
Chapter 11
Photonic Imaging with Statistical
Guarantees: From Multiscale Testing
to Multiscale Estimation

Axel Munk, Katharina Proksch, Housen Li and Frank Werner

Abstract In this chapter we discuss how to obtain statistical guarantees in photonic
imaging. We start with an introduction to hypothesis testing in the context of imag-
ing, more precisely we describe how to test if there is signal in a specific region of
interest (RoI) or just noise. Afterwards we extend this approach to a family of RoIs
and examine the occurring problems such as inflation of type I error and dependency
issues. We discuss how to control the family-wise error rate by different modifi-
cations, and provide a connection to extreme value theory. Afterwards we present
possible extension to inverse problems.Moving from testing to estimation, we finally
introduce a method which constructs an estimator of the desired quantity of interest
with automatic smoothness guarantees.
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11.1 Introduction

The analysis of a photonic image typically involves a reconstruction of the measured
object of interest which becomes the subject of further evaluation. This approach is
frequently employed in photonic image analysis, though it can be quite problematic
for several reasons.

1. As the image is noisy and often inherently random, a full reconstruction relies on
the choice of a regularisation functional and corresponding a priori assumptions
on the image, often implicitly hidden in a reconstruction algorithm. Related to
this, the reconstruction relies on the choice of one or several tuning parameters. A
proper choice is a sensible task, in particular when the noise-level is high and/or
inhomogeneous.

2. The sizes of the objects might be below the resolution of the optical device which
further hinders a full reconstruction.

3. As the resolution increases, the object to be recovered becomes random in itself
as its fine structure then depends on, e.g., the conformational states of a protein
and the interpretation of the recovered object might be an issue.

It is the aim of this chapter to provide a careful discussion of such issues and to
address the analysis of photonic images with statistical guarantees. This will be done
in two steps. In Sect. 11.2 we survey some recent methodology, which circumvents
a full recovery of the image, to extract certain relevant information in such difficult
situations mentioned above. Based on this (see Sect. 11.3), we will extend such
methods also to situations in which a full reconstruction is reasonable, but still a
difficult task, e.g., when the multiscale nature of the object has to be recovered. In
both scenarios we will put a particular emphasis on statistical guarantees for the
provided methods.

An example where a full recovery of the object of interest is typically not a valid
task is depicted in the centre of Fig. 11.1 where a detail of a much larger image is
shown (see Fig. 1 in [1] for the full image). The investigated specimen consists of
DNA origami which have been designed in such a way that each of the signal clusters
contains up to 24 fluorescent markers, arrayed in two strands of up to 12, having a
distance of 71 nanometers (nm) (see left panel of Fig. 11.1 for a sketch of such a
DNA origami). As the ground truth is basically known, this serves as a real world
phantom.

Data were recorded with a STED (STimulated Emission Depletion) microscope
at the lab of Stefan Hell of the Department of NanoBiophotonics of the Max Planck
Institute for Biophysical Chemistry. In contrast to classical fluorescence microscopy,
the resolution in STED microscopy is in theory not limited and can be enhanced by
increasing the intensity of the depletion laser [2]. However, this increase comes at
the price of a decrease in intensity of the focal spot, which bounds the resolution in
practice. Therefore a convolution of the underlying signal with the PSF of the STED
microscope is unavoidable and a full reconstruction of the DNA origami (or the
shape of the markers) appears to be difficult. However, for most purposes this is also
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Fig. 11.1 (Detail of Fig. 1 in [1]) Left: Sketch of single DNA origami, middle: detail of image of
randomly distributed DNA origami, right: detected strands of markers

not relevant. Instead, less ambitious tasks will provide still important information,
e.g., the location of these fluorescent markers. This can be done via a statistical test,
which is presumably amuch simpler task than reconstruction (estimation in statistical
terminology) and it can be tailored towards answering particular questions “How
many strands of markers are there?” and “Where are the DNA origamis located?”.
The right panel of Fig. 11.1 shows the locations of markers as found by such a
statistical test (from the data in themiddle panel in Fig. 11.1)whichwill be introduced
later on.

11.2 Statistical Hypothesis Testing

11.2.1 Introduction

We will see that proper testing in the above example (Fig. 11.1) is already a complex
task. Therefore, in this section, we first introduce the concept of statistical testing in
a basic setting. The first step in statistical hypothesis testing is to define the so-called
null hypothesis, H, and the alternative hypothesis, K :

H : “Hypothesis to be disproven”
K : “Hypothesis to be sustantiated”.

For example, H might correspond to the hypothesis that no marker is contained
in a certain given region of the image, K corresponds to the contrary that there is
at least one marker in this region. A statistical significance test is a decision rule
which, based on given data, allows to discriminate between H and K . If a certain
criterion is met, H is rejected and K is assumed. If not, H cannot be rejected. For
instance, the photon count in a certain given region of a noisy image gives rise to
the believe that at least one marker is contained therein. This could be tested, for
example by checking whether the total number of photons detected in this region is
larger than a certain threshold. However, due to the involved randomness of photon
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emissions and background noise such a finding is associated with a (certain) risk of
being incorrect. A statistical test aims to control this risk. Hence, prior to performing
a statistical test, a tolerable risk α is specified, typically in the range of 0.01 up to
0.1, corresponding to accepting the error rate that, on average, in at most α · 100% of
the cases the null-hypothesis H is falsely rejected. Such an α is called significance
level. This is written as

P (“H is rejected although H is true”) ≤ α. (11.1)

Here,P stands generically for all possible distributions under H andP(A) denotes
the probability1 of an event A. If the test criterion is chosen such that (11.1) holds,
the corresponding test is called a level-α-test. The ability of a test to correctly reject
H is called detection power. If H corresponds to the hypothesis that no marker is
located in a certain given region, the test (i.e., the data based decision procedure) is
then constructed in such a way that the probability α to falsely detect a marker in an
empty region is controlled. H and K are chosen in such a way that the false rejection
of H is to be considered the more serious error and controlled in advance. In our
scenario, this means that we consider wrong detection of a fluorophore as the more
serious error than missing a fluorophore.

11.2.2 A Simple Example

To demonstrate this concept more rigorously, we now consider a very simple Gaus-
sian model, which can be seen as a proxy for more complicated models. Assume that
one observes data

Yi = μi + εi , i = 1, . . . , n, (11.2)

where μi ≥ 0 denote possible “signals”hidden in observations Yi , and εi ∼ N (0, 1)
are independent normal random variables with variances σ2 = 1 (for simplicity).
Assume for the moment that all signals have the same strength, μi ≡ μ ≥ 0. The
interest lies in establishing thatμ > 0, i.e., presence of such signal in the data. Hence,
we set

H : μ = 0 (to be disproven) vs. K : μ > 0 (to be substantiated). (11.3)

The goal is now to find a suitable criterion which, given Y1, . . . ,Yn, allows to
decide in favour or against H in such a way that the error to wrongly reject H is
controlled by α. From a statistical perspective the aim is to infer about the mean of

1More formally, (11.1) is meant as P (“H is rejected although it holds”) ≤ α under all possible
configurations under H . Only where necessary this will be made explicit in the following by an
additional subscript.
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the Yi which should be close to the empirical mean Ȳ = 1
n

∑n
i=1 Yi of the data. An

intuitive decision rule would be to check whether Ȳ is “clearly” larger than zero,
Ȳ > γα, say, for a suitable threshold γα > 0. We consider the normalized (i.e. with
unit variance) sum

T (Y ) := 1√
n

n∑

i=1

Yi

and choose, for prescribed α > 0, the threshold γα such that we have equality in
(11.1). As under the assumption H we have that μ = 0, this gives2

P (H is falsely rejected) = P

(
1√
n

n∑

i=1

εi ≥ γα

)

= P (N (0, 1) ≥ γα)

= 1 − Φ (γα)
!= α, (11.4)

since 1√
n

∑n
i=1 εi ∼ N (0, 1). HereΦ denotes the cumulative distribution function of

a standard normal random variable: Φ(x) = 1√
2π

∫ x
−∞ e− y2

2 dy. If H holds true, i.e.,
μ = 0, (11.4) holds if we choose γα = z1−α, where z1−α is the (1 − α)-quantile of
the standard normal distribution, e.g., z1−α = 1.6449, whenα = 0.05. The statistical
test that rejects H whenever T (Y ) > z1−α is called Z-test and is a level-α test.
Furthermore, if a signal is present, i.e., μi ≡ μ > 0 we have that

Pμi≡μ(H is correctly rejected) = Pμi≡μ

(
1

n

n∑

i=1

(μ + εi ) ≥ γα

)

= 1 − P
(N (0, 1) > μ

√
n − z1−α

) = 1 − Φ(μ
√
n − z1−α).

Since 1 − Φ(x) ≤ exp(− 1
2 x

2) for x ≥ 1/
√
2π (see, e.g., [3], inequality (1.8)),

we obtain

Pμi≡μ(H is correctly rejected) ≥ 1 − exp

(

−1

2
n

(

μ − z1−α√
n

)2
)

≥ 1 − exp

(

−1

4
nμ2

)

,

for sufficiently large n. This means that, if the number n of data points grows, the
detection power (the case when μ > 0) of the Z-test converges to 1 exponentially
fast. This test has been derived in an intuitive way but it can be proven that it is
a uniformly most powerful (UMP) test (see [4], Chap. 3.4). This means that for all
μ > 0 (i.e. the alternative K holds) the detection power is maximized among all

2Here P corresponds to only one configuration of distributions when all μi ≡ μ = 0.
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Fig. 11.2 Three different signals (upper row) and noisy signals (lower row)

level-α-tests, i.e., all possible decision rules one might think of which satisfy (11.1)
in our set up based on the data Y1, . . . ,Yn .

Z-test
Comparison of the normalized empirical mean of the set of measurements to
a given threshold to assess difference in location to a given constant μ0. When
μ0 = 0 the Z-test rejects H : μ = μ0 = 0 in favor of K : μ > 0 if

1√
n

n∑

i=1

Yi > z1−α.

This is the best possible test at level α if the data Y1, . . . ,Yn are independent
and N (μ, 1) distributed.

11.2.3 Testing on an Image

Subsequently, we consider three illustrative synthetic images of size 60 × 60, shown
in Fig. 11.2 (see the upper panel for a noise-less version and the lower panel for
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a noisy image). These serve the purpose of explaining how to extend the above
simple Z-test to detect a signal in an image, which is a more complex task. To
illustrate, we assume for the moment that in these images the intensity on each pixel
Yi , i = 1, . . . , n, follows a N (μi , 1) distribution, where each μi takes one of the
four values 0, 2, 3.5 and 5 (see Fig. 11.2). Now, our goal is to segment the image into
regions with signal and empty regions while maintaining statistical error guarantees.
Note that we do not aim to recover the exact value of each μi , only whether it
is positive or not (no signal). To this end we will perform many “local” statistical
Z-tests on different (and possibly overlapping) regions of this image.We will discuss
several approaches (Scenarios 1–5) which provide a step-by-step derivation of our
final solution (Scenario 5). As it turns out, the crucial issue will be to control the
statistical error of wrong decisions of all these tests simultaneously (overall error).

Scenario 1 (Known position, one test for central 20 × 20 square) Assume for now
that we are only interested whether there is some signal in the central 20 × 20 square
(framed in blue in the upper rowof Fig.11.3), i.e. we fix the location to be investigated.
For this task, we now perform a Z-test at level α = 0.05 for the central square with
n = 20 × 20 = 400 pixels, i.e., the test statistic

Tcentral 20×20 square(Y ) := 1

20

∑

central 20×20 square

Yi (11.5)

is compared to z1−α = 1.6449. The test allows for exactly two outcomes: rejection
(of the hypothesis H : no signal in the 20 × 20 square) or no rejection. In the sec-
ond row of Fig.11.3 the results are depicted. In each of the three test images, the
Z-test correctly recognizes that there is signal in the central square, and to visualize
this, the square is marked in green. The test decision is correct, however, we cannot
draw more (localized) information from this test. Nevertheless, this gives us a first
guide how to obtain a segmentation into regions, our final task. Note, that the Z-test,
as we derived it in Sect.11.2.2, is still applicable although we did not assume the
alternative that all signals have the same strengths (recall Sect. 11.2.2). This will
only affect the power. Crucial is that the test controls the error at level α correctly
under the assumption that all signals μi = 0.

Given a region of interest (RoI), performing one test on the whole region, as done
in the previous scenario, only allows to infer on the entire RoI, i.e., the largest scale
there is, finer details cannot be discerned. In the following step we consider the finest
possible scales, i.e., tests on single pixels, hoping that we can extract more detailed
information on different parts of the image, simultaneously.

Scenario 2 (Known position, pixel-wise tests in 20 × 20 square) Assume again that
we are only interested in testing within the central 20 × 20 square. We now perform
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Fig. 11.3 Noisy signals (upper row) and test results from Scenario 1 (lower row). The square is
marked in green to show that the test was significant for all three images

a test for each entry in the 20 × 20 central region separately, in total 400 tests. The
test statistics Ti−th pixel(Y ) are given by the pixel values. For simplicity, we consider
tests for the presence of a signal at pixel “i” which are only based on the observation
Yi at pixel i , i.e.

Ti−th pixel(Y ) = Yi , (11.6)

and are compared to z1−α = 1.6449. Again, each test allows for two outcomes:
rejectionor no rejection. In the second rowofFig.11.4, exemplary results are depicted
(all pixels, for which positive test decisions have been made are marked green).

It is obvious that Scenario 2 gives more detailed information on the signal, but at
the expense of several false detections. This is an important issue andwill be discussed
in more detail in the following section. It is also obvious that parts of the weak signal
are missed (see Fig. 11.4: Only 71.25% of the active pixels are detected in the left
test image and 85% in the second one). This is due to the fact that the local tests do
not take into account neighboring information (surrounding data) from which they
could borrow detection strength. This will also be refined in the subsequent sections.
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Fig. 11.4 Noisy signals (upper row) and the corresponding test results from Scenario 2 (lower
row). The significant pixels are marked green, insignificant pixels are blue

False test decisions
There are two kinds of possible false test decisions:
1. Type I error (probability of its occurrence is controlled by α).

Here: Selection of a RoI although it does not contain any signal (see lower
right panel of Fig. 11.4).

2. Type II error (a missed rejection, not controlled).
Here: Missing to select a RoI that contains signal (see lower left panel of
Fig. 11.4).

11.2.4 Testing Multiple Hypotheses

In Scenario 2 in the previous section we applied 400 single Z-tests in the central
square of the synthetic image. It is obvious from Fig. 11.4 that this approach suffers
from many false detections, in particular when the signal gets sparser (see lower
right plot in Fig. 11.4). This issue becomes even more severe if the number of tests
increases, as the following test scenario illustrates.

Scenario 3 (Unknown position, pixel-wise tests, whole image) If we do not have
prior information on the particular region which we should investigate, we need
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Fig. 11.5 Noisy signal (upper row) and the corresponding test results from Scenario 3 (lower row).
The significant pixels are marked green

to scan the entire image. In generalization of Scenario 2 (the RoI is now the full
image) to the case of unknown signal position, all single pixels of the entire image
are tested. This results in 3600 tests. The results are shown in the second row of
Fig.11.5. Obviously, the number of false rejections increases with the number of
tests. In fact, this did not just randomly happen, it is a systematic flaw which we
encounter when we naively perform many tests on the same image, simultaneously.

11.2.4.1 Number of False Rejections

The statistical control of false rejections is a general problem one encounters in
multiple testing (i.e., testing many hypotheses simultaneously on the same data). The
increase of false rejections with increasing number of tests is denoted as multiplicity
effect.

Figure11.6 shows the probabilities that out of n independent Z-tests, at least
1 (solid line), 10 (dashed line), 75 (dotted line) and 150 (dash-dotted line) false
rejections occur. The curves suggest that in the situation of Scenario 3 we need to
expect at least 150 false detections. In fact, the probability thatmanywrong rejections
are made within N tests, each at level α, performed on a data set converges to 1
exponentially fast.
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Fig. 11.6 Exact probabilities (y-axis) that out of n (x-axis) independent Z-tests with α = 0.05,
at least 1 (solid line), 10 (dashed line), 75 (dotted line) and 150 (dash-dotted line) false rejections
occur. Here, n = 1, 2, . . . , 4000, where the respective probabilities are zero as long as n is smaller
than 10, 75 or 150, respectively

Lemma 11.1 If 0 < α ≤ 1/2, N ≥ 2 and k ≤ N log(1 + α)/ log(N ), we have that

P (at least k out of N false rejections) ≥ 1 − (1 − α2)N .

Proof The random variables I {i − th test rejects}, where I denotes the indicator
function, follow a Bernoulli distribution with parameter α. Therefore, if α ≤ 1/2,
we can estimate the probability that out of N ≥ 2 tests k false rejections are
made, as

P (at least k out of N false rejections) = 1 −
k−1∑

j=0

P (exactly k false rejections)

= 1 −
k−1∑

j=0

(
N

j

)

(1 − α)N− jα j ≥ 1 − (1 − α)N
k−1∑

j=0

(
N

j

)

.

It follows, e.g., by induction over k for any N ≥ 2, that
∑k−1

j=0

(N
j

) ≤ Nk, which
implies

P (at least k out of N false rejections) ≥ 1 − (1 − α)N Nk .

For k ≤ N log(1 + α)/ log(N ) we thus find

P (at least k out of N false rejections) ≥ 1 − (1 − α2)N .

Hence, the probability of making at least k out of N false rejections converges to
1 exponentially fast, as N → ∞. �
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To reduce the number of false detections, so-called multiplicity adjustments have
to be made. Two general approaches in this regard are the control of the family wise
error rate (FWER) and of the false discovery rate (FDR). Here, we will mainly focus
on the FWER but will briefly discuss FDR control in Sect. 11.2.9. For further reading
we refer to the monograph by [5] and the references given there.

Multiplicity effect
If multiple tests are performedwithout accounting for multiplicity, the chances
of making many type I errors are quite large if the false null hypotheses are
sparse (see Fig. 11.5).

11.2.4.2 Control of FWER

One possible way to deal with multiplicity is to control the family wise error rate
(FWER), that is, controlling the probability of making any wrong decision in all
tests that are performed. Assume model (11.2) and denote by μμμ = (μ1, . . . ,μn) the
vector of all true means and by Pμμμ the probability under configuration μμμ. In the
previous example of imaging, the sample size n corresponded to the number of
pixels. Scenarios 2 and 3 were based on many single tests (on many single pixels).
Such single tests will be referred to as local tests in the sequel. Each of the N (say)
local tests corresponds to its own (local) hypotheses Hi versus Ki . For example, in
the setup of Scenario 3, a local hypothesis is Hi : μi = 0 versus the local alternative
Ki : μi > 0, for some i = 1, . . . , n. In this case n = N when all local hypotheses
are tested. If only a few are tested, then N 	 n. If in addition all 2 × 2 RoIs are
tested a total of N ≈ 2n tests are performed.

Assume now that all local tests Hi vs. Ki are performed, each at error level α/N .
Then the risk of making any wrong rejection is controlled at level α, that is, the
FWER is controlled.

Theorem 11.1 (Bonferroni correction) Given N testing problems Hi vs. Ki , i =
1, . . . , N and local tests at level α/N, we have for any configuration μμμ

Pμμμ (“at least one wrong rejection”) ≤ α.

Proof

Pμμμ (“at least one wrong rejection”) ≤
N∑

i=1

Pμμμ (“i − th test falsely rejects”)

≤
N∑

i=1

PHi (“i − th test falsely rejects”) ≤
N∑

i=1

α

N
= α. (11.7)



11 Photonic Imaging with Statistical Guarantees: From Multiscale Testing … 295

Since the right hand side is independent of μμμ we say that the FWER is controlled
in the strong sense. As a consequence, each finding can be considered α-significant
and hence can be used as a segment for the final segmentation. Performing tests at
an adjusted level such as α/N instead of α is called level adjusted testing and the
multiple test “reject those Hi which are significant at the adjusted level α/N” is
called Bonferroni procedure. We stress that although Theorem 11.1 was formulated
for the special case of signal detection in independent Gaussian noise, the Bonferroni
procedure strongly controls the FWER in much more generality and in particular
without any assumptions on the dependency structure between different tests [5, see,
e.g., Chap. 3.1.1, for a more detailed discussion].

Scenario 4 (Unknown position, pixel-wise, Bonferroni adjustment) In the situation
of Scenario 3, we now perform a Bonferroni procedure for the entire image, i.e., for
all 60 × 60 = 3600 entries (see Fig.11.7). The local testing problems are

Hi : “No signal in i-th pixel”, i.e., μi = 0 vs. Ki : μi > 0.

Now n = N = 3600 and α/N ≈ 1.3889 × 10−5 for α = 0.05. In this scenario
all single entries are compared to z1− 0.05

3600
≈ 4.19096. (Recall that in Scenarios 2

and 3 we compared each entry to the much smaller threshold 1.6449 and note that
any level adjustment corresponds to an increase of the threshold for testing.) The
result is shown in the second row of Fig.11.7. While no false findings were provided
by any of these tests, too few detections have been made at all as only parts of the
signal have been detected.

Bonferroni multiplicity adjustment
Adjustment (increase) of the thresholds when multiple tests are performed
simultaneously to control the overall type I error, i.e., the FWER. This is a
very general but also a conservative method (in particular if the signal is not
sparse).

11.2.5 Connection to Extreme Value Theory

There is a close connection between the control of the FWER in the situation
of Scenario 3 and extreme value theory. Recall that the aim is to control
Pμμμ (“at least one wrong rejection”) for any configuration μμμ. By monotonicity, we
have that

Pμμμ (“at least one wrong rejection”) ≤ Pμμμ=0 (“at least one wrong rejection”) ,



296 A. Munk et al.

Fig. 11.7 Noisy signals (upper row) and the corresponding test results from Scenario 4 (FWER-
controlled, lower row). The significant pixels are marked green, insignificant pixels are blue

which implies that the FWER is controlled if we choose the threshold q for our
multiple tests such that

Pμμμ=0 (“at least one wrong rejection”) = P (∃ i ∈ {1, . . . , N } : εi > q) ≤ α.

(11.8)

Now, since P (∃ i ∈ {1, . . . , N } : εi > q) = P (max{ε1, . . . , εN } > q), q can
be chosen as the (1 − α)-quantile of max{ε1, . . . , εN } under the global null
hypothesis, H ,

H =
3600⋂

i=1

Hi : “No signal at all”, (11.9)

i.e., μi = 0 for all i = 1, . . . , 3600. In this case we have equality in (11.8). Note that

P (max{ε1, . . . , εN } > q) = 1 − P (max{ε1, . . . , εN } ≤ q)

= 1 − P (ε1 ≤ q and ε2 ≤ q and . . . and εN ≤ q)

= 1 − (P (ε1 ≤ q))N = 1 − (Φ (q))N .

Therefore,

P (max{ε1, . . . , εN } > q) = α ⇔ (Φ(q))N = 1 − α ⇔ Φ(q) = (1 − α)
1
N ,
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which yields q = z(1−α)1/N . Since

(1 − α)1/N < 1 − α/N ,

by Bernoulli’s inequality, strict monotonicity of Φ−1 implies the same ordering of
the thresholds, i.e., z(1−α)1/N < z1−α/N . However, it is easy to show that for N ≥ 1
and α ≤ 1/2

1 − α + α2

N
< (1 − α)1/N

and therefore the difference between z(1−α)1/N and z1−α/N is quite small, e.g.
z(1−0.05)1/3600 ≈ 4.18516 and z1−0.05/3600 ≈ 4.19096.

The following lemma shows that z1−α/N ≈ √
2 log(N ) (and therefore also

z(1−α)1/N ≈ √
2 log(N )).

Lemma 11.2 There exists N0 ∈ N such that for all N ≥ N0

√
2 log(N ) − log log(N )√

2 log(N )
≤ z1−α/N ≤ √

2 log(N )

Proof To bound the normal quantiles from above and below, we use

ϕ(x)

x + 1
x

< 1 − Φ(x) <
ϕ(x)

x
,

[6, see inequality (10)] , where ϕ and Φ denote the density and cdf of the standard
normal distribution, respectively. Since, for sufficiently large N ,

1 − Φ(
√
2 log(N )) ≤ ϕ(

√
2 log(N ))

√
2 log(N )

= 1

N
√
4π log(N )

≤ α

N
,

and therefore

1 − α

N
≤ Φ(

√
2 log(N )) ⇔ z1− α

N
= Φ−1(1 − α

N
) ≤ √

2 log(N ),

the right hand side follows. We further have that

1 − Φ

(
√
2 log(N ) − log log(N )√

2 log(N )

)

≥
ϕ

(√
2 log(N )− log log(N )√

2 log(N )

)

√
2 log(N )− log log(N )√

2 log(N )
+ 1√

2 log(N )−
log log(N )√
2 log(N )

≥ log(N )

N
√
2π

exp
(
− log log(N )

4 log(N )

)
≥ α

N
,

for sufficiently large N , and the left hand side follows.



298 A. Munk et al.

11.2.5.1 Towards Better Detection Properties

The Bonferroni approach is valid in most generality. Nevertheless, as we have seen in
Fig. 11.7, if applied pixel-wise the level adjustment (and the resulting increase of the
threshold) is (much) too strict for our purposes. This is not caused by the Bonferroni-
adjustment per se, as it can be shown that the detection power of the Bonferroni
approach cannot be considerably improved in general [7, Sect. 1.4.1]. The issue is
that we have only considered each single pixel as input for our local tests. Therefore,
we will extend this from single pixels to larger systems of RoIs, which allow to
“borrow strength from neighbouring pixels”. This makes sense as soon as the signal
has some structure, e.g., whenever signal appears in (small) clusters or filament-like
structures. To see this, suppose that for k > 1 we have μ1 = μ2 = . . . = μk = μ.
An uncorrected pixel-wise Z-test would compare each Yi to the threshold z1−α, i.e.,
signal in a pixel would be detected if

Yi = (Yi − μ)
︸ ︷︷ ︸
N (0,1)

+μ > z1−α.

This is almost impossible if μ is too small or the noise takes a negative value and
becomes even worse if a multiplicity adjustment is performed. If we instead group
the first k pixels together and perform a grouped Z-test, i.e., compare 1√

k

∑k
j=1 Y j to

z1−α, a signal would be detected if

√
kμ + N (0, 1) > z1−α.

This way, the signal is “magnified” by a factor
√
k. Unfortunately, performing, for

any k, every test that groups k pixels together and thereby incorporating the fact that
positions i and numbers k of relevant pixels are in general not known in advance, is
infeasible.3 However, if the data is clustered spatially we can construct a reasonable
test procedure that follows a similar path. Insteadof performing all tests that group any
configurations of k pixels, we perform all tests that merge all pixels in a k × k square,
for many different values of k and “scan” the image for signal in such regions in a
computationally and statistically feasible way. Now the local tests become (locally
highly) correlated (see Sect. 11.2.6) and a simple Bonferroni adjustment does not
provide the best detection power any more, although (11.7) is still valid. This will
be the topic of Sects. 11.2.6 and 11.2.7.

3One issue is computational limitation. Additionally, this has a systematic statistical burden as then
tests have to be performed over all possible subsets of the image. For n pixels, these are of size 2n ,
which is a collection of sets such that the resulting error probabilities can no longer be controlled
in a reasonable way.
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Amplification of the signal strength by aggregation
If a signal is spatially grouped in clusters, cluster-wise tests can increase its
detectability. The average of all signal strengths inside the test region is mag-
nified by a factor of

√
size of cluster.

11.2.6 Scanning

In a way, the two approaches of aggregating data over the entire image
(Scenario 1) and performing pixel-wise tests (as done in Scenarios 2–4) are the
most extreme scenarios. As a rule of thumb, aggregation makes detection easier at
the cost of losing spatial precision whereas pixel-wise testing provides the highest
possible spatial precision but makes detection more difficult (after Bonferroni level
adjustment as we have seen in Scenario 4. Recall that since the tests are independent
we know that there is no substantially better way to control the FWER). In a next step
we will combine both ideas. We test on various squares of different sizes to achieve
accuracy (small regions) where possible and gain detection power (larger regions)
where the signal is not strong enough to be detected pixel-wise, i.e., on small spatial
scales. As the system of all subsquares of an image consists of many overlapping
squares, we have to deal with locally highly dependent test statistics. Table11.1
illustrates this effect presenting simulated values of the family wise error rate, based
on 1000 simulation runs each, with preassigned value α = 0.05. Squares of size
h × h, h ∈ {1, 2, 3, 4, 5} in an image of 60 × 60 are considered. The parameter h is
denoted as a spatial scale. The results of this small simulation study demonstrate that
theBonferroni correction ismuch too strict if we aggregate data in larger squares. The
following scenario is tailored towards dealing with this specific type of dependency
structure and is called multiscale scanning. Here, the level adjustment is made in an
optimal spatially adaptive way, i.e., such that the thresholds are both, large enough
so that the FWER is controlled but on the other hand so small that smaller thresholds
can no longer guarantee the control of the FWER. The key is now to exploit that
the system of all h × h squares fitting into the n × n image is highly redundant. For
instance, if a square is shifted one pixel to the right, say, both squares share most of
their pixels and their contents should not be treated as independent. We discussed in

Table 11.1 Simulated values of FWER at nominal level α = 0.05 for a matrix of local averages
of h × h pixels

h × h 1 × 1 2 × 2 3 ×3 4 × 4 5 × 5 10 ×10

Observed
error rate

0.049 0.046 0.043 0.028 0.025 0.016
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Sect. 11.2.5 that instead of the Bonferroni threshold z1− α
N
the (1 − α)-quantile of the

distribution of the maximum of N independent standard normal random variables
under the global null hypothesis, H , could be used as a threshold as well. This idea
can be transferred to this setting by using the (1 − α)-quantile of

max
h

w(h)(Th×h square(Y ) − w(h)),

where w(h) is a size-dependent correction term, given by

w(h) :=
√

2 ln
N

h2
+ 7 ln

(√

2 ln
N

h2

)

/

√

2 ln
N

h2
. (11.10)

Under H , the quantiles can be simulated as described in Algorithm 1. Recall that
in Lemma 11.2 it was shown that the quantile z1− α

N
and therefore also the quantile

of the maximum, z(1−α)N , are approximately of size
√
2 log(N ). When pixels are

aggregated over h × h squares, the corresponding quantiles can be shown to be
of first asymptotic order

√
2 log(N/h2) (the leading term of w(h) in (11.10), see

Theorem 11.2 for details), which corresponds to the case of N/h2 independent
tests. This is incorporated into the construction of the thresholds as described in
Algorithm 1.

Algorithm 1: Simulation of the thresholds
Parameters : Number of Monte-Carlo runs M ∈ N, largest size hmax ∈ N, significance

level α ∈ (0, 1)
1 for n = 1, 2, . . . , M do
2 Draw i.i.d. data Yi ∼ N (0, 1) for 1 ≤ i ≤ n;
3 for 1 ≤ h ≤ hmax do
4 Compute all test statistics Th×h square(Y );
5 Compute all w(h)(Th×h square(Y ) − w(h));
6 Save their maximal value in qh ;
7 Set ti := max1≤h≤hmax qh ;
8 Sort the values ti such that t1 ≤ . . . ≤ tM ;
9 Choose j ∈ {1, ..., M} such that j/M ≤ α < ( j + 1)/M ;

10 Set qh1−α = t j/w(h) + w(h);

In line 12 of Algorithm 1, the size-dependent thresholds qh
1−α = t j/w(h) + w(h)

are defined. Comparing each Th×h square(Y ) to qh
1−α yields a multiplicity adjusted

multiple test procedure. Note that in Algorithm 1 the quantile of the maximum over
all, locally correlated, test statistics under the global null hypothesis is approximated.
This way, the dependence structure is taken into account precisely.

Scenario 5 (Unknown position, multiscale scanning)We now aggregate test results
for several different scanning tests. We consider testing each pixel, as well as testing
each 2 × 2, 3 × 3, 4 × 4 and 5 × 5 square. In total these are 16.830 tests. We now
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Table 11.2 Scale dependent quantiles for the scanning test with windows of variable sizes

α q11−α q21−α q31−α q41−α q51−α Bonferroni for
16.830 tests

0.1 5.115 4.760 4.531 4.345 4.208 4.380

0.05 5.267 4.921 4.698 4.527 4.385 4.528

0.01 5.581 5.2538 5.043 4.883 4.750 4.875

adjust the level in a way that accounts for local correlations. We fix α = 0.05 and
calculate all test statistics Th×h square(Y ) (see (11.5)). The local hypotheses Hh×h square

are

Hh×h square : “μi ≡ 0 in h × h square.” (11.11)

Each Th×h square(Y ) is compared to the size-dependent thresholds qh
1−α, which

have been generated according to Algorithm 1 and are listed in Table11.2. We reject
the local hypotheses that there is no signal in a particular h × h square if the corre-
sponding test statistic is larger than the threshold, that is, if

Th×h square(Y ) = 1

h

∑

h×h square

Yi > qh
1−α. (11.12)

All significant squares are stored and finally, after all square-wise comparisons
have been made, for each pixel, the smallest square that was significant is plotted.
Findings for the different sizes are color-coded and for each pixel the color corre-
sponding to the smallest square in which signal was detected is plotted. The results
are shown in Fig.11.8. One big advantage of this approach is that also the weak sig-
nal is now completely included in the segmentation in contrast to even the unadjusted
approach of Scenario 2 (compare the lower left plots of Figs.11.4 and 11.8). Also, the
color-coding visualizes regions of strong signal and therefore contains “structural
information” on the data.

The procedure in Scenario 5 is such that the FWER is still controlled in a strong
sense, although the thresholds can be chosen smaller than in a Bonferroni approach.
This is much more so if N and h get larger, but is visible starting from h = 4, which
matches the values given in Table11.1. This was possible due to the strong local
correlations between tests. Roughly speaking, for each size of the moving window a
Bonferroni-type adjustment is made for the (maximum) number of non-overlapping
squares of that size which is a considerable relaxation. Remarkably, the prize for
including many different sizes is extremely small. More theoretical details can be
found in Sect. 11.2.7.

To conclude this section, it should be stressed that in many situations, we do not
encounter rectangular signals, however, small rectangles can be considered as build-
ing blocks for more complex structures. If specific shape information is available,
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Fig. 11.8 Noisy signals (upper row) and the corresponding test results from Scenario 5 (lower
row). Significant 5 × 5 squares are plotted in yellow. Significant 1 × 1 – 4 × 4 squares are plotted
in green with increasing brightness. For each pixel, the smallest square which was found significant
was plotted. Insignificant regions are coloured in blue

this can be incorporated into the testing procedure as long as the regions are not
too irregular and the set of regions satisfies a Vapnik-Cervonenkis-type complexity
condition (see [8] for more details). The literature on multiscale scanning methods
is vast. In the particular context of imaging, the reader may also consult [9–12] for
related ideas.

Multiscale Scanning
With probability guarantee of 1 − α all of the RoIs chosen in the multiscale
scanning procedure described in Scenario 5, are valid. Hence, we obtain local-
ized RoIs where the signal is sufficiently strong and profit from aggregation, as
described in Sect. 11.2.5.1, where the signal is weak and point-wise detection
is too difficult.

11.2.7 Theory for the Multiscale Scanning Test

The following theorem is the theoretical foundation for Scenario 5.

Theorem 11.2 Assume that an n × n array of independent N (μi , 1) variables is
observed and H ⊂ {1, . . . , n} is a set of side lengths of squares. Denote for h ∈ H
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by S(h) the set of all h × h-squares. Let N = n2, w(h) as defined in (11.10) and let
further q̃1−α denote the 1 − α-quantile of

max
h∈H

max
S∈S(h)

w(h)
(
TS(Y ) − w(h)

)
(11.13)

under the global hypothesis H :“no signal in any of the squares”. Reject each hypoth-
esis Hh×h square (see (11.11)) for which

T (R) ≥ q̃1−α

w(h)
+ w(h). (11.14)

(i) This yields a multiple test for which the FWER at level α is controlled asymp-
totically (as |H|/n → 0, n → ∞) in the strong sense.

(ii) This test is minimax optimal in detecting sparse rectangular regions of the signal.

Claims (i) and (ii) follow fromTheorems7 and2 in [1].Roughly speaking, the essence
of the previous theorem is that we only need multiplicity control for approximately
n2/h2 (corresponding to the number of independent) tests instead of (n − h + 1)2

(corresponding to the actual number of all) tests. Control of the FWER in the strong
sense means that all significant squares can be used in the final segmentation (lower
row of Fig. 11.8).

In this chapterwemainly focused on control of the FWER, howeverweakermeans
of error control are of interest as well. A very prominent one is the false discovery
rate (FDR, [13]), which we briefly discuss in Sect. 11.2.9.

11.2.8 Deconvolution and Scanning

In photonic imaging additional difficulties arise. Firstly, we have to deal with non-
Gaussian and non i.i.d. data (see Chap. 4), e.g., following a Poisson distribution
with inhomogeneous intensities λi . Then, as long as the intensity is not too small,
a Gaussian approximation validates model (11.2) as a reasonable proxy for such
situations. A formal justification for the corresponding multiscale tests is based on
recent results by [14], for details see [1]. The price to pay for such an approximation
is a lower bound on the sizes of testing regions that can be used, due to the fact that
several data points (of logarithmic order in n) need to be aggregated so that aGaussian
approximation is valid. For ease of notation, we only discussed the Gaussian case in
Sect. 11.2.7, generalizations to other distributions can be found in [8].

Secondly, convolution with the PSF of the imaging device induces blur. The first
row of Fig. 11.9 shows the convolved synthetic images that were shown in the upper
row of Fig. 11.2, where the images in the central row are noisy versions of these
convolved images. Note, that some structures are no longer identifiable by eye after
convolution. When applying the multiscale scanning approach in Scenario 5 naively

http://dx.doi.org/10.1007/978-3-030-34413-9_4
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Fig. 11.9 Signals after convolution (upper row), noisy version (central row) and the corresponding
test results from Scenario 5, naively applied to the convolved data (lower row). Significant 5 × 5
squares are plotted in yellow. Significant 1 × 1 − 4 × 4 squares are plotted in green with increasing
brightness. For each pixel, the smallest squarewhichwas found significant was plotted. Insignificant
regions are coloured in blue

to the convolved data (central row of Fig. 11.9). The result (lower row of Fig. 11.11)
demonstrates that this is indeed not a competitive strategy and it strongly suggests
to take the convolution into account.

We now briefly sketch how to adapt the multiscale scanning procedure
(Scenario 5) to the convolution setting. Notice that in the case of data (11.2), we
can write the test statistic (11.5) for a particular square S as

TS(Y ) = 〈IS,Y 〉 ,

where Y = (Y1, . . . ,Yn) denotes the data vector and IS denotes the scaled indicator
function on S, i.e., IS( j) = 1/

√|S| if j ∈ S and 0 else. Now, the indicator functions
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are considered as a system of probe functions, which are tested on the data Y . In case
of convolution with the PSF k (e.g. of the microscope), model (11.2) turns into

Y ∗
i = (μμμ ∗ k)i + εi , i = 1, . . . , n (11.15)

where “∗” denotes convolution. The goal is to find a probe function, acting on the
convolved data, denoted as I∗

S such that

〈I∗
S ,Y

∗〉 ≈ 〈IS,Y 〉 ,

that is, I∗
S should locally deconvolve. Let μμμ = (μ1, . . . μn). Then, if F denotes the

discrete Fourier transform, by Plancherel isometry and the convolution theorem

〈IS,μμμ〉 =
〈
F−1

(
FIS

Fk

)
,μμμ ∗ k

〉
.

This means that (provided Fk �= 0)

I∗
S = F−1

(
FIS

Fk

)
(11.16)

is a reasonable choice of a probe system for the data (11.15) and a statistic that adapts
to the convolution is given by

T ∗
S (Y ∗) = 〈I∗

S ,Y
∗〉 .

Scenario 5 can nowbe performed, followingAlgorithm 1 to derive suitable thresh-
olds, replacing IS by I∗

S and the FWER is controlled. More precisely, it can be shown
that Theorem 11.2 also applies in this scenario (see [1] for details). Figure11.10 d
shows the result of this adapted test procedure (MISCAT) applied to our original
data (Fig. 11.10 a). As a comparison, we also applied Scenario 5 naively to the data
set (Fig. 11.10f). Analogously to [15], IS can be chosen such that MISCAT with I∗

S
performs optimally in terms of detection power.

Deconvolution and scanning
In convolution problems sums of pixel values over spatial regions (e.g. squares)
will be replaced by probe functionals over the pixels (weighted sums) which
can be designed in an optimal way for a given convolution K . The resulting
multiscale test scans over all probe functionals which results in substantially
more precise segmentation results (for a direct comparison see lower left and
lower right panel of Fig. 11.10). It still controls the FWER.
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(1)

(2)

0

50

100

(a) data (b) zoomed data, (1) (c) zoomed data, (2)
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(d) MISCAT (e) single scale dec. test (f) multisc. direct test

Fig. 11.10 (Figure2 in [1]) Experimental data and corresponding 90% significancemaps computed
by different tests. The color-coding of the significance maps always show the size of smallest
significance in nm2, cf. the main text. a–c data and zoomed regions, d MISCAT, e a single scale
test with deconvolution, f a multiscale scanning test without deconvolution

11.2.9 FDR Control

As discussed in the previous sections of this chapter, as the sample size increases
(and therefore the number of tests), the control of the FWER becomes more difficult
and thus this may result in low detection power, e.g., in three dimensional imaging.
Therefore, a strategy to obtain less conservative procedures of error control is to relax
the FWER. The most prominent relaxation is the false discovery rate (FDR [13]),
defined as

FDR = E

[
#false rejections

max{#all rejections, 1}
]

,

that is, the average proportion of false rejections among all rejections. Hence, in
contrast to the FWER this criterion scales with the number of rejections. The control
of the FDR is a weaker requirement than the control of the FWER in general. Pro-
cedures that control the FDR are often written in terms of p-values. In the situation
of the Z-test with test statistics Th×h square(Y ) as in (11.12) the p-values are given as

ph×h square = 1 − Φ
(
Th×h square(Y )

)
, (11.17)
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Fig. 11.11 Noisy signal (left) test result of pixel-wise tests after Bonferroni adjustment (middle)
and test results from Scenario 6 (right) with FDR control. In both multiple testing procedures
α = 0.05. Significant pixels are marked green, insignificant regions are coloured in blue

where Φ denotes the cumulative distribution function of the standard normal distri-
bution. The smaller the p-value, the stronger the evidence that the null hypothesis
should be rejected.

Benjamini-Hochberg Procedure ([13]) Consider a multiple testing procedure con-
sisting of independent tests with p-values p1, . . . , pN . Sort the p-values increasingly,
p(1) ≤ p(2) . . . ≤ p(N ), and reject all null hypotheses for which pi ≤ α k̂

N , where

k̂ = max{k | p(k) ≤ αk/N }.
Reference [16] already proposed the above procedure but pointed out that this

approach lacks a theoretical justification, which has been given by [13], who showed
that FDR ≤ N0

N α, where N0 denotes the number of true null hypotheses.

Scenario 6 (Benjamini-Hochberg (BH) Procedure) In the situation of Scenario 3,
we also performed a BH procedure for all 60 × 60 = 3600 entries of the third test
image (see left panel of Fig.11.11). The result is displayed in the right most panel
of Fig.11.11, while in the centre, for a comparison, the result of the Bonferroni
procedure on the same data set is displayed. Obviously, more parts of the signal
have been found, however, still several positives are missed and a false discovery is
included.

There is a vast literature on FDR control and many generalizations have been
proposed. For instance, if N0

N is much smaller than 1, corresponding to the case of a
non-sparse signal, the procedure controls the FDR at much smaller level than α and
refined versions of the BH procedure in which N0/N is estimated from the data have
been proposed (see, e.g., [17, 18] and the references given therein).

While the BH procedure grants control of the FDR in test Scenarios 2 and 3 due
to independence between pixels, the situation in Scenario 5 is more delicate due to
the strong local correlations, in particular in the presence of convolution, where a
suitable FDR-procedure is still an open problem and currently investigated by the
authors. We stress that while FDR-control under specific dependency structures has
been investigated by many authors, e.g., [19, 20] and the references given therein.
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Non of the existing methods provide a procedure tailored to deconvolution problems
as they occur in photonic imaging. The construction of such adjusted methods is a
worthwhile focus for future research.

11.3 Statistical Multiscale Estimation

If one is further interested in the recovery (estimation) of the unknown signal, the
multiscale testing procedure developed in Sects. 11.2.6 and 11.2.8 actually provides
a collection of feasible candidates for this task in the sense that all signals which
fall in the acceptance region of one of the afore-mentioned tests can be considered
as “likely” as they cannot be rejected by such a scanning test. More precisely, if we
assume model (11.15), any signal μ̃μμ which satisfies

max
h∈H

max
S∈S(h)

w(h)
(〈I∗

S ,Y
∗ − μ̃μμ ∗ k

〉 − w(h)
)

≤ q∗
1−α, (11.18)

cannot be rejected. Here H and S(h) are defined in Theorem 11.2, and q∗
1−α is the

(1 − α)-quantile of the left hand side of (11.18) with (Y ∗ − μ̃μμ ∗ k) being replaced by
noise ε, w(h) is the scale correction term given in (11.10), and I∗

S is as in (11.16).
Among all the candidates μ̃μμ lying in (11.18), we will pick the most regular esti-
mate. This is done by means of a (convex) functional S(·), defined on a domain D
for μμμ, which encodes prior information about the unknown signal, e.g. sparsity or
smoothness. Thus, the final estimator μ̂μμ is defined as

μ̂μμ ∈ argmin
μ̃μμ

S(μ̃μμ) subject to μ̃μμ satisfies (11.18). (11.19)

Because of the choice of q∗
1−α we readily obtain the regularity guarantee

Pμμμ

(
S(μ̂μμ) ≤ S(μμμ)

)
≥ 1 − α uniformly over all μμμ ∈ D,

i.e., the resulting estimator is at least as regular as the truth with probability 1 − α,
whatever the configuration μμμ of the truth is. Furthermore, the remaining residuum
Y ∗ − μ̂μμ ∗ k is accepted as pure noise by the multiscale procedure described in
Sect. 11.2.8.

Before we discuss possible ways how to solve the minimization problem (11.19),
note that

〈I∗
S ,Y − μ̃μμ ∗ k

〉 = 〈I∗
S ,Y

〉 − 〈IS, μ̃μμ〉 in (11.18), and hence the computation
can be sped up by avoiding convolutions between μ̃μμ and k. Next we emphasize that
the discretization of (11.19) has the form

argmin
μ̃μμ

S(μ̃μμ) subject to λ ≤ K μ̃μμ ≤ λ̄, (11.20)
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where λ, λ̄ are vectors, K a matrix, and “≤” acts element-wise. Thus, whenever S is
convex, the whole problem is convex (but, however, non-smooth) and can be solved
by many popular methods. In Algorithm 2 we give one possibility which arises from
applying the primal-dual hybrid gradient method [21] to an equivalent reformulation
of the first order optimality conditions of (11.20) (which are necessary and sufficient
by convexity).

Algorithm 2: Primal dual hybrid gradient method for (11.20)

Parameters : Set σ, τ > 0 s.t. στ‖K‖2 < 1, and θ ∈ [0, 1]
Initialization: Set μ̄μμ0 = μμμ0 ∈ D(K ) and ν0 ∈ R(K )

1 for n = 1, 2, . . . do
2 νn = νn−1 + σK μ̄μμn−1;
3 νn = max{νn − σλ̄, 0} + min{νn − σλ, 0};
4 μμμn = argminμ̃μμ

1
2τ ‖μ̃μμ − (μμμn−1 − τK ∗νn)‖2 + S(μ̃μμ);

5 μ̄μμn = μμμn + θ(μμμn − μμμn−1);

Algorithm 2 relies on efficient computations of the so-called proximal operator of
S, see line 4. Inmost cases, it has either an analytic form ifS is �p-norm (1 ≤ p ≤ ∞),
or an efficient solver if S is the total variation semi-norm [22].

One alternative to Algorithm 2 is the alternating direction method of multipliers
(ADMM), which can be applied directly to (11.20) and is compatible with any
convex functional S [23]. However, Algorithm 2 avoids the projection onto the
intersection of convex sets, and turns out to be much faster in practice if step 4 in
Algorithm 2 can be efficiently computed. For further algorithms relevant for this
problem, see Chaps. 6 and 12.

We stress that a crucial part of the estimator μ̂μμ in (11.18)–(11.19) is the choice of
probe functionals I∗

S from Sect. 11.2.8. In Fig. 11.12, this estimator μ̂μμ is referred to as
MiScan(short for multiscale image scanning), whereas MrScan(short for multiscale
residual scanning) denotes the estimator of a similar form as μ̂μμ but with I∗

S being
replaced by IS see [23–26] i.e., the convolution is not explicitly taken into account
in the probe functional. MiScan recovers significantly more features over a range of
scales (i.e., various sizes) compared to MrScan.

There is good theoretical understanding on the estimator μ̂μμ by (11.18)–(11.19) for
the regressionmodel (11.2), that is, k = δ0, theDirac delta function, inmodel (11.15).
In case ofS beingSobolevnorms, [27] shows theminimaxoptimality of μ̂μμ for Sobolev
functions for fixed smoothness, and [28] further show the optimality over Sobolev
functions with varying smoothness (adaptation). In case ofS being the total variation
semi-norm, [29] show the minimax optimality of such an estimator for functions
with bounded variation. All the results above are established for L p-risks (1 ≤ p ≤
∞). For the more general model (11.15), [30] provide some asymptotic analysis

http://dx.doi.org/10.1007/978-3-030-34413-9_6
http://dx.doi.org/10.1007/978-3-030-34413-9_12
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Fig. 11.12 Comparison on a deconvolution problem (SNR = 100, and the convolution kernel k
satisfying Fk = 1/(1 + 0.09‖ · ‖2)). MiScanis defined by (11.18)–(11.19); MrScanis similar to
MiScanbut with I∗

S replaced by IS ; For both methods, the regularization functional S is chosen as
the total variation semi-norm

with respect to a relatively weak error measure, the Bregman divergence. A detailed
analysis ofMiScan exploring the probe functionals in (11.16) in a convolutionmodel
is still open and currently investigated by the authors.
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