated cross-sectional design might be used as a means of assessing
hospital performance and how that changes over time. In such a case the hospitals
form the highest level, and within each hospital every year data are collected relating
to patient outcomes as a measure of that hospital’s performance. The ambition is to
use these data to learn how each hospital performs in comparison to its peers and
how the performance of each hospital is changing over time. Since the outcomes are
at the patient level, the patient forms the lowest level in the hierarchy. Figure 4.3
shows the nesting of patients within years, and years within hospitals, in a three-level
model. Dee (2001) used a repeated cross-sectional design to investigate the impact of
(economic) cyclical state-level income effects on individual alcohol consumption
through the study of repeated cross-sectional surveys of individuals nested within
states of the USA. As with previous models we have no requirement for a perfectly
balanced data set and so there is no need for our samples to include the same number
of patients every year. Moreover, we can include hospitals for which we do not have
data in every year. This will come as a relief to those familiar with the changing
patterns of health provision and the idea that hospitals may close or open during a
period of data collection.

The repeated measures or panel design is similar to the repeated cross-sectional
design except that the same individuals are observed on different occasions. This
means that the outcome is not measured at the level of the individual but at the level
of the measurement occasion nested within the individual. The outcome still refers to
the individual but may differ from one moment in time to another. Figure 4.4
illustrates a study in which outcomes on individuals are assessed on an annual
basis and, in this example, the individuals themselves are clustered within
neighbourhoods. This means that we can analyse longitudinal data in a multilevel
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Fig. 4.4 Repeated measures or panel design
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Fig. 4.3 Repeated cross-sectional design
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framework by taking into account the fact that measurement occasions are nested
within individuals. In addition to any correlations that may exist between individuals
within their contexts (hospitals, neighbourhoods, etc.), this design allows for the
correlation between observations made on the same individual.

Haynes et al. (2008) looked at the risk of accidents in pre-school children using data
from a longitudinal study, with measurement occasions nested within children and
children nested within neighbourhoods. It is not necessary for individuals to be
clustered within higher-level units; MLA can still be used to analyse repeated mea-
sures with individuals forming the higher level. Such a two-level model for changes in
body mass index was used by Lipps and Moreau-Gruet (2010). Repeated measures do
not have to be made on individuals; Kroneman and Siegers (2004) considered how
reductions in the number of available hospital beds affected different measures of bed
use using repeated measures on countries, with the outcomes (bed occupancy, average
length of stay and admission rates) being observed in different years for each country.
The example used in the first computing practical (Chap. 11) is based on the analysis
of repeated measures of mortality rates made at the area level.

As with the previous models, it is not necessary to have information on every
individual on every occasion; if we are able to make certain assumptions about
missingness (that the data are missing completely at random or missing at random),
then we can include individuals with incomplete data in the analysis. More detail about
the different types of missing data and appropriate methods for their analysis can be
found elsewhere (Carpenter et al. 2006; Little and Rubin 2002; Sterne et al. 2009).

When analysing repeated measures data, it is usually the case that we find more
variation between individuals than within individuals (between measurement occa-
sions) and so, unlike the basic models considered above, a larger proportion of the
total variation may be at higher levels. This is easy to understand if you consider, for
example, a study with repeated measures of people’s weight; there is likely to be
much less variability in individual weight from one measurement occasion to
another than there is between the weights of individuals in the population. Such is
the nature of individual heterogeneity.

Multiple Responses

There are strong similarities between repeated measures and multiple response
designs. In the former we measure the same item on individuals at a number of
different measurement occasions; in the latter we measure a number of different
items on individuals, often at the same measurement occasion. This can therefore be
seen as a multilevel model—we have the different responses nested within each
individual—and there may be a further level such as the neighbourhood of residence
as illustrated in Fig. 4.5. The multiple responses may, for example, be drawn from a
questionnaire focusing on health-related behaviours; a number of individuals may be
surveyed about alcohol and tobacco consumption, diet and exercise. These behav-
iours may be correlated within individuals; high alcohol consumption may be
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associated with poor diet, for example. This correlation may remain after adjustment
for individual characteristics, particularly if an important characteristic associated
with more than one behaviour is omitted or poorly recorded in the survey. But we
also have the possibility of modelling and examining these correlations at higher
levels. If alcohol consumption and diet both show variation between areas, is the
nature of the relationship the same? That is, are those areas associated with above
(below) average alcohol consumption also associated with poorer (better) diets?

Once again we can work with an unbalanced data set and so if some individuals
have not responded to all questions, and provided that we can make the usual
assumptions about the data being missing at random, we can include all the data
that we have and do not have to consider the deletion of cases or responses. An
example of a multiple response model includes a joint analysis of self-rated health
and happiness on individuals nested within communities (Subramanian et al. 2005).
In addition to showing the different effects of various socio-demographic variables
on the two outcomes, the authors demonstrated a modest positive correlation at the
individual level and a stronger positive correlation at area level, interpreting this as
meaning that communities that were unhealthy were also likely to be unhappy.

It is possible to combine the analysis of different response types in a multilevel
multiple response model; for example, we could include a continuous response such
as blood pressure alongside a dichotomous response such as smoking status. The fact
that there is no requirement for the data to be balanced or complete means that we
can have structurally missing values: data which may or may not be collected
depending on the response to another question. Duncan et al. (1996) looked at
smoking behaviour among individuals living in areas (electoral wards) in England,
considering two aspects of smoking: smoking status (whether an individual currently
smoked or not) and the number of cigarettes smoked per day. For those who do not
smoke the number of cigarettes smoked per day must be zero and can be ignored,
removing a large peak in the (bimodal) distribution. Smoking status is therefore
treated as a dichotomous outcome and the number of cigarettes smoked per day
(among those who smoke) as a continuous measure. In addition to noting differences
in the factors related to smoking status and cigarette consumption, the authors found
a positive correlation between the two at the area level suggesting that cigarette
consumption tends to be higher for individuals who live in areas in which people are
more likely to smoke. A similar example is given in a study of the use of tranquil-
lizers (benzodiazepines) in neighbourhoods in a Dutch city (Groenewegen et al.
1999). In this case the dichotomous outcome was whether or not people received a
prescription and the dose of the drug, if given a prescription, was treated as a
continuous response. Once again the model permitted not only the analysis of factors
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Fig. 4.5 Multiple responses
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associated with both prescription and dose but also the analysis of the relationship
between these outcomes at the area level.

Any data showing an excessive number of observations at zero are amenable to
these types of mixed response models. Tooze et al. (2002) considered a range of
factors associated with medical expenditure based on a sample of individuals nested
within households. They interpreted the strong positive correlation between the
occurrence of healthcare expenditure (dichotomous) and the intensity of expenditure
(continuous) as indicating that, after adjusting for any differences in covariates,
households that were more likely to seek medical care were also likely to have
greater healthcare expenditure.

Non-hierarchical Structures

The data structures that we have considered up to this point are all strict hierarchies;
that is, a number of units at one level are nested within one and only one unit at the
level above. The reality is that healthcare systems or the social contexts affecting
individuals are often more complex than this, and if we have data that reflects this
complexity then this leads to hierarchies that do not have such a neat structure.
Below we discuss three types of non-hierarchical structures that can be fitted using
MLA: cross-classified models, multiple membership models and correlated cross-
classified models.

Cross-Classified Models

A cross-classified model is one in which units at one level are simultaneously nested
within two separate, non-nested hierarchies (Goldstein 1994). For example, we may
want to examine how the outcome for an individual patient varies according both to
the hospital the patient attended and to the general practitioner (GP) that referred the
patient to hospital. Figure 4.6 shows how the hierarchy may appear for such a model.
Although all patients are referred by one and only one GP, and each attends one and
only one hospital, there is no strict nesting of GPs within hospitals; certain GPs may
refer different patients to different hospitals. Similarly, hospitals are not nested
within GPs since hospitals receive referrals from several different GPs. We say in

Hospital (2)

Patient (1)

GP (2)

Fig. 4.6 Cross-classified model
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such a case that patients are nested within a cross-classification of GPs and hospitals
(Browne et al. 2001; Rasbash and Browne 2001). The way in which the computa-
tional aspects of fitting cross-classified models are handled varies according to the
software used for analysis; some of the statistical packages used to fit multilevel
models treat cross-classified models no differently from strict hierarchies, whilst
other packages may require a distinct specification for this class of model. Readers
are advised to check the reference manuals of their chosen software for further
details.

As with the strictly hierarchical multilevel models, cross-classified models may
be used to reflect the observed hierarchy (in which case the levels themselves may
not be of substantive interest) or they may be used to explore variation and determine
the relative importance of different contexts. This distinction relates to the range of
hypotheses that can be tested using MLA discussed in Chap. 3. Downing et al.
(2007) explored the association between deaths and hospital admissions for a range
of conditions and scores assigned to GP practices through the UK’s Quality and
Outcomes Framework (QOF). Their data comprised patients nested within a cross-
classification of GPs and residential areas, with covariates available on both con-
texts. Urquia et al. (2009) considered the relative impacts of neighbourhood of
residence and country of origin on the birthweight of children born to recent
immigrants in Ontario, Canada, following adjustment for a variety of individual
factors, and concluded that the country of origin made a much larger contribution to
the variation in outcomes. Virtanen et al. (2010) separated the effects of teachers’
neighbourhood of residence and the neighbourhood in which the school was located
on the sickness absences of teachers and found significant relationships with both
(in terms of a contextual variable—mean neighbourhood income—and the variances
at the two levels).

Multiple Membership Model

The second type of non-hierarchical structure used in MLA is the multiple mem-
bership model (Hill and Goldstein 1998). This model is appropriate when units at
one level may belong to (or be members of) more than one unit at a higher level. For
example, consider a patient who receives a course of treatment such as chemother-
apy over a period of time. Certain patients may receive their treatment at more than
one hospital as shown in Fig. 4.7. If the outcome for each patient is survival at
12 months, then we may be interested in determining whether patient survival varies
between hospitals. For those patients who were treated in more than one hospital, we

Hospital (2)

Patient (1)

Fig. 4.7 Multiple membership model

Non-hierarchical Structures 57

https://doi.org/10.1007/978-3-030-34801-4_3


must make assumptions about the relative contributions of different hospitals to the
patients’ care. This comes down to assigning a weight attributed to each hospital
with the weights summing to one for each individual (so the weights are, in fact,
proportions). If we know the proportion of time that a patient spent in each hospital,
then these proportions may make suitable weights; otherwise, it may be sufficient to
give equal weight to each hospital attended (so weights of 0.5 if a patient was seen in
two hospitals, 0.33 if seen in three hospitals, etc.). The impact of different weighting
schemes on the results can be examined as a form of sensitivity analysis.

Ryan et al. (2006) examined the influence of caseworkers on two child welfare
outcomes: the length of stay in foster care and the probability of family reunification.
Most youths in the study from Illinois were assigned more than one caseworker;
multiple membership models allowed the authors to account for the complex data
structure when testing hypotheses about the association of certain key caseworker
characteristics on the child outcomes. Another use for a multiple membership model
is to account for changes in geographical boundaries over the course of time;
Leyland (2004) assigned weights based on resident populations to take account of
changes in the number and boundaries of areas following administrative
restructuring. Falster et al. (2018) used a multiple membership model to analyse
the between-hospital variation in patient admission for preventable hospitalisations.
Although the hospital of admission was known for those patients who were admitted
to hospital, the population who were not admitted to any hospital were assigned to
multiple hospitals based on observed admission patterns.

Correlated Cross-Classified Model

The correlated cross-classified model should be used for the analysis of repeated
classifications (Leyland and Næss 2009). Such data structures are typically encoun-
tered when contextual information at regular intervals is linked to an outcome
measured at the end of the study, although they may also be appropriate when
different aspects of the same context are being measured such as place of residence
and place of work. Figure 4.8 provides a simple example of individuals living in four
areas at two different time points. The difference between this model and the cross-
classified model (Fig. 4.6) is that instead of independent contexts such as GP and

Area T1 (2)

Individual (1)

Area T2 (2)

A B C D

A B C D

Fig. 4.8 Correlated cross-classified model
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hospital, the areas are the same at each time (denoted areas A, B, C, and D). One of
the assumptions underlying MLA is that the contexts are independent, whether these
are the GPs and hospitals in Fig. 4.6 or the neighbourhood and households in
Fig. 4.2. Standard multilevel models, including the cross-classified model, therefore
assume no correlation between contexts. The multiple membership model described
above is appropriate when individuals move between contexts but the contexts
(e.g. areas) are the same at different points in time. The correlated cross-classified
model comes somewhere between the cross-classified and multiple membership
models, recognising that contexts may not be identical (due, for example, to the
way neighbourhoods may change over time) but at the same time that the contexts
are not completely independent of each other (the poorest area at one time point is
unlikely to become the richest area at another time).

The cross-classified, multiple membership and correlated cross-classified models
are described and the implications of the different assumptions underlying each are
analysed from the perspective of life course epidemiology by Næss and
Leyland (2010).

An example of the use of a correlated cross-classified multilevel model is based
on analysis of the Oslo Mortality Study (Leyland and Næss 2009). Area of residence
was known for inhabitants of Oslo at the time of the 1960, 1970, 1980 and 1990
Censuses and individuals were followed up in the mortality register until 1998. The
models were used to determine the relative contribution of residence at different
stages of the life course—based on known residence at the Censuses—on subse-
quent mortality for different birth cohorts.

Other Multilevel Models

There is a broad range of data types that can be analysed using MLA and of models
that can be constructed in a multilevel framework. Some of these are dependent on
the availability of specialist software, whilst others may be implemented in most
packages that can be used for multilevel modelling. In this section, we briefly
describe some of these models.

We have said little about the response types that can be analysed using MLA,
but most of the examples presented in this chapter have assumed continuous
outcomes to be normally distributed or have used logistic regression for dichoto-
mous outcomes. Multilevel Poisson or negative binomial regression models may be
used when the data take the form of counts, either because individual data are
aggregated to an area level in studies of disease incidence or prevalence (Cavalini
and Ponce de Leon 2008) or when the data represent counts made on individuals,
such as the number of carious, extracted or filled teeth (Levin et al. 2010) or the
frequency of contact with GPs (Cardol et al. 2005). Multilevel Poisson regression is
also appropriate for modelling incidence or prevalence on individual data as a
means of adjusting for exposure or person time at risk (Martikainen et al. 2003).
Multilevel logistic regression can easily be extended to multilevel multinomial
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regression if the responses form unordered categories, such as place of birth being
categorised as home, private hospital or public hospital in a study of maternity care
provision in Ghana (Amoako Johnson and Padmadas 2009), or ordered categories,
such as a measure of self-rated health (Oshio and Kobayashi 2009). Note, however,
that in the presence of five or more ordered categories it may be appropriate to
analyse the data as though the response was continuous and normally distributed
(Mansyur et al. 2008).

Several different models have been developed for the analysis of multilevel data
when the outcome of interest is the time to an event or a survival time. The simplest
of these is the accelerated lifetime or log duration model, which centres on modelling
the logarithm of the survival time. Such a model has been used to assess area-based
inequalities in a 30-year follow-up of a large Swedish cohort (Yang et al. 2009). An
alternative approach is to fit multilevel Cox proportional hazard models; these have
been used, for example, to examine contextual influences on the hazard of mortality
(Chaix et al. 2007). Such models have the advantage of providing answers even if a
large proportion of the data are censored and of enabling the inclusion of time-
varying covariates (Goldstein 2003). For example, Sear et al. (2000) examined the
effect of maternal grandmothers on the survival of children in rural Gambia; the
presence of the grandmother is clearly an effect which may change during a child’s
life. Multilevel Cox regression models require data expansion that can quickly
render a dataset large and unwieldy; an alternative approach is therefore to use
multilevel Weibull survival models, as employed by Chaix et al. (2008) to examine
the impact of individual perception of safety and neighbourhood cohesion on
mortality from acute myocardial infarction.

A multilevel repeated measures model takes into account the fact that observa-
tions made on the same individual are likely to be correlated. A time series model
can take this one stage further by modelling the correlation between observations as
a function of time such that the correlation between two measures made on the same
person close together in time will be higher than the correlation between two
measures made a long time apart. There are a number of different ways in which
this correlation can be included (Goldstein et al. 1994). An example of the applica-
tion of such methods is for the analysis of smoking cessation data in which
adjustment was made for the serial dependence of observations on individuals’
smoking status (Wang et al. 2006).

A similar principle applies to multilevel spatial models as to the multilevel time
series models. It is possible to take geography into account to some extent by using a
series of areas of increasing size. This relates to the so-called ‘modifiable areal unit
problem’ or MAUP (Openshaw 1984). Geographical units are to some extent
artificial and changing from one geographical division to another might influence
the results of a study. MLA facilitates a meaningful analysis of this problem
(Groenewegen et al. 1999; Jones 1993; Merlo 2011). Some of the difference between
small areas (such as neighbourhoods) may be attributable to differences between
larger areas such as municipalities, and the differences between municipalities may
in part be due to differences between larger areas such as counties or regions.
Including these different geographies in a single multilevel model ensures that
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there is a correlation between neighbourhoods in the same municipality and between
municipalities in the same county. But this ignores the detail in the geography; the
exact geographical positioning of neighbourhoods within a municipality or of
municipalities within a county is not taken into account. A spatial multilevel
model allows for a greater degree of correlation between areas that are geographi-
cally close than between areas that are geographically distant. A simple means of
fitting such spatial dependencies is to use a multiple membership model (see above)
in which, in addition to heterogeneous area effects, areas are modelled as multiple
members of the set of their neighbours. Bartolomeo et al. (2010) used such a model
to investigate the geographical patterning of hospitalisations for lung cancer and
chronic obstructive pulmonary disease. Spatial modelling will also provide geo-
graphically smoothed estimates, overcoming some of the problems associated with
small areas and rare outcomes leading to volatile rates and allowing the identification
of clusters of disease. The methodology underlying such modelling may be complex
and is described in detail elsewhere (Best et al. 2005; Lawson et al. 2003; Leyland
and Davies 2005). Næss et al. (2007) used a spatial multilevel model to separate the
effect of air pollution from that of social deprivation, both measured at the
neighbourhood level, on individual mortality following adjustment for individual
socio-economic status.

Other data which lend themselves to multilevel analysis include meta-analysis,
for example a meta-analysis of the results of several clinical trials. The idea of meta-
analysis is to combine information from separate studies. A fixed effects approach to
meta-analysis is based on the assumption that there is a single ‘true’ effect which is
observed with error in each study. The random effects or multilevel approach to
meta-analysis assumes that there is heterogeneity between studies in the effect size.
Published information on the original trials will often be extremely limited; for
example, a randomised controlled trial may report the numbers of deaths and total
number of patients in the treatment and control wings of a trial. In such circum-
stances, and if the original data cannot be made available, it is important to take into
account the precision of the estimate of the effect size by giving more weight to
larger studies. It is also possible to combine summary outcomes from trials with
complete data on individuals from those trials for which full individual data are
available or to combine trial data with observational data. Examples of multilevel
meta-analyses include a study of the effectiveness of interventions to promote
advance directives (such as living wills and durable power of attorney for healthcare)
among the elderly (Bravo et al. 2008) and a quantification of the effects of education
on self-reported health (Furnée et al. 2008).

Multilevel models have been extended to include factor analysis, latent class
analysis and structural equation models. These expand upon their single-level
counterparts to take into account the clustering of individuals within higher-level
units. For example, Franzini et al. (2005) used multilevel structural equation models
to investigate whether latent variables such as collective efficacy (comprising social
cohesion, trust and helpfulness) or neighbourhood disorder (comprising physical and
social disorder) mediated the relationship between neighbourhood impoverishment
and self-rated health after adjusting for individual characteristics. Curry et al. (2008)
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used multilevel path analysis to determine whether objectively measured
neighbourhood crime rates impacted directly on individual depression or whether
the impact was indirect, being mediated by subjective perceptions of neighbourhood
problems. And Vermunt (2007) identified three classes of doctors and two classes of
hospital on the basis of their prescribing behaviour when treating children with acute
respiratory tract infection; responses for individual children were coded as indicating
appropriate use, abuse of a single antibiotic or abuse of multiple antibiotics.

Multilevel latent variable analysis will be considered more extensively in
Chap. 8. The reason for this is that this approach is increasingly used to construct
characteristics of higher-level units on the basis of individual responses to a series of
scale items. These scale items try to measure a latent variable at the higher level. For
example, items about neighbourhood disorder, collected from residents in a survey,
can collectively be used to indicate disorder at the neighbourhood level. This
approach is also known as ecometrics.

Pseudo-levels

In Chap. 3, we considered what constitutes a level. In particular, we made a
distinction between a level—comprising units which could be sampled—and the
characteristics of a level. Although this is true in the strictest sense, it is sometimes
useful to introduce characteristics as a pseudo-level at any level apart from the
highest level in the hierarchy. This is particularly important if we want to test
hypotheses about (or just to explore) variation between subgroups, as was discussed
in Chap. 3. For example, suppose we have health data on a number of individuals
attending different hospitals, and one focus of our interest is whether the variance in
our outcome differs between men and women. Although the individual’s sex is a
characteristic of the individual and not a level, we can include sex as a pseudo-level
in our model so that patients are nested within sex within hospitals, and then
condition on the mean difference between men and women. (Conditioning on the
mean means that we include a dummy variable to take account of the mean
difference in health between men and women. This dummy variable is then a
characteristic of the pseudo-level rather than the individual level since it applies to
all individuals within that group.) Figure 4.9 shows how the inclusion of this pseudo-
level changes the structure of our dataset. The groups at the pseudo-level are often
referred to as cells, and sometimes individual responses are aggregated over these

Hospital (3)

Sex (2)

Patient (1)

M MF F

Fig. 4.9 Model with pseudo-levels
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cells which then form the lowest level. For example, Judge et al. (2009) examined
the rates of joint replacement in England using a hierarchy of cells defined by 5-year
age group and sex (at level 1) nested within small areas (at level 2) and districts
(at level 3). For each cell they had a count of the number of procedures undertaken
and included an offset to adjust for differences in the population at risk in each cell
whilst controlling for age and sex. And Turrell et al. (2007) investigated associations
between area deprivation and mortality using cells defined by a combination of age,
sex and individual occupational social class nested within a hierarchy of areas.

Incomplete Hierarchies

In general, we know to which unit at each higher level a lower-level unit belongs and
so we have complete information on the hierarchy. There are two notable exceptions
when this will not be the case. The first exception concerns multiple responses; the
hierarchies may differ for different responses. This may be because the responses are
actually measured at different levels. Goldstein gives an example of a multiple
response model combining longitudinal measures (during childhood) of height and
bone age with a measure of adult height (Goldstein 2003). Whilst the repeated
measures during childhood are clustered within the individual, the one adult mea-
surement is effectively at the level of individual rather than measurement occasion.
The hierarchy may vary according to the number in each cluster. Dundas et al.
(2014) give an example of individual children nested within sibling groups living in
small areas; sibling group was omitted as a level for the 71% of children who had no
siblings in the study. Alternatively, the structured missingness detailed under the
earlier section on multiple response models may lead to differing hierarchies;
Leyland and Boddy (1998) describe a model of mortality following acute myocar-
dial infarction in which they consider the influences of both area of residence and
hospital attended. Their data include both sudden deaths (death before reaching
hospital) and deaths in hospital or within 30 days of discharge from hospital. These
two responses (sudden death and death in or shortly after discharge from hospital)
were nested within patients. The sudden deaths are clearly not affected by hospital
attended; indeed, for such deaths there is no hospital attended. The second exception
is when the higher-level membership is unknown. In such a situation, it is possible to
use a multiple membership model with different probabilities of membership
attached to the higher-level units (Hill and Goldstein 1998). Each higher-level unit
(e.g. hospital) could be given equal weight or weight proportional to the total number
of patients seen by that hospital in the absence of any knowledge as to group
membership. However, it may be that more detailed information is available and
that the precise membership of higher-level units is only partially missing; for
example, it may be that a patient living in a given area is most likely to attend one
of a number of local facilities.

A slightly different situation may arise when two levels are indistinguishable.
Figure 4.2 illustrates a hierarchy that includes individuals nested within households.
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In general, there will not be many individuals per household and many households
may only contain one person. To an extent this does not matter; as long as there is at
least one household comprising two or more people, then we can start to describe
variation within households as well as between households. (In practice, the more
households in the study in which there are at least two people, the more precise our
estimate of the variance within households will be.) And clearly excluding single
person households from our analysis is likely to introduce considerable bias into our
sample. But our sample design may have included just one person in each house-
hold. In such a case, although it is correct to think of individuals as being nested
within households, we are unable to distinguish between the individual and house-
hold levels. Not really a missing hierarchy, we are forced in practice to work with a
joint individual/household level.

Conclusion

This chapter has introduced the reader to a variety of structures that can be thought of
as multilevel or hierarchical. In addition to the strict hierarchies that perhaps
constitute the common understanding of a multilevel model, we have discussed
the appropriateness of multilevel modelling for designs including time, multiple
responses and non-hierarchical structures. Furthermore, we have covered the con-
cept of a pseudo-level and circumstances in which the unit of membership at a
particular level may be missing.

When working out the data structure in your own research, it is important to bear
in mind what has been said in Chaps. 2 and 3. The first step would be to analyse your
research problem and specify which levels would be relevant to include from a
theoretical perspective. You might end up working with data that are readily
available, and the structure of these data might differ from what you would have
wanted based on an analysis of your research problem. Of particular importance is
whether you are missing information about a level in your data that seems to be
important from a theoretical point of view. If this is the case, then your statistical
model may be misspecified as a consequence. An example of this, which is discussed
in more detail in Chap. 7, is the situation where you consider a health outcome of
people living in neighbourhoods but omit the fact that your subjects are also
clustered in families or households. This would lead to an overestimation of indi-
vidual level or neighbourhood variation or both; see, for example, Sacker
et al. (2006).

Some data structures may be quite complex, especially since the structures that
have been discussed in this chapter can be combined. The more complicated the data
structures are, the more difficult they will be to analyse and interpret. For readers
who are keen to work with more complex data structures, we offer two pieces of
advice. Firstly, we suggest that you simplify the data structure into a less complex,
simple hierarchical structure and analyse the data in this manner before proceeding.
In Chap. 9, we discuss ways of simplifying data structures as part of the modelling
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process. Our second piece of advice in the event of more complex data structures is
to consult a colleague with experience in running and interpreting the analysis or to
read some of the more technical multilevel modelling texts to gain further under-
standing of such analyses (for example, De Leeuw and Meijer 2008; Gelman and
Hill 2007; Goldstein 2010; Snijders and Bosker 2012).
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