
Chapter 11
Multilevel Linear Regression Using
MLwiN: Mortality in England and Wales,
1979–1992

Abstract In this chapter, the reader becomes a user. This chapter contains the first
of three tutorials that readers can work through, using the specialist multilevel
modelling software MLwiN. We introduce MLwiN as a package; this software
will also be used in the other two tutorials. This tutorial introduces practical linear
multilevel analysis. It uses data on mortality in England and Wales over time. The
dependent or outcome variable is the standard mortality ratio in a given year between
1972 and 1996, for districts which are nested within counties.

Because this is the first tutorial, we go into some detail regarding the use of
MLwiN, and how to use it to manipulate and explore the data. The tutorial starts with
the estimation of a single-level model, then moves on to a two-level and three-level
model. We begin with a random intercept model and progress to a random slope
model. Throughout the tutorial graphs are used to enable visualisation of the results
of the analyses. At the end of this tutorial, we detail an alternative analysis of the data
using a multilevel Poisson model.

Keywords Tutorial · Multilevel analysis · Linear regression · Poisson regression ·
Mortality

This chapter is based on training materials created by Leyland and McLeod (2000).
The training materials in this chapter and the two chapters that follow are designed to
be used either constituting part of a formal course or as a self-learning aid. They
provide an introduction to the ideas behind multilevel modelling and a guide to
analysis using the software package MLwiN. Further details on multilevel modelling
and MLwiN are available from the Centre for Multilevel Modelling http://www.
bristol.ac.uk/cmm/. The materials have been written for MLwiN v3.01. The teaching
version of the software is available from https://www.bristol.ac.uk/cmm/software/
mlwin/download/.

When working through the examples in this book, the user should periodically
save the worksheet. Throughout these materials the instructions to the user appear in
boxes. Selections to be made by the user appear in bold type, and variable names are
given in CAPITALS. If you have to click on a term in an equation, this is presented
in bold and italics.
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Introduction to the Dataset

The data are taken from the local mortality datapack and detail deaths from all causes
in England and Wales in the period 1979–1992. These data can be found at the UK
Data Service. The raw data comprise two files: one containing information on deaths
over this time period and the other detailing the populations of the relevant areas
(districts in England and Wales) in each year. For further information on this and
other available datasets, the user should visit the UK Data Service website https://
discover.ukdataservice.ac.uk/.

Research Questions

In this tutorial, we will answer the following research questions:

1. What is happening to mortality rates over time?
2. How much variation in mortality rates is there between districts of England and

Wales?
3. Is this variation just between districts, or are there also differences between the

mortality rates of counties?
4. Does mortality vary according to the type of area?
5. What is happening to the variation in mortality rates over time?

Introduction to MLwiN

Opening a Worksheet

MLwiN files are known as worksheets and these store all the data and model settings
from the last saved version. We will start by opening the file ‘lmdp.wsz’—an
MLwiN worksheet that has already been prepared for analysis.

In MLwiN, go to the File menu
Select Open worksheet
Navigate to the folder containing the data file
Open the worksheet called lmdp.ws

The name of the current file appears in the bar at the top of the MLwiN window.
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Names Window

We can view a summary of this worksheet using the Names window. This will
automatically appear when a worksheet is opened in MLwiN; at other times, the
Names window can be called up as follows:

Go to the Data manipulation menu
Select Names

This shows a list of all the variables stored in the worksheet together with some
summary information. The worksheet contains 8 variables; these are at the beginning
of the worksheet in columns number 1–8. Each column contains 5639 data points
and no missing values. Each data point (observation) corresponds to the annual
number of deaths in a given district in England and Wales for 1 year in the period
1979–1992. COUNTY, DISTRICT and REGION are area identifiers; there are
403 county DISTRICTs (coded from 101 to 6820) which are nested within
54 COUNTYs (coded from 1 to 68), and these in turn lie within 1 of 10 REGIONs.
The data cover 14 YEARs from 1979 to 1992 inclusive. Note that there are only
5639 data points rather than the 5642 that might be expected (403 DISTRICTs with
an observation for each of 14 years); 3 data points have been removed because
extreme outlying values made them implausible. The next two columns show the
number of DEATHS observed in each district at each time point—ranging from
16 to 12,775—and the number that would be EXPECTED. The EXPECTED
number of deaths has been calculated on the basis of the age and sex structure of
that area’s population in each year by applying the 1992 national age- and
sex-specific mortality rates. This worksheet has been constructed using the two
raw data files contained in the local mortality datapack—the number of deaths and
the populations. The OBSERVED and EXPECTED deaths are combined to form
the standardised mortality ratio (SMR) for each year in each district. This is
calculated as

SMR ¼ observed deaths
expected deaths

� 100

and reflects the excess deaths in an area, standardised for age and sex, over the
national average mortality rate in 1992 (average ¼ 100). The standardisation means
that differences between areas in the age and sex structures of their populations are
taken into account. The range from 75 to 179 implies a minimum mortality rate for
one area in 1 year 25% below the 1992 average and a maximum 79% above the
average. Finally, the variable FAMILY is a classification of districts into six groups
devised by the UK’s Office for National Statistics: 1—Inner London, 2—Rural
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areas, 3—Prospering areas, 4—Maturer areas, 5—Urban centres, 6—Mining and
industrial areas. All of the remaining columns are empty; the default name for such
columns is ‘C’ followed by the column number.

Data Window

The data may be viewed and edited in a spreadsheet format.

Go to the Data manipulation menu
Select View or edit data
Alternatively, the Data window may be accessed from the Names window:
In the Names window, highlight columns 1–8 (use the shift or control keys to

highlight multiple columns)
Click the View button in the Data section at the top of the Names window

The view button at the top of the Data window can be used to change or extend
the selection of variables shown; simply select the desired variables from the drop-
down list.

All windows can be re-sized by clicking on the borders and dragging; also the
scroll bars at the bottom and on the right-hand side can be used to view more of the
selected data.

176 11 Multilevel Linear Regression Using MLwiN: Mortality in England and Wales. . .



The first 13 observations are made on DISTRICT 101, COUNTY 1, REGION
3. The 13 observations on this DISTRICT can be seen to correspond to 13 YEARs of
data; there is no observation for 1980. The estimated SMR in this district ranges from
75 in 1988 to 141 in 1982. The district classification (FAMILY) was group 1—Inner
London.

Graph Window

Before starting to model the data, we may wish to examine them in a graph.

Go to the Graphs menu
Select Customised Graphs

The graphical output in MLwiN is separated into three components. A display is
what can be displayed on the computer screen at any one time and up to ten different
displays may be specified. The pull-down menu at the top left-hand corner of the
customised graph window corresponds to the display function—this currently shows
D1 denoting display 1. Each display can contain a number of graphs. A graph is a
frame with x and y (horizontal and vertical) axes showing lines, points or bars, and
each display can show an array of up to 5 � 5 graphs. The position tab towards the
top right of the customised graph window is used to specify the layout—the position
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of the graphs in the display. Finally, each graph can plot one or more datasets, each
one consisting of a set of x and y coordinates selected from the worksheet columns.
Different datasets may be specified by clicking on different rows in the table under
the ds# heading shown at the left-hand side of the customised graph display.

To obtain a scatter plot of SMRs by year, ensure that the plot what? tab is
selected and

Select the y variable to be SMR from the drop-down list
Select the x variable to be YEAR from the drop-down list
Click the Apply button
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It is clear that there have been considerable reductions in SMR over these
14 years; nearly every district had an SMR greater than 100 in 1979. (The fact that
standardisation was to 1992 means that the overall SMR—for the whole of England
and Wales—was 100 for that year.)

To change this graph to a line plot with a line for each district:

In the Customised Graph window, select group to be DISTRICT
Change plot type to line
Select the plot style tab
Change colour to rotate
Click the Apply button

It is possible to identify points on the graph: point and click anywhere on the
graph and the Graph options window will appear with details of the closest data
point. Also included in the Graph options window are facilities for adding titles to
the graph and axes, and for making other changes to the display including the scales.

Closing Windows

At any time you may wish to close or minimise windows to prevent your screen from
becoming too cluttered. You may do this, as with any other Windows package, by
clicking on the X or _ buttons respectively in the top right corner of each window.
Alternatively, you may go to the Window menu and select close all windows.

This section has covered data exploration using:
Names window—data summaries

(continued)
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Data window—spreadsheet
Graph—scatter plot
Graph—line graph

Model Specification

Creating New Variables

A number of functions are available in MLwiN that allow the creation of new
variables or amendments to existing variables. In order to include a constant or
intercept term in a model using MLwiN, we need to create a column of 1’s that spans
the entire data set. This variable will also be used to model the variance at each level
in a multilevel model. We use the Generate vector window to create a column
containing 5639 occurrences of the value 1.

Go to Data manipulation menu
Select Generate vector
Select Type of vector to be Constant vector
Select C9 to be the Output column
Enter 5639 (the number of data points) beside Number of copies
Enter 1 beside Value
Click the Generate button

Returning to the Names window, column C9 now contains 5639 data points each
with the value of 1. We can give this new variable a name:
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Click on C9 in the Names window
Click on the Name button in the Column section at the top of the window
Type CONS and press <return>

We can also use the Generate vector window to create a unique identifier for
every data point or observation.

In the Generate vector window:
Select Type of vector to be Sequence
Select C10 to be the Output column
Enter 1 beside Start number
Enter 5639 (the number of data points) beside End number
Enter 1 beside Step value
Click the Generate button

In the Names window, column C10 should now contain 5639 data points with a
minimum of 1 and a maximum of 5639. We will name this variable:

Click on C10 in the Names window
Click on Name at the top of the window
Type ID and press <return>

Equations Window

Specifying models in MLwiN is done mainly via the Equations window.

Model Specification 181



Go to Models menu
Select Equations

The terms in red are those which must be defined before a model can be fitted to
the data. We begin by specifying our outcome:

Click on either of the y terms
Select SMR as the dependent variable

The structure of the hierarchical model is also specified at this stage, first by
stating the number of levels the model will have and then by specifying what the
levels of the hierarchy are using the appropriate identifier variables. We will start by
fitting a single-level (Ordinary Least Squares—OLS) model. The level 1 units, our
observations, are identified by the variable ID.

Select 1 � i for N levels
Select ID for level 1(i)
Click on Done

The red response variable y has been replaced by the term smri, the black colour
indicating that this term has been defined; moreover, the addition of a subscript
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i indicates that this is a single-level model. In a similar manner, we can define
CONS—the column of 1’s that we just created—to be an independent variable.

Click on the β0x0 term
Select CONS from the drop-down list

The check boxes indicate in what part of the model each variable is to be
included; by default, CONS has been added to the fixed part of the model and its
coefficient will provide an estimate of the intercept. The other option in this window
relates to the random part of the model. We allow for random error at level 1 by
setting the CONStant term to be random at this level.

Click on the check box by i(ID)
Click on Done

Note that the term β0 changes to β0i, denoting the fact that it is random at level
1 (between occasions).

To expand this model to see the distributional assumptions and error structure,
click twice on the ‘+’ at the bottom of the Equations window.
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This shows our assumption of a normal distribution for the residuals e0i �
N 0, σ2e0
� �

. At any time we can toggle between the representation of the model that
includes the names of all of the variables and a purely algebraic representation;
simply click on the Name button at the bottom of the Equation window.

Note that the names of the specified dependent and independent variables, SMR
and CONS, have been replaced by y and x. If you click on the Estimates button, you
can see that two terms in the model are blue: the grand intercept β0 and the level
1 variance σ2e0 . The fact that they are blue indicates that these terms are to be
estimated; when the model converges, the blue will change to green.

Clicking on the Estimates button again will replace these two terms with their
current estimates (both the default value of 0.000 because no model has yet been
estimated). Since our variable CONS is just a column of 1’s, the above equation is
just fitting the SMR of the ith observation using a mean β0 and a residual or error
term e0i. We are going to begin by assuming that these e0i are independent and
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identically distributed. This means that if the SMR in a particular DISTRICT is
higher than the mean one YEAR, we believe that the SMR in another YEAR is just
as likely to be below the mean as above. In other words, we are fitting a model that
assumes that there will not be certain DISTRICTs with persistently high SMRs and
others where mortality is consistently below the mean.

In addition to the mean, we will add year as an independent variable in the fixed
part of the model in order to answer our first research question.

Click on the Add Term button
Select YEAR from the drop-down list under variable in the Specify term

window
Click Done

The third term to be estimated, β1, is the regression coefficient (slope) associated
with YEAR and this will estimate the trend in SMRs during the study period.

Fitting the Model

The model is now ready to be estimated.

Click the Start button on the tool bar at the top left-hand corner of the MLwiN
screen

After two iterations (the iteration number is given at the bottom of the MLwiN
screen), the model converges; the blue estimates in the equation window turn green,
indicating that they have converged.
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The parameter estimates are shown with their estimated standard errors in
brackets. Our intercept is about 282, and the SMR has been decreasing at 1.982
per year. This decrease is highly significant in comparison with its standard error; a
95% confidence interval around this decrease would range from
1.982 � 1.96 � 0.039 ¼ (1.906, 2.058). The variance of all of the observations
around this fitted trend is 137. This means that the standard deviation is
√137.283 ¼ 11.717 and so 95% of observations lie within �22.965 of the mean in
any given year. The current model has a single term to describe the variation around
the mean and is therefore just an ordinary least squares (OLS) regression model, but
it is a starting point for our multilevel analysis. The value �2�loglikelihood is
provided as an aid to model comparison and selection.

Before continuing, consider the interpretation of the intercept term. This is the
predicted value of the SMR in all districts when the variable YEAR takes the value 0:
in other words, in 1900. Since the data do not cover this period, it is not sensible to
make any inference about the SMR at this time, and we can change the origin to
something more meaningful. Explanatory variables are frequently centred around an
average value; in this case, however, we will set the origin at the first year for which
we have data (1979). We can use the Equations window to change this to a new
variable which takes the value 0 in 1979 and 13 in 1982.

In the Equation window, click on the term yeari in the equation
Select Modify term in the X variable window
In the centring section of the Specify term window, check around value and

type 79 in the corresponding box
Click Done

You will notice in the Equationswindow that the term yeari has been replaced by
(year � 79)i. As the model has changed the estimates have changed from green to
blue, indicating that we need to re-estimate this model. Note also that the new
variable appears in column 11 in the Names window. Rather than click on the
Start button again to estimate this model, click on the More button in the top left-
hand corner of the MLwiN screen to continue estimation from the current values.
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The estimated slope has not changed and nor has the variance. There is, however,
a big change in the intercept. In 1979, the average SMR was therefore about 126.

We can store the results of successive models to allow easy comparison.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

1-level
Click OK

This section has covered data manipulation using:
Generate vector window—creating a constant
Generate vector window—creating a sequence
Name window—naming variables
This section has also covered model set-up using:
Equations window—defining the response (dependent variable)
Equations window—adding an intercept (CONS)
Equations window—adding an explanatory (independent) variable
Equations window—modelling random error at level 1
Estimating a model—the Start and More buttons
Equations window—modifying a term in the regression model
Centring the data to assist model interpretation
Equations window—storing results

Variance Components

All of the variance in the current model is at the lowest level of observation; this is
just an ordinary least squares (OLS) regression equation. This model may be
expanded by including the level of DISTRICT in the model, enabling us to partition
the variance into that which is attributable to random variation between DISTRICTs
and that which arises due to fluctuations between observations (YEARs) within
DISTRICTs.

A 2-Level Variance Components Model

In the Equations window, we want to specify that our model has two levels,
identified by DISTRICT (at level 2) and ID (at level 1).
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Click on either smri term
Change N levels to 2 – ij
Select DISTRICT from the drop-down list by level 2(j)
Click Done

We now need to fit a random intercept across DISTRICTs. We do this by
allowing the coefficient of the CONStant to vary randomly across DISTRICTs as
well as at level 1.

Click on β0i
Check the box by j(DISTRICT)
Click Done

The intercept term now has an additional subscript (j), indicating that it varies
across DISTRICTs as well as across YEARs. The intercept now has three parts: the
overall fixed part intercept for 1979, the error term e0ij and a term u0j which is
specific to DISTRICT j. The u0j are random effects at level 2 and are assumed to be
normally distributed. The intercept for the jth district in 1979 will be given by
β0 + u0j. The parameter estimates have again changed from green to blue, indicating
that the model has changed and must be estimated again.
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Sorting the Data

Before fitting a multilevel model, the data need to be sorted within their hierarchy
(in this example by DISTRICTs and then by ID within DISTRICT). If your data are
not sorted, then MLwiN will produce estimates but these will not be correct. Failure
to sort your data when using MLwiN is a common reason for getting ‘strange’
results!

Go to Data manipulation menu
Select Sort
Increase the Number of keys to sort on to 2
Select DISTRICT as the first Key code column and ID as the second
Select all named variables, from COUNTY to (YEAR-79), under the heading

Input columns
Press Same as input button to overwrite current columns with sorted data
Press Add to action list and then Execute

This model may now be fitted by clicking More.
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If we store these results, we can then make a comparison with the OLS estimates
previously obtained.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

2-level
Click OK
Go to the Model menu
Select Compare stored models
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There is little change in the estimates of the intercept and slope between the two
models. However, in the random part most of the variation has moved up to level
2, indicating that there is substantial variation between DISTRICTs rather than year-
on-year variation within DISTRICTs. The total variance in our second model is
obtained by summing the variances between and within DISTRICTs (σ2u0 þ σ2e0); the
label ‘CONS/CONS’ in the first column indicates that these terms are the variances
of the intercepts (remembering that we created and used the variable CONS to model
the variance at each level). The total variance in our ‘Trend 2-level’ model is
137.390, very close to the estimate of 137.283 obtained for σ2e0 in our ‘Trend
1-level’ model. The proportion of the total variance which arises due to differences
between DISTRICTs is 112.897/(112.897 + 24.493) or 82.2%. This figure is known
as the intra-unit or intraclass correlation, and indicates that the correlation between
two observations made in different years on the same DISTRICT is 0.822. The level
1 variance may be interpreted as the variation between years within DISTRICTs. So,
in answer to the second research question, it would appear that the majority of the
variation in mortality is due to between-district differences rather than year-on-year
fluctuations.

Note that the addition of a single variance term has produced a substantial
reduction in the value of �2�log(likelihood) from 43758 to 35724. This reduction
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has been brought about by the addition of a single parameter—the variance σ2u0—to
our single-level model. Changes in the value of �2�log(likelihood) for nested
models (that is, for models that differ only by having terms added) are assessed
using a chi-squared distribution with the number of degrees of freedom equivalent to
the number of additional parameters. Since the reduction in �2�log(likelihood) is of
the order of 8000, we can dispense with the formal hypothesis testing (which will be
covered later in this chapter) and conclude that the full model—that including the
level of DISTRICT—is a significant improvement on the single-level model.

Predictions and confidence envelopes
At this stage, you may wish to look at the section Predictions and confidence
envelopes at the end of this chapter. This compares the precision of estimates
from the 2-level model with those from a single-level model. The work is in a
section at the end of this chapter because it covers predictions, a subject which
is given more attention later in this tutorial. You may read through this section
or work through the example, in which case you will be prompted to save your
worksheet at the current point. Alternatively, you can save the worksheet now
as, for example, lmdpapp1.wsz and return to this section later.

The Hierarchy Viewer

We can view the data structure using the Hierarchy viewer. This will tell us how
many lower-level units are in each high level unit.

Go to Model menu
Select Hierarchy Viewer
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The box in the top left corner provides a summary of the data hierarchy: there are
403 DISTRICTs at level 2 and up to 14 observations at level 1 (defined by ID) within
each DISTRICT, with a total of 5639 observations. Every level 2 unit (DISTRICT)
has a box in the grid in the main part of the Hierarchy viewer screen; the first level
2 unit has identifying code 101 and has 13 level 1 units (observations). The second
DISTRICT has identifying code 111 and so on. (These identifying codes are those
found in the column DISTRICT.) The Hierarchy viewer is a useful tool to check
that your data structure is correctly specified; failure to sort the data, for example,
may lead to a data structure containing too many high level units.

Adding a Further Level

We can add COUNTY as a third level to the model and examine the relative
importance of these large areas compared to the smaller DISTRICTs. First sort the
data again according to this new hierarchy of COUNTY then DISTRICT then ID.

Go to Data manipulation menu
Select Sort
Increase the Number of keys to sort on to 3
Select COUNTY as the first Key code column, DISTRICT as the second and

ID as the third
Select all named variables under the heading Input columns
Press Same as input button to overwrite current columns with sorted data
Press Add to action list and then Execute
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Now return to the Equations window. We are going to add COUNTY in at level
3 and make the coefficient of CONS, the intercept, random across COUNTY (as well
as DISTRICT and ID).

Click on either smrij term
Change N levels to 3 – ijk
Select COUNTY from the drop-down list by level 3(k)
Click Done
Click on β0ij
Check the box by k(COUNTY)
Click Done

The intercept term now has an additional subscript to indicate that it varies across
COUNTY as well as across DISTRICTs and ID. The terms v0k are level 3 random
effects and are again assumed to arise from a normal distribution. We can check the
data structure using the Hierarchy viewer:

Go to Model menu
Select Hierarchy Viewer

We still see 5639 observations and 403 DISTRICTs, but these are nested in
54 COUNTYs. The first COUNTY has 33 DISTRICTs and a total of 461 observa-
tions at level 1.
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Click More to estimate the new model

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. Trend

3-level
Click OK
Go to the Model menu
Select Compare stored models
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The fixed part is more or less unchanged as is the level 1 (between years within
DISTRICTs) variance. However, the higher-level variance has been partitioned
further into that attributable to COUNTYs and that due to differences between
DISTRICTs within COUNTYs. About 53% (75.800/[75.800 + 42.851 + 24.494])
of the total variation can be seen to be between COUNTYs with 30% between
DISTRICTs and just 17% due to year-on-year fluctuations.

This section has covered multilevel model set-up using:
Equations window—adding additional levels
Equations window—random intercepts (CONS) at different levels
Sort window—sorting the data by the hierarchy
Hierarchy viewer window—viewing the data structure
Results table window—comparing a series of models
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Interpreting the Model

Residuals

In an ordinary least squares (OLS) regression equation, the residual or error term is
the difference between the observed and fitted values. In the above model, the
equation may be written as

yijk ¼ β0x0 þ β1x1ijk
� �þ v0kx0 þ u0jkx0 þ e0ijkx0

� �
The terms inside the first set of brackets comprise the fixed part of the model,

i.e. the fitted values for all data points. The terms inside the second set of brackets
comprise the random part of the model and describe the departures from the fitted
values at each level of the hierarchy. Thus, the difference between the observed and
fitted values is comprised of residuals at three levels—the v0k, u0jk and e0ijk in the
regression equation. (Remember that x0 is the variable CONS, i.e. it takes the value
1 for every observation.) Each set of residuals is assumed to follow a normal
distribution and this assumption may be checked using similar residual diagnostics
as those that would be appropriate if using OLS. First we will consider the residuals
at level 1.

Go to the Models menu
Select Residuals
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There is a variety of options which allow a range of standard diagnostic checks to
be carried out—for example, to check the normality of the data or to look for outliers.
By default all nine functions are calculated and the results are stored in columns
c300–c308; this can be changed by entering a different number in the box by
start output at. The drop-down box in the bottom left corner specifies the level at
which the residuals are calculated; the default is level 1. We will calculate the
residuals at level 1—the e0ijk—and plot the standardised residuals against their
normal scores.

In the Residuals window, click on the Set columns button
Click Calc
Select the Plots tab at the top of the Residuals window
Select the first option standardised residual x normal scores
Click Apply

The points in the resulting graph should lie on a straight line; the fact that they do
not suggests that there is some departure from normality. For the moment we will
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ignore this and look at the residuals at level 2 (DISTRICT), calculating these and
1.96 times their standard deviation (so that we can examine 95% confidence
intervals).

Click on the Settings tab in the Residuals window
Select 2:DISTRICT to be the level at which the residuals are calculated
Change the multiplier in the box by SD(comparative) of residual to 1.96
Click on Set columns
Click Calc

Select the Plots tab
Choose a plot of residual +/-1.96 sd x rank
Click on Apply
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This plot shows the residuals or random effects for each of the 403 DISTRICTs,
ordered from those with the smallest residuals on the left to those DISTRICTs with
the largest residuals on the right. The range of values is from a reduction in the SMR
of 16 points to an increase of 27 points. Since there is another level above DIS-
TRICT, that of COUNTY, the residuals do not represent differences from the
national average but from the COUNTY average. (We could add the residual for
each DISTRICT to that of the appropriate COUNTY and plot these composite
residuals v0k + u0jk.) The residuals are accompanied by error bars of half-width
1.96 S.D.; a DISTRICT whose error bar does not cross the horizontal line through
zero has an SMR which is significantly different from the COUNTY average.

Finally, consider the residuals at level 3 (COUNTY).

Click on the Settings tab in the Residuals window
Select 3:COUNTY to be the level at which the residuals are calculated
Ensure the multiplier in the box by SD(comparative) of residual is set to 1.96
Click on Set columns
Click Calc
Select the Plots tab
Choose a plot of residual +/-1.96 sd x rank
Click on Apply
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The range of values of the COUNTY residuals is from a reduction in SMR of
15 points to an increase of 17 points. Although this is not as great as the range that is
apparent among the DISTRICTs, bear in mind that there are considerably fewer
COUNTYs than DISTRICTs (54 as opposed to 403). Thirty-three of the COUNTYs
have residuals which are significantly different from zero. Note that not all DIS-
TRICTs within these COUNTYs need to have SMRs which are significantly differ-
ent from 100; a COUNTY with a positive residual may contain DISTRICTs with
negative residuals because the components of the composite random part—u0jk and
v0k—are assumed to be independent.

Predictions Window

A number of different predictions may be made from a multilevel model depending
on whether one includes fixed effects only or a combination of fixed and random
effects. For example, prediction lines for COUNTYs are derived from the fixed part
of the model together with the residuals from the COUNTY level (the v0k).

Go to the Model menu
Select Predictions

The elements of the model are arranged in two columns in the bottom half of the
Predictions window, one for each explanatory variable. Initially, all the terms are in
grey indicating that none has been selected and that they are not included in the
prediction equation at the top of the Predictions window. The prediction equation is
built by selecting the appropriate terms; clicking on the variable name at the head of
the column (cons or (year� 79)ijk) selects all the terms in that column (turning them
black), whilst clicking on individual terms (such as β0 or v0k) toggles that term in or
out of the prediction equation. To make predictions for the 54 COUNTYs at level
3, we need to include the fixed part and the level 3 residuals.

Click on cons and (year � 79)ijk
Click on u0jk and e0ijk to remove these terms from the prediction
In the drop-down list by output from prediction to select C12
Click on Calc
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The results from this prediction are now in C12. (You may need to click on the
Refresh button in the Window section at the top right-hand corner of the Names
window to see the values that have been put in this column.) The COUNTY level
predictions range from 85.3 to 143.6. Use the Names window to name this variable
PRED3 to indicate that it is a prediction including the level 3 (COUNTY) random
effects. Then plot the predicted values for each COUNTY against YEAR.

In the Names window, click on C12
Click on Name in the Column section at the top of the Names window
Type PRED3 and press <return>
Go to the Graph menu
Select Customised Graph

Note that details of earlier graphs are still held. D1 contains plots of the crude data
whilst D10 contains the plot of residuals carried out in the previous section. To create
a new graph

Select D2 from the drop-down box in the top left-hand corner
Select the y variable to be PRED3
Select the x variable to be YEAR
Select group to be COUNTY
Select plot type to be line
Click the Apply button
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This produces a plot of 54 parallel lines, one for each COUNTY. We will
superimpose on this graph the prediction of the fixed part of the model, the mean
line given by

byijk ¼ bβ0x0 þ bβ1x1ijk
This means that we only wish to include the fixed part of the model—all of the

residual terms in the equation window should be grey.

Return to the Predictions window
Click on v0k to remove it from the prediction equation
In the drop-down list by output from prediction to select C13
Click on Calc

In the Names window, change the name of C13 to PREDFP to indicate that it is a
prediction from the fixed part only. We will plot the predicted values from the fixed
part as dataset number 2 in display 2, plotting the mean over the prediction for each
COUNTY.

Open the Customised Graph window
Ensure D2 is selected
Under ds # (dataset number) click on number 2
Select the y variable to be PREDFP
Select the x variable to be YEAR
Select plot type to be line
Click the plot style tab
Change the colour to green
Change the line thickness to 3
Click the Apply button
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The national mean SMR is highlighted in green with the predicted mean for each
COUNTY shown around it. The lines are all parallel since the effect of each
COUNTY, v0k, is assumed to be the same throughout the study period. This residual
is the horizontal distance between the national intercept and the COUNTY-specific
intercept; a positive value of v0k indicates the COUNTY mean SMR is greater than
the national mean.

Now look at the predicted means for DISTRICTs within a specific COUNTY.
First we need to generate the predicted values for each DISTRICT by including all
terms apart from the level 1 residuals e0ijk:

byijk ¼ bβ0jkx0 þ bβ1x1ijk
Return to the Predictions window
Click on v0k and u0jk to add them to the prediction equation
In the drop-down list by output from prediction to select C14
Click on Calc
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In the Names window, change the name C14 to PRED2 to indicate that these
predicted values include the level 2 (DISTRICT) random effects.

We can look at these three sets of predictions using the View or edit data
window.

Go to the Data Manipulation menu
Select View or edit data
Click on view to see a choice of variables
Select COUNTY, DISTRICT, YEAR, SMR, PRED3, PREDFP and PRED2

(multiple columns can be selected using the Control key)
Click on OK

Interpreting the Model 207



The variable PREDFP contains just the values from the fixed part of the model—
the intercept and slope. These values change across YEAR—the slope—but are
constant (in the same YEAR) across DISTRICTs and COUNTYs. PRED3 contains
the predicted mean for each COUNTY and although they vary from one YEAR to
another they are the same for all DISTRICTs in the same COUNTY. PRED2
contains predictions for each DISTRICT within each COUNTY. The slope is
constant across time and does not vary between DISTRICTs or COUNTYs; for
any of our three predictions, the difference between the predictions in neighbouring
years is 1.984 (the coefficient of YEAR in our current Equations window).

To illustrate the different prediction lines in a single chart, select a single COUNTY,
e.g. COUNTY number 1. (You can use theHierarchy viewer to see which COUNTY
codes exist; for example, there is no COUNTYwith code between 2 and 10 inclusive.)
To create an indicator for COUNTY number 1, for example, we use the logical
function¼¼ (two equals signs) meaning ‘is equal to’ in the Calculate window:

Go to Data manipulation menu
Select Calculate
Select the empty column C15 from the list of variables and press the right

arrow button near the top of the Calculate window
Click on the = button on the window’s keypad
Select COUNTY from the list of variables and press the right arrow button
Use the window’s keypad to enter ==1
Press Calculate
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This will create a dummy variable with the value 1 if the data are from COUNTY
number 1, 0 otherwise.

Go to the Names window and change the name of C15 to COUNTY1. Then, in
the Customised Graph window we can filter out all COUNTYs apart from the one
that we have chosen.

Return to the Customised Graph window
Ensure D2 is selected
Highlight data set number 1 under ds #
Select the filter to be COUNTY1 under the plot what? tab
Click on the plot style tab
Change the line thickness to 3
Click the Apply button

The resulting graph now has just two lines—one for the national mean and one for
the selected COUNTY. To plot the predicted lines for the DISTRICTS in COUNTY
number 1, we again need to use the filter; we can plot the DISTRICT predictions
in red.

Return to the Customised Graph window
Select ds # 2
Select the filter to be COUNTY1
Click the Apply button
Under ds # click on number 3
Select the y variable to be PRED2
Select the x variable to be YEAR
Select the filter to be COUNTY1

(continued)
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Select group to be DISTRICT
Select the plot type to be line
Click the plot style tab
Change the colour to red
Click the Apply button
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In addition to the national mean (green) and COUNTY mean (blue), the graph
now displays the DISTRICT predictions for the selected COUNTY. The vertical
distance between the green and blue lines is the level 3 (COUNTY) residual v01 (the
subscript k is replaced by the number of the COUNTY). The fact that the COUNTY
mean is below the national mean indicates that this residual is negative. The vertical
distance between each DISTRICT mean and the COUNTY mean is the level
2 (DISTRICT) residual u0j1. The vertical distance between each DISTRICT mean
and the national mean is then the composite residual v01 + u0j1. You may note that,
despite the average for this COUNTY being below the national average, some of the
DISTRICT means still lie above the national average (the green line) because the
composite residual v01 + u0j1 is greater than zero.

This section has covered model diagnostics and interpretation using:
Residuals window—checking normality at level 1
Residuals window—higher-level residuals with confidence intervals
Predictions window—predictions from the fixed part of the model
Predictions window—predictions including residuals
Graph—plotting predicted values
Graph—overlaying (multiple) graphs
Calculate window—creating a new variable

Model Building

Adding More Fixed Effects

The models fitted so far include only an intercept term (CONS) and a trend
coefficient (YEAR) in the fixed part. Now consider the addition of further variables.
Firstly, we add a quadratic term in year since the assumption of a linear trend may be
too simplistic. We can use the ^ (to the power of) function in the Calculate window
to raise our trend variable (YEAR-79) to the power of 2.

Go to Data manipulation menu
Select Calculate
Select the empty column C16 from the list of variables and press the right

arrow button
Click on the = button on the window’s keypad
Select (YEAR-79) from the list of variables and press the right arrow button
Use the window’s keypad to enter ^2
Press Calculate
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In the Names window, change the name of C16 to (YEAR-79)^2. We can add
this term in the Equations window and re-estimate the model:

Return to the Equations window
Click on Add Term
Select (YEAR-79)^2 from the drop-down list under variable in the Specify

term window
Click Done
Click on the More button to re-estimate the model

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M4
Click OK
Go to the Model menu
Select Compare stored models
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The reduction in �2�log(likelihood) is 5.476 from 1 degree of freedom—com-
fortably greater than the critical value of 3.84—so this term has significantly
improved the fit of the model. The addition of this term has, however, done nothing
to reduce the variance at any of the three levels in the model.

The next covariate we can consider adding to the fixed part of the model is the
variable FAMILY, a classification of the DISTRICTs into different types. Before
adding this to the model, we can see how mean SMRs differ across the categories of
family. We do this using the Tabulate window:

Go to Basic statistics menu
Select Tabulate
In the Output mode section at the top right of the Tabulate window, select

Means
From the drop-down list next to Variate column, select SMR
From the drop-down list next to Columns, select FAMILY
Click Tabulate
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The output window opens containing the table of means and SDs:

This shows lower mean SMRs in categories 3 and 4 (prospering and maturer
areas) and higher SMRs in mining areas (category 6). To add a categorical variable
such as this to our model, we first need to specify that it is categorical; we do this
using the Names window.

In the Names window, click on the variable FAMILY
Click on the Toggle Categorical button in the Column section at the top of

the Names window
Click on the View button in the Categories section
With family_1 highlighted, click Edit and type LONDON
Highlight family_2, click Edit and type RURAL
Highlight family_3, click Edit and type PROSPER
Highlight family_4, click Edit and type MATURE
Highlight family_5, click Edit and type URBAN
Highlight family_6, click Edit and type MINING
Click on OK
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We can now add the variable FAMILY to the model. As with any categorical
variable, we fit one fewer dummy variable than the number of categories; for this
reason, we need a reference category against which all comparisons will be made.
We will use LONDON as the reference category.

In the Equations window, click on the Add term button
Select FAMILY from the drop-down list under variable in the Specify term

window
Check that LONDON is selected as the Reference category
Click Done
Click on the More button to re-estimate the model

We have created five dummy variables named RURAL, PROSPER, etc., which
take the value 1 for a DISTRICT if it is of that type, 0 otherwise. These variables can
be seen in the Names window in columns 17–21.

In the Equations window, note that the dummy variables representing the
categories of FAMILY have subscripts jk as opposed to the variables (YEAR-79)
and (YEAR-79)^2 which have subscripts ijk. This is because the FAMILY variable
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is measured at the DISTRICT level—it remains constant for each DISTRICT from
one year to another.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M5
Click OK
Go to the Model menu
Select Compare stored models

The intercept or coefficient of the CONS term has changed as this is now the
estimated mean in 1979 for areas in Inner London (the reference category). There has
been a significant reduction in �2�log(likelihood) with the loss of just 5 degrees of
freedom. The total variance has been reduced by 36.6% from 143 to 91; whilst the
year-on-year (level 1) variation has changed little, the between DISTRICT (level 2)
variance has been reduced by 29% and the between COUNTY (level 3) variance by
53%. The addition of a level 2 variable has then had the greatest effect on the
apparent variation between level 3 units, indicating that to a large extent there is
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homogeneity of the type of DISTRICT found within each COUNTY. (This is not
surprising; as an example, consider the fact that all of the DISTRICTs classified as
being Inner London must lie within the same COUNTY, i.e. London.)

We can calculate the explained variance (R2 ¼ 1� bσ2=s2y) at any time by making

a comparison of the variance in our current model, bσ2 , and the variance in the
original data, s2y . (See, for example, Gelman and Hill 2007.) From M5 in the table

above, we have bσ2 ¼ 90:695. To obtain s2y we could refit the first model—labelled
‘Trend 1-level’ above—excluding the trend variable (YEAR-79) from the fixed part.
Alternatively, we can use the Averages and Correlation window to obtain the SD
of the dependent variable SMR.

Go to the Basic Statistics menu
Select Averages and Correlations
Ensure that Averages is selected in the Operation section
Select SMR from the drop-down list
Click Calculate

In the output window, we can see that the variable SMR has a mean of 112.79 and
a standard deviation of 14.182, giving a variance of 201.129. So the R2 for M5 is
0.550.

Intervals and Tests Window

So far the change in likelihood has been used to assess improvement in the fit of the
model to the data. It is also possible to carry out hypotheses tests for either fixed or
random parameters using the Intervals and tests window. To illustrate how tests are
formulated, consider the following two hypotheses. Firstly, if we are interested in
testing whether SMRs in urban DISTRICTs are the same as those in Inner London
then, since Inner London is the baseline category, this is equivalent to testing
whether the coefficient for URBAN is significantly different from 0, i.e.

Hypothesis1 : β6 ¼ 0

We are not limited to single parameter tests but can also formulate significance
tests involving a function of two or more parameters, as well as joint significant tests
involving two or more functions of the model parameters. For example, consider a
test of the hypothesis that SMRs in rural, prospering and mature DISTRICTs are the
same, i.e.
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Hypothesis 2 : β3 ¼ β4 ¼ β5 or equivalently

β3 � β4 ¼ 0ð Þand β3 � β5 ¼ 0ð Þ implying β4 � β5 ¼ 0ð Þ

The Intervals and tests window gives us a choice of testing contrasts among the
fixed or random parameters; in this case, we want to test the fixed parameters.

Go to the Model menu
Select Intervals and tests
Select fixed at the bottom of the window

The # of functions relates to the number of functions or contrasts of the parameter
estimates being tested under a single hypothesis; for hypothesis 1 only one function
is necessary whilst two functions are required for hypothesis 2. The boxes beside
each fixed parameter are used to enter the function of the parameters to be tested,
whilst the constant (k) contains the value to which the function is compared which, in
both of the following cases, is the default value zero. So for hypothesis 1:

Select the box beside fixed : urban
Type 1
Press Calc
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Note that the function f is a single multiple of the URBAN parameter and so
equals β6, and because k ¼ 0, ( f � k) also equals the parameter β6. The test statistic,
based on Wald’s Test, appears at the bottom of the window, joint chi sq test(1df)
= 1.261, and this may be compared to a chi-squared distribution to either accept or
reject the hypothesis that β6 ¼ 0. In this instance we can see that the p-value of 0.261
is greater than the conventional threshold of 0.05 and, as such, we do not reject the
hypothesis that the mean SMR is the same in Inner London and urban DISTRICTs.

Now to formulate a test for Hypothesis 2 (if the Intervals and tests window is
still open, close it down and open it again to erase details of the previous test), we
need to set up the two tests corresponding to RURAL � PROSPER ¼ 0 and
RURAL – MATURE ¼ 0. (The third test, corresponding to PROSPER –

MATURE ¼ 0, is implied by the other two tests.)

Ensure fixed is selected at the bottom of the Intervals and tests window
Change the # of functions to 2
In the first column, enter a 1 beside fixed:rural and a –1 beside fixed:prosper
In the second column, enter a 1 beside fixed:rural and a –1 beside fixed:

mature
Press Calc

Each column specifies a function of the parameters which is compared to
constant (k) equal to zero; for example, in column 1, the function is
(1 � β3) � (1 � β4) ¼ 0 (i.e. β3 ¼ β4).
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This time we are jointly testing two functions and therefore base the test on two
degrees of freedom. The resulting p-value of 0.122 indicates that we cannot reject the
hypothesis that the mean SMRs of categories RURAL, PROSPER and MATURE
are the same.

In practice at this stage we might want to collapse the variable FAMILY into just
three categories: a baseline category comprising Inner LONDON and URBAN areas
and a combination of RURAL, PROSPERing and MATUREr areas, which would
involve creating a new variable using the Calculate window and replacing the
variables RURAL, PROSPER and MATURE in the model with this new variable.
However, we will continue for now with all six categories.

This section has covered model building using:
Equations window—adding an explanatory (independent) variable
Tabulate window—tabulating variable means across categories
Names window—declaring categories for a variable
Averages and correlation window—obtaining the mean and standard devi-

ation of a variable
Intervals and tests window—testing hypotheses involving single and multi-

ple parameters
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Random Coefficients

We now consider another important class of multilevel model: random coefficients
(also known as random slopes). In variance components models only the intercept is
considered random; however, in the following model we will also allow the slope to
vary across higher levels.

Random Slopes

The following section considers the possibility that the rate at which the SMRs have
been decreasing may vary from one COUNTY to another. The models fitted so far
have contained random intercepts for both COUNTY and DISTRICT; however, the
following model will also consider random slopes across the level 3 units
(COUNTYs). This is achieved in the Equations window by specifying that we
want the coefficient of (YEAR-79) to vary randomly across COUNTYs.

Return to the Equations window
Click on (year 2 79)ijk and check the box by k(COUNTY)
Then click Done
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The coefficient of (year 2 79)ijk has changed from β1 to β1k indicating that this
parameter now varies randomly across COUNTYs. The estimate of β1k is now given
as a mean β1, common to all COUNTYs, plus a level 3 residual v1k, unique to the kth
COUNTY. The level 3 residuals v0k and v1k now have a joint multivariate normal
distribution with variances σ2v0 and σ2v1 respectively and covariance σv01. Click on
More to estimate this model.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M6
Click OK
Go to the Model menu
Select Compare stored models

222 11 Multilevel Linear Regression Using MLwiN: Mortality in England and Wales. . .



Note that should you want you can select a subset of stored models to compare by
going to the Manage stored models window in the Model menu.

There is little change in the fixed part of the model, nor in the level 1 or level
2 variances. There has, however, been a large reduction in the value of �2�log
(likelihood). Therefore, the addition of random slopes has improved the overall fit of
the model. (If the covariance between the intercept and slope at the COUNTY level
does not show up in the results table then go toManage stored models in theModel
menu, ensure that the box by covariance in the Metric section is checked, and click
on the Compare button.) The three random terms at level 3 now refer to the variance
of the intercept (CONS) for COUNTYs—σ2v0, the variance of the slope (YEAR79)
for COUNTYs—σ2v1 , and the covariance between the two, σv01. Whilst the two
additional random terms appear large compared to their standard error, it is possible
to test this formally using the Intervals and tests window. This time we are testing
contrasts on two random parameters.

Go to Model menu
Select Intervals and tests
Select random at the bottom of the window
In the box beside # of functions type 2

There are two functions to test; our hypothesis is
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Hypothesis 3 : σ2v1 ¼ σv01 ¼ 0 or

σ2v1 ¼ 0 and σv01 ¼ 0

In the first column, enter a 1 beside county:year79/cons
In the second column, enter a 1 beside county:year79/year79
Press Calc

The value of 19.330 is highly significant when compared with a chi-squared
distribution with two degrees of freedom ( p < 0.001); we therefore reject the
hypothesis that the two random terms are not significantly different from 0. In
general, when testing the significance of random parameters (variances and covari-
ances), using either the likelihood ratio test (comparing values of �2�log(likeli-
hood)) or the Wald test (using the Intervals and tests window), we need to halve the
p-value. This is essentially because variances are non-negative and the alternative
hypothesis is therefore one-sided. For a more detailed explanation of this issue, the
reader is referred to Snijders and Bosker (2012).
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The level 3 variance is now more complex and more difficult to interpret;
however, the Variance function window can be used as an aid.

Variance Function Window

Go to Model menu
Select Variance function

The purpose of this window is to display and calculate the variance function at any
level of the current model. The variance function for level 1 is shown by default; this
only involves one term because the current model assumes that the level 1 variance is
constant for all observations. (Remember that x0 is our CONStant and takes the
value 1 for all observations.) To view the level 3 variance function:

In the drop-down list by level in the bottom left-hand corner, select 3:
COUNTY
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The current model has two terms random at level 3, the intercept and the slope, so
the level 3 variance is a function of two random variables. The function shown is the
variance of the sum of the two random terms v0kx0 and v1kx1ijk. Since x0 is just the
CONStant term, taking the value 1, the level 3 variance is a quadratic in x1ijk
(YEAR-79). We can use the Variance function window to calculate this function
and use the Graph window to plot it. This will tell us how the variance between
COUNTYs has been changing over time.

Note that the columns in the table in the Variance function window named cons,
(year-79), result and result se allow us to estimate the variance function at specific
values of (YEAR-79). However, rather than enter the values from 0 to 13 it is simpler
to estimate the function for all data points.

In the drop-down menu by variance output to, select C22
Click calc

In the Names window name C22 VARF3. To plot the level-3 variance across the
observed values of YEAR79:

From the Graph menu, select the Customised Graph window
Select a new display D3
Highlight ds # 1
Select y to be VARF3
Select x to be YEAR
Click Apply

The level 3 (between COUNTY) variance has steadily decreased from a high of
57.2 in 1979 to a low of 24.6 in 1992. It therefore appears that absolute differentials
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between COUNTYs have been decreasing over time. Another way of examining this
change is by looking at the prediction graphs. First calculate the predicted values
using the random intercepts and slopes at COUNTY level:

Choose the Predictions window from the Model menu
Click on cons, (year 2 79)ijk and (year 2 79)^2ijk to ensure that they are

included
Click on u0jk and e0ijk to remove them from the prediction but ensure that v0k

and v1k are included
Select PRED3 for output from prediction to
Click Calc

Next re-calculate the predicted values using the fixed part of the model only:

Click on v0k and v1k to remove these terms from the prediction
Select PREDFP for output from prediction to
Click Calc

We have ignored the categories of the FAMILY variable indicating the type of
each DISTRICT. This is because we are only interested at the moment in seeing how
mortality has changed over time in each COUNTY, and not how mortality varies
according to FAMILY. (The inclusion of the categories of FAMILY would give us
up to six lines for each COUNTY, corresponding to the different DISTRICT types
within each COUNTY.) We can plot these new level 3 predictions using the
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Customised graph window, overlaying the national mean in green on top of the
COUNTY-specific slopes.

Return to the Customised Graph window
Select a new display D4
Highlight ds # 1
Select y to be PRED3
Select x to be YEAR
Select COUNTY as the group
Change plot type to line
Click Apply
Highlight ds # 2
Select y to be PREDFP
Select x to be YEAR
Change plot type to line
Under the plot style tab, set colour to green
Set line thickness to 3
Click Apply

The plot shows the individual predicted trends for each COUNTY plotted around
the mean trend line shown in green. The fact that the COUNTY lines are converging
towards the mean line over time demonstrates the decrease in level 3 variation
over time.
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Higher-Level Residuals

There are now two sets of residuals at the COUNTY level; we can look at these using
the Residuals window.

Under the Model menu, open the Residuals window
Click on the Settings tab
Select the level to be 3:COUNTY
Change the multiplier to 1.96 for the SD (comparative) of residual
Click on Set columns

Each of the output items now requires two columns: the first column relates to the
intercept CONS and the second to the slope YEAR79. For example, C300 will store
the residual for CONS and C301 the residual for YEAR79. We can plot both sets of
residuals, together with 95% confidence intervals:

Click Calc
Select the Plots tab
Select residual +/- 1.96 sd x rank
Click Apply
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These plots can be used to examine how many COUNTYs have slopes which
differ from the average as well as how many have intercepts which differ from the
average. Note that a COUNTY’s rank for the intercept residual will not necessarily
be the same as its rank for the slope residual. To see how the intercept and slope
residuals are correlated between COUNTYs:

Return to the Plots tab in the Residuals window
Under the pairwise heading, select a residuals plot
Click Apply

This shows the strong negative correlation between the two sets of residuals.
Those in the top left quadrant refer to those COUNTYs with negative intercept
(CONS) residuals and positive slope (YEAR-79) residuals. This suggests that those
COUNTYs which had lower than average SMRs in 1979 experienced a more
gradual decrease in SMR over the 14 YEARs. Similarly, the COUNTYs featured
in the bottom right quadrant are those which had above average SMRs in 1979
(positive CONS residual) but which experienced mortality decreasing at a faster than
average rate (negative (YEAR-79) residual).

Complex Level 1 Variation

The multilevel framework allows variables to be random at any level so, for
example, we may wish to extend the previous model such that trends in SMR not
only vary across COUNTYs but also vary across DISTRICTs at level 2. However,
random variables at level 1 have a slightly different interpretation; this concerns the
effects of heterogeneity (i.e. non-constant variance). In this example, we may
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consider whether the variation between observations is constant throughout the
14 years or whether it changes. We do this by making the coefficient of the variable
YEAR79 random across observations (ID—our level 1 identifier).

Return to the Equations window
Click on (year 2 79)ijk
Check the box at i(id)
Click Done

Now estimate this model by clicking on the More button.

Click on the Store button at the bottom of the Equations window
Enter a suitable name in the box in the Model name window, e.g. M7
Click OK
Go to the Model menu
Select Compare stored models
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There is evidence of heterogeneity with a substantial reduction in �2�log(like-
lihood). This means that the degree of scatter of individual observations about the
predicted DISTRICT (level 2) means is not constant over time; it appears to have
been decreasing. We can use theVariance functionwindow to estimate the variance
at each level, creating two new variables VARF2 and VARF1 and plotting these
three variables against YEAR in the Graph window.

Open the Variance function window under the Model menu
Ensure that 1:ID is selected to be the level
In the drop-down menu by variance output to, select C23
Click Calc
Select 2:DISTRICT to be the level
In the drop-down menu by variance output to, select C24
Click Calc
Select 3:COUNTY to be the level
In the drop-down menu by variance output to, select VARF3
Click Calc

In the Names window name C23 VARF1 and C24 VARF2. We can plot all of
these variance functions on the same scale across the observed values of YEAR; this
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will show us how the variance at COUNTY, DISTRICT and YEAR level have been
changing over time.

Go to the Customised Graph window
Select display D3
Highlight ds#1
Select y to be VARF3
Select x to be YEAR
Select the plot type to be line
Under the plot style tab, select the line thickness to be 3
Click Apply
Under the plot what? tab, select ds#2with VARF2 as the y variable, YEAR as

the x variable, and the plot type to be line
Under the plot style tab, select the colour to be red and the line thickness to

be 3
Click Apply
Under the plot what? tab, select ds#3with VARF1 as the y variable, YEAR as

the x variable, and the plot type to be line
Under the plot style tab, select the colour to be light magenta and the line

thickness to be 3
Click Apply
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We have not fitted any random effects at level 2, so the variation between
DISTRICTs within COUNTYs is assumed to be constant. The variation between
COUNTYs decreased steadily between 1979 and 1992; however, the level 1 variance
decreased from 1979 to 1988 but may have increased slightly since then. (This may
also be an ‘edge effect’.) The total variation has decreased from 123 in 1979 to just
76 in 1992. In a similar manner it is possible to explore the extent to which the level
2 variation (between DISTRICTs) has also been changing over time.

By this stage the user has become familiar with the basics of model fitting for
continuous (normally distributed) responses. The fixed part of the model can be built
up as with an ordinary least squares (OLS) regression model, including any combi-
nation of continuous and categorical variables and interactions between them. The
significance and effect of variables can be examined through changes in the likeli-
hood or through comparisons of the parameter estimates with their estimated stan-
dard errors.

The difference between such models and OLS regression is the ability to separate
the variance into the different levels in the model—COUNTY, DISTRICT and the
yearly observations within DISTRICTs in this example—and then to model this
variance by considering other variables to be random at any of the levels. At higher
levels this has the interpretation of fitting random slopes; at the lowest level this is
modelling heterogeneity (non-constant variance) within the data. We are again able
to test for the significance of any of these random terms.

The example used has been illustrative of the methods employed when fitting a
multilevel model; it is not, however, the way in which we would normally model
such data. The following section goes on to consider a generalised linear model for
these data; however, before proceeding to the more complex modelling it is impor-
tant to have a good understanding of the basics covered up to this point.
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This section has covered random coefficients using:
Equations window—making a variable random at different levels
Intervals and tests window—testing hypotheses about random parameters,

e.g. the significance of a random slope
Variance function window—calculating a non-constant variance
Graph window—plotting random slopes
Predictions window—predictions including random intercepts and random

slopes
Residuals window—plotting intercept and slope residuals with confidence

intervals
Residuals window—pairwise comparisons of intercept and slope residuals
Equations window—modelling heterogeneity at level 1

A Poisson Model: Introduction

The model that we have fitted assumes that the standardised mortality ratio follows a
normal distribution. We found that the variance decreased over the period
1979–1992; over this time the standardised mortality ratio also fell. This suggests
that there may be a link between the variance in a particular year and the average
mortality rate in that year. We have also attached equal importance to every area and
in every year; this is probably not sensible since the size of areas in terms of their
populations and the number of deaths observed varies considerably both across areas
and over time. One possibility would be to weight each observation according to the
population of the district in that year; this requires weighting at each level of analysis
and would ensure that areas from which we have the most information—the largest
areas in terms of their populations—are afforded the most weight. In this section, we
adopt an alternative approach.

The local mortality datapack is based on counts of deaths. Instead of modelling a
transformation of this response—the SMR—we can consider modelling the actual
counts of deaths. Such data are discrete rather than continuous—you cannot observe
fractions of deaths—and they also tend to be extremely skewed (see histogram
below). Therefore, the assumption of a normal distribution is usually not
appropriate.

A Poisson Model: Introduction 235



Instead we can fit a generalised linear model and approximate a Poisson distri-
bution for the data. This is the basis of the analysis conducted by Leyland (2004) on
data including these.

Setting Up a Generalised Linear Model in MLwiN

First open the original worksheet lmdp.ws again.

Go to the File menu
Select Open worksheet
Navigate to and open the worksheet called lmdp.ws

We use the Generate vector window to create a constant and a unique identifier
for every data point or observation.

Select the Generate vector window from the Data Manipulation menu
Select Generate vector
Select Type of vector to be Constant vector
Select C9 to be the Output column
Enter 5639 (the number of data points) beside Number of copies
Enter 1 beside Value
Click the Generate button
Select Type of vector to be Sequence

(continued)
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Select C10 to be the Output column
Enter 1 beside Start number
Enter 5639 (the number of data points) beside End number
Enter 1 beside Step value
Click the Generate button

In the Names window name C9 CONS and C10 ID. Then go to the Equations
window. We will set DEATHS to be the response variable in a 3-level model: ID
(observations) in DISTRICTs in COUNTYs.

Click on either of the y terms
Select DEATHS as the dependent variable
Select 3 – ijk for N levels
Select COUNTY for level 3(k)
Select DISTRICT for level 2(j)
Select ID for level 1(i)
Click on Done

So far we have simply repeated the steps for the 3-level model in the introductory
tutorial with the response variable being DEATHS rather than SMR. We now have
to amend the default distribution for the response. In the Equations window, we will
specify a Poisson distribution with a log link.

Click on the N that defines the normal distribution
Check the box marked Poisson
Click on Done

These steps have specified the response to be a Poisson random variable, which
defines the lowest level variance function, and the linearising function of the
response (the relationship between the response variable, DEATHS, and any of
our explanatory variables) is taken to be the natural logarithm.
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Now return to the Equations window and add CONS to the fixed part of the
model only.

Click on β0x0
Select CONS from the drop-down list
Click on Done

This time you may notice that there was no possibility to make the CONStant
random at the lowest level (ID). This is because we have already defined the error
structure at the lowest level when we specified that the data had a Poisson distribu-
tion. MLwiN automatically generated a new variable—which it called BCONS.1—
which it will use in the estimation. This new variable can be seen in the Names
window.

We are using the CONStant in the fixed part of the model to estimate the intercept
or mean. We are going to fit a single-level Poisson model to start with, ignoring any
variation between DISTRICTs and COUNTYs. As in the introductory tutorial, we
will fit a quadratic in YEAR centred around 1979.

Go to Data manipulation menu
Select Calculate
Select the empty column C12 and press the right arrow button
Click the ‘¼’ button on the keypad
Select YEAR from the list of variables and press the right arrow button
Use the window’s keypad to enter –79
Press Calculate
Clear this calculation using the backspace or delete buttons on your keyboard

or by pressing the Clear button in the Calculate window
Next, select the empty column C13 and press the right arrow button
Click the ‘¼’ button on the keypad
Select C12 from the list of variables and press the right arrow button
Use the window’s keypad to enter ^2
Press Calculate

Use the Names window to name C12 and C13 YEAR79 and YEAR79^2,
respectively. Next, return to the Equations window to add both terms to the fixed
part of the model only.

Click on the Add term button
Select the variable YEAR79 from the drop-down list
Click on Done

(continued)
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Click on the Add term button
Select the variable YEAR79^2 from the drop-down list
Click on Done

The Equations window should now look like this (remember you can use the
Name,Estimates and + buttons to display more information about the current model
in the Equations window):

The response, DEATHs, is assumed to follow a Poisson distribution with param-
eter πijk. The predicted number of deaths is then estimated by taking the log of πijk
(i.e. linearising the response) and setting this equal to the linear predictor on the
right-hand side. This linear predictor is estimated as a quadratic function of time and
the intercept in the predictor, β0, does not vary across COUNTYs or DISTRICTs
since we have included no random effects at these levels. This model will provide
estimates of how the average number of deaths has changed over time (the fixed part)
allowing just for random fluctuations from one year to the next (the random part).

The Offset

The model described above will fit the observed number of DEATHS in an area
using just a mean and a linear and quadratic term in YEAR. However, unlike the
SMR this response variable has not been scaled. That is, the SMR of an average
DISTRICT in 1992 should be 100; the number of DEATHS in that DISTRICT may
be 10 or 10,000 depending on the size of the population. All that an SMR of 100 tells
us is that the observed number of DEATHS is the same as the EXPECTED number;
we are now trying to fit that observed number and so need to account for the
EXPECTED number in our model. We will do this by including it as an offset
term. We can think of this as modelling the log of the ratio of the predicted deaths
πijk to the EXPECTED deaths Εijk as
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log πijk=Eijk

� �
¼ β0x0 þ β1x1ijk þ β2x2ijk

In terms of the predicted number of deaths, this can be rewritten as

log πijk
� � ¼ log Eijk

� �þ β0x0 þ β1x1ijk þ β2x2ijk

In other words, the logarithm of the EXPECTED number of deaths in each area,
based on population size and age-sex composition, is entered into the regression
equation but its coefficient is fixed at 1 rather than being estimated freely, as is the
case with the covariate coefficients for CONS, YEAR79 and YEAR79^2. MLwiN
provides a facility to do this; the variable to be offset must be named OFFS. We
can create a variable containing the logarithm of the expected count using the LOGE
function in the Calculate window.

Go to Data manipulation menu
Select Calculate
Select the empty column C14 and press the right arrow button
Click the ‘¼’ button on the keypad
Select LOGE from the list of functions and press the up arrow button
Click the ‘(’ button on the keypad
Select EXPECTED from the list of variables and press the right arrow button
Click the ‘)’ button on the keypad
Click the Calculate button

In the Names window, name C14 OFFS. This variable is now included in all
subsequent Poisson models unless it is renamed.

Non-linear Estimation

As mentioned above, generalised linear models are approximated in MLwiN using a
linearising function based upon an expansion of the Taylor series. Specialist knowl-
edge of this approximation is not necessary; however, users should be aware of the
following options which are available when using non-linear estimation.

Click the Nonlinear button at the bottom of the Equations window

A window appears and provides details of the options for three settings:

• Distributional assumptions give us the options of Poisson or extra Poisson
variation at level 1. A Poisson distribution has an equal mean and variance such
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that E(yijk)¼ Var(yijk)¼ πijk. However, it may be that such a distribution does not
fit the data well; the most common situation is one in which the tail of the
observed distribution is too heavy. We can sometimes obtain a better approxi-
mation to the data by allowing extra Poisson variation; the mean remains
unchanged but we fit the variance as Var yijk

� � ¼ πijkσ2e . Poisson (distributional)

variation can then be seen to be a special case of this in which σ2e ¼ 1.
• Linearisation gives us the choice of using a first order or second order

approximation to the Taylor series.
• Estimation type gives us the option of using marginal quasi-likelihood (MQL)

or penalised quasi-likelihood (PQL).

The latter two options affect the way in which coefficients are estimated. Bias in
parameter estimates tends to be lower when using second order approximations and
PQL estimation; however, there is an associated cost in as much as estimation may
take longer. The PQL estimation procedure is also somewhat less robust and you
may experience problems with convergence. A guideline is often to use first order,
MQL when exploring the data and to use second order, PQL to test the model and
obtain final estimates.

We will begin by using the default settings, assuming Poisson variation and a
first order, MQL estimation procedure. These options may be set by clicking the
Use Defaults button in the Nonlinear Estimation window and then clicking Done.

This section has covered setting up a GLM using:
Equations window—changing the distributional assumptions
Calculate window—using arithmetical functions
Adding an OFFSet to a Poisson model
Equations window—non-linear estimation options

Model Interpretation

Press the Start button to estimate the model.
To view the estimates, it will be helpful to change the precision of the display.

Go to the Options menu
Select Numbers
Increase the # digits after decimal point to 4
Click Apply and then Done
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By clicking on the Estimates button in the Equations window, the following
should appear:

The parameter estimates are now on the log scale and should be treated as such
with the OFFSet term included; for example, the predicted number of deaths in 1979
(when both YEAR79 and YEAR79^2 equal 0) has been fitted as 1.272 (¼e0.2403)
times the expected number of deaths. Since the expected number of deaths varies
from DISTRICT to DISTRICT, so will the predicted number of deaths. Note that
MLwiN does not give values of �2�loglikelihood for generalised linear models.

We can now consider the effects of COUNTY and DISTRICT by letting the
intercept or mean CONS vary at random across these two levels.

Return to the Equations window
Click on CONS
Click on the check box by j(DISTRICT)
Click on the check box by k(COUNTY)
Click on Done
Click on the More button to re-estimate the model

The parameter estimates in the fixed part are little changed; what is clear,
however, is that there is variation over and above the Poisson variation in the counts
that we might expect from one year to the next. Of the higher-level variation, about
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64% (0.0059/[0.0059 + 0.0033]) is at the COUNTY (as opposed to the DISTRICT)
level; this figure is very similar to that obtained from the 3-level variance compo-
nents model of the SMR.

We can see what is going on more clearly using the Graph window. First of all
we will get Predictions by DISTRICT and output these to C15.

Go to Model menu
Select Predictions
Click on cons, year79ijk and year79^2ijk to include all terms in the Predic-

tions equation
Select C15 for output from prediction to
Click Calc

In the Names window, change the name of C15 to PRED2. In a similar manner
we can put the predicted values for the fixed part in c16 and the level 3 predictions in
c17.

Return to the Predictions window
Click on v0k and u0jk to remove them from the Predictions equation
Select C16 for output from prediction to
Click Calc
Click on v0k to include it in the Predictions equation
Select C17 for output from prediction to
Click Calc
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Name the variables C16 and C17 PREDFP and PRED3, respectively. You will
note from the summary statistics in the Names window that these prediction
equations are on the log scale; they also do not include our OFFSet term. As such,

we really have the predicted values log by=Eijk

� �
.

We can very easily convert these to predicted SMRs by taking the EXPOnents in
the Calculate window:

Go to Data manipulation menu
Select Calculate
Select the PRED2 and press the right arrow button
Type ¼100� using the keypad
Select the function EXPOnential from the list and press the up arrow button
Click the ‘(’ button on the keypad
Select PRED2 from the list of variables and press the right arrow button
Click the ‘)’ button on the keypad
Click the Calculate button

Repeat this process for the variables PREDFP and PRED3. We can now plot the
predicted SMR against the observed values; PRED2 includes DISTRICT and
COUNTY effects but assumes that the year-on-year fluctuations are part of a Poisson
process.
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The variability in the predicted SMRs (range 82–178) is slightly less than in the
observed SMRs (range 75–179). However, some of the points on this graph are a long
way from the diagonal (if a point lies on the diagonal, then the observed and predicted
SMRs are equal).We can identify some of the points that lie further from the diagonal
by clicking on those points in the graph. Some of those in the lower right-hand
quadrant—where observed SMRs are considerably larger than the predicted—can be
identified as belonging to district 2835 in county 28. It may be worth examining some
of these points in more detail using the View or edit data window, clicking the view
button to select the required variables and resizing the window if necessary:
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For most years in district 2835 there were more deaths than expected; however,
the expected number of deaths (and therefore the population) was rather small (range
16–29). The observed SMRs for this district show considerable disparity, ranging
from 174 in 1981 to 99 in 1986. The values in PRED3 suggest that county 28 as a
whole has an SMR which is slightly below average, the value of 97 in 1992 being
lower than the fitted average in PREDFP of 101. PRED2 contains the predicted
SMRs based on the fixed part of the model—containing just an intercept and a linear
and quadratic term in YEAR—and the residuals at levels 2 (DISTRICT) and
3 (COUNTY). Since both sets of residuals have been shrunk towards zero, the
predicted SMRs are also known as shrunken estimates. (This name may seem
confusing, since the estimates for individual years are not always closer to the
average in PREDFP. For example, in 1982 the observed SMR of 122 is nearer to
the average of 120 than the shrunken estimate of 127. This is because the shrunken
estimate for any one year is derived from data for all years in that district—and,
indeed, for all districts and all counties—and in this sense is thought to be a
closer approximation to a ‘true’, underlying relative risk of mortality.) Note that
the values of the predicted SMR are much closer to the observed values for the
previous DISTRICT, 2830, reflecting the larger number of expected deaths and the
consequent increase in confidence that the observed rate is close to the ‘true’
mortality rate.

We can also plot the predicted values at national and COUNTY level by YEAR:
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This graph illustrates the convergence of SMRs that we noted in the previous
analysis even though we have not included a random slope; this is to be expected
since the assumption of Poisson variation means that we can expect the variance to
decrease as the number of DEATHS decreases.

You can continue to build up the model as before, entering random effects where
appropriate. The plots of predicted SMRs can be broken down into the three area
groupings—urban areas and inner London (URBANL), rural, prospering and
maturer areas (RUPRMA) and MINING using the layout option of the Graph
window. These might look as follows.
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These graphs indicate that there are clear differences between the three types of
area in terms of their mean SMR, with MINING areas tending to have the highest
SMRs. One of the RURAL districts—DISTRICT 4820—appears to be outlying with
the highest predicted SMR over the period.

This section has GLM interpretation using:
Equations window—interpreting parameter estimates
Calculate window—converting predicted values back to SMRs

Predictions and Confidence Envelopes

Compare the parameter estimates obtained from the basic 1-level and 2-level models
with YEAR79 as the sole covariate. Note particularly the standard errors in the fixed
part of the two models; whilst the standard error associated with the intercept
(CONStant) has increased with the addition of another level, as we might expect,
that associated with the slope (YEAR79) has actually decreased from 0.0387 to
0.0164. One of the reasons for fitting a multilevel model is that single-level models
tend to underestimate the standard errors in the fixed part, so what is the cause of this
counter-intuitive result?

To understand this apparent anomaly, it is necessary to consider the confidence
that we have in any predicted value byij ¼ bβ0 þ bβ1x1ij. The variance of our predicted
value byij is given by

248 11 Multilevel Linear Regression Using MLwiN: Mortality in England and Wales. . .



var byij� � ¼ var bβ0� �
þ x21ijvar bβ1� �

þ 2x1ijcov bβ0,bβ1� �
From the current (2-level) model, we have estimates of var bβ0� �

and var bβ1� �
as

(0.5439)2 and (0.0164)2, respectively. However, there is no estimate of the covari-
ance in the Equations window. This parameter is stored by MLwiN, but we will
have to find it.

Columns C1096–C1099 are used by MLwiN to store, respectively, the random
parameter estimates, their estimated covariance matrix, the fixed parameters and
their estimated covariance matrix. Both covariance matrices are stored in lower
diagonal form. Take a look at these four columns in the Data window.

Go to Data Manipulation menu
Select View or edit data
Click on the view button
Scroll down and highlight C1096, C1097, C1098 and C1099
Click the OK button and resize the window if necessary

Looking at columns C1098 and C1099 we find the estimated distribution of the
fixed parameters to be

bβ0bβ1
" #

� N
125:6982

�1:9845

� �
,

0:2958

�0:0017 0:0003

� �� 	

Our estimates of the two parameters are therefore not independent; we find a
negative correlation of about �0.2 between the intercept and the slope. We can use
the Predictions window to plot the predicted line and a 95% confidence envelope.
First save the data so that we can return to the current model when we have finished
our exploration.

Go to File menu
Select Save worksheet as. . .
Type lmdpapp1.ws as the new filename
Click the Save button
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The Predictions window is described in more detail when it is used later in this
tutorial. At this stage we will do little more than detail the commands. To start with
we will obtain the predicted values of the SMR for each COUNTY, DISTRICT and
YEAR based on the fixed part of the model alone, together with 1.96 times the
standard error of these estimates. (A 95% confidence interval can be constructed as
the estimate � 1.96 standard errors.) At the moment, the fixed part of the model just
contains the intercept and the time trend YEAR79.

Go to Model menu
Select Predictions
Click on β0 and β1
In the drop-down list by Output from prediction to select C12
Edit the multiplier of S.E. to 1.96
In the drop-down list by S.E. of select Fixed
In the drop-down list by Standard Error output to select C13
Click on Calc

C12 now contains our predicted regression line and C13 contains 1.96 times the
standard error of the fixed parameters. We can plot these using the Customised
Graph window, plotting the predicted values against YEAR as a line graph.

Go to the Graphs menu
Select Customised Graph(s)
Select the second dataset, D2, from the pull-down list at the top left of the

window
From the drop-down list by y select C12
From the drop-down list by x select YEAR
Change the plot type to line
Click the Apply button
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This produces a line graph of the predicted mean SMR. We can add confidence
intervals around this line using the y errors feature on the error bars tab:

In the Customised Graph window, click on the error bars tab
Select C13 to be the y errors + and the y errors –
Change the y error type to lines
Click on Apply

This is the predicted regression line together with 95% confidence intervals. We
will now compare this with the single-level model. We start by removing CONS
from the random part of the model at level 2 and then we re-estimate the model.

In the Equations window, click on u0j
Remove the tick by j(district)
Click on Done
Click on More

This returns us to the single-level model that we had fitted previously. We can
now use the Predictions window again to obtain the predicted values of the SMR
based on the fixed part of the model, together with appropriate multiples of the
standard errors of these estimates.
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In the Predictions window, ensure that both fixed terms are included but not
the random terms

In the drop-down list by Output from prediction to select C14
Edit the multiplier of S.E. to 1.96
In the drop-down list by S.E. of select Fixed
In the drop-down list by Standard Error output to select C15
Click on Calc

We can plot the estimates from this single-level model alongside those from the
2-level model using the position feature of the Customised Graph window.

In the Customised Graph window, click on row 2 under ds #
From the drop-down list by y select C14
From the drop-down list by x select YEAR
Change the plot type to line
Click on the error bars tab
Select C15 to be the y errors + and the y errors –
Change the y error type to lines
Click on the position tab
Click in the box on row 1, column 2
Click on Apply
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(Note: the above graphs have added titles.) We can see that the confidence
envelope around the predicted mean is much tighter under the 1-level model than
the 2-level model. We can confirm this by looking at the variables C12–C15 in the
Names window:

C13, 1.96 times the standard error under the 2-level model, varies between 1.046
and 1.066; C15, 1.96 times the standard error under the single-level model, takes
values ranging between 0.308 and 0.581. The single-level estimates show signs of
‘misestimated precision’—ignoring the data hierarchy leads to a confidence enve-
lope that is too tight.

Retrieve the saved worksheet before returning to the section on the hierarchy
viewer:

Go to File menu
Select Open worksheet
Choose lmdpapp1.ws as the filename
Click the Open button
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