
Chapter 10
A Statistical and Biophysical Toolbox
to Elucidate Structure and Formation
of Stress Fibers
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and Carina Wollnik

Abstract We are concerned with statistically validated early mechanically guided
differentiation of human mesenchymal stem cells (hMSCs). This chapter reviews
and extends methods of fixed and live imaging of hMSCs, automated reliable and
unbiased near real-time filament extraction and digitization for massive data via
the FilamentSensor, suitable aggregation of simple (area, mean orientation, aspect
ratio and order parameter) and advanced (orientation mode persistence and orienta-
tion fields) data descriptors and methods of their non-euclidean inferential statistics.
Exemplary, we study the morphology of stress fibers in fixed and live hMSCs within
24 h post seeding on elastic matrices exhibiting Young’s moduli of 1 kPa (soft,
brain-like elasticity), 11 kPa (intermediate, muscle-like stiffness) and 30 kPa (hard,
pre-calcified bone rigidity). The combination of these methods constitutes a novel
integrated toolbox, where for instance, statistical insight may be used to guide exper-
imental design.
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10.1 Introduction

During the last two decades it has become evident that the mechanical properties
of the cellular micro-environment are as important for cellular behavior and home-
ostasis as traditionally investigated biochemical cues [1, 2]. Especially striking was
the finding that differentiation of human mesenchymal stem cells (hMSCs) can be
mechanically induced by culturing them on elastic substrates of different Young’s
moduli E [3]. While upregulation of specific differentiation markers is typically
observed after five or more days, fundamental mechanical interactions between cells
and the substrates take place immediately after adhesion on the substrate. Interest-
ingly, during this early stage (within the first 24 h) of this mechano-guided differen-
tiation process in hMSCs, the structure and polarization of actin-myosin stress fibers
as quantified by an order parameter S depend critically on Young’s modulus E [4].

Stress fibers are contractile structuresmainly composed of actin filaments, myosin
motormini filaments (in particular non-musclemyosin II isoforms) and distinct types
of actin cross-linking proteins (e.g. α-actinin, fascin, etc.). They play the role of
‘cellular muscles’ generating contractile forces and connecting to the extracellular
matrix (ECM) via focal adhesions, thereby also transmitting forces to the ECM [5].
Acto-myosin filaments are also considered to be the principal force sensors of the
cell that translate mechanical cues from the surroundings into biochemical signaling,
eventually leading to cell differentiation [2, 6]. Previous experiments with fixed cells
revealed the important role of acto-myosin cytoskeleton structure formation for the
mechanically induced differentiation of hMSCs [4, 7].

Building statistically validated models and theories linking substrate elasticity to
early hMSCs differentiation, the filament structure has to be visualized over time,
binarized in an unbiased fashion, aggregated into descriptors and analyzed, possibly
within a feedback loop. Due to high biological diversity, large amounts of data
are required for statistical power. In turn, such massive data require near real-time
processing.

In order to visualize these filaments selectively, fluorescence microscopy proves
useful and typical images of acto-myosin stress fibers of different quality in fixed
cells are displayed in Fig. 10.1.One of themain differences, however, of experimental
visualization of the acto-myosin cytoskeleton in fixed cells at particular time points
and life cell imaging is given by the signal to noise ratio of the microscope images.
Fixed cells can be stained with many different methods and allow for saturation with
fluorescent dyes that typically lead to nice and crisp images (see top row of Fig. 10.1).
In contrast, life cell imaging, as detailed in Sect. 10.2, relies on transfection with
fluorescent fusion proteins that need to be expressed in the cell and typically leads
to worse signal to noise ratios (see bottom row of Fig. 10.1), that are challenging for
subsequent image processing.

Once these images are obtained, the challenge consists in extracting the underlying
filament structure in near real-time in an automated and unbiased fashion. To this end,
we review the FilamentSensor (FS) from [8] in Sect. 10.3. It integrates general and
specifically tailored preprocessing with an elaborate binarization routine, to identify
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Fig. 10.1 Varying quality (top fixed, bottom live) filament expressions of fluorescence micro-
graphs of human mesenchymal stem cells with scale bars at 50 µm. Subfigures: a good quality
image of a fluorescently stained fixed cell of large size with clearly visible stress fibers on a substrate
with a Young’s modulus E = 10 kPa; b medium quality image of a fluorescently stained fixed cell
of moderate size with inhomogeneous brightness and slight blur on glass; c poor quality image of
a live cell of moderate size with considerable noise and excessive brightness due to overexposure
on glass; d very poor quality image of a live cell of moderate size with very low contrast due to
bleaching, considerable blur and hardly discernible stress fibers

filaments of varying widths, lengths and angles. We describe a novel algorithm able
to detect slightly bent filaments. Since the FS is modular and open source, it can
be easily extended to suit related image analysis tasks. Guaranteeing unbiasedness,
tunable parameters can be learned, among others, from the benchmark data set (BDS)
in [8] that has been manually labeled by specialists.

From the binarized filament structure various morphological descriptors can be
extracted. Simple summary statistics are (weighted) mean orientation, area, aspect
ratios of principal components (PCs). More subtle is the order parameter derived
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from the angle between extrinsic mean orientation and first PC, quantifying the
anisotropy of the acto-myosin cytoskeleton, and [4] linked statistically significant
substrate elasticity to stem cell differentiation. A more sophisticated analysis [9]
links number andpersistence (under smoothing) ofmodes (i.e. dominatingdirections)
of the distribution of weighted filament orientations to substrate elasticity, and, in
particular, this requires development of a causal circular scale space theory in [9].

The above descriptors coarsely describe common filament orientations. In a
finer approach, the concept of different single orientation fields (OFs) described
in Sect. 10.4, pays credit to the tendency of filament orientations to change in a spa-
tially smooth way. In order to simultaneously analyze statistically different moments
of their distribution (e.g. jointly the intrinsic mean on a first geodesics PC together
with the first geodesic PC), backward nested descriptor (BND) analysis is applied
in Sect. 10.4.2 along with its asymptotic theory from [10]. This allows to elucidate
fundamental differences between fixed and live cell analysis, with consequences for
experimental design.

In Sect. 10.5 we conclude with an outlook how our biostatistical toolbox can
be used, in various combinations, to tackle problems that have arisen through this
research and problems currently high interest, for example tracking of individual
filament dynamics and defining and analyzing corresponding descriptors such as
filament life times.

10.2 Live Cell Imaging-Opportunities and Challenges

As mentioned above, novel insights into mechanisms of the complex mechanical
interplay between cells and the extracellularmatrix require the analysis of the dynam-
ics of stress fiber formation and arrangement. Such an experimental approach differs
fundamentally from fluorescence microscopy of fixed cells. In experiments using
chemically fixed cells, these can be stained with a variety of fluorescent dyes using
either antibodies or other small molecules that selectively bind to the protein of
choice. Living cells however need to be modified genetically to express a fluorescent
protein fused to the protein of interest or a respective binding partner. While both
methods allow for fluorescently labeled cellular structures a significant difference
is the homogeneity of the fluorescent intensity: fixed cells will overall show similar
intensities that depend on the staining method and the cellular concentration of the
protein of choice; living cells that are transiently expressing the fluorescent marker
will show a broad distribution of intensities (and even dark cells that do not express
any fluorescent marker) due to the stochastic nature of the transfection process. In
addition, it is essential to monitor many (N > 30) cells in parallel leading to an
enormous amount of microscopic images. These issues pose distinct challenges to
the image segmentation and analysis algorithm that could not be resolved with our
traditional approach of a pixel-based eLoG orientation analysis [4] mainly due the
varying image quality (as illustrated e.g. in Fig. 10.1) and also computational time.
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In the case of fixed cells, we are using a rigorous protocol to ensure the unbi-
ased microscopic analysis of single cells. Due to the intrinsic variation of cellular
morphologies it is of paramount importance to exclude any human bias. First, cells
are searched in the fluorescence channel of the nucleus dye to find an isolated cells,
whose nucleus looks normal and has no direct neighbors. Here, it is critical to exclude
deformed nuclei, nuclei with a doubled set of DNA (high intensity), or any nuclei
that are within the division process. Next, the fluorescent channel of interest (e.g.
actin, non-muscle myosin IIa) is recorded regardless of the morphology, except for
cases where now neighboring cells are observed that might interfere.

In contrast to the above described protocol for fixed cells, the situation is more
subtle for parallel live cell imaging. Firstly, cells need to be transfected with a fluo-
rescent marker that tags the protein of choice (in our case actin). This can be done
using a fluorescent fusion protein (e.g. GFP-actin) with the immediate drawback of
over-expression of that protein, differences in assembly kinetics, and potential prob-
lems with incorporation in distinct actin structures [11]. Most of these issues can
be avoided using LifeAct [12], a short amino-acid sequence that binds to actin and
is fused with a fluorescent protein. However, direct comparison also leads to minor
differences between this visualization and staining later fixed cells with a phalloidin
dye [11].

To avoid influence from neighboring untransfected cells, it is advisable to also
record always an image in phase contrast or brightfieldmode. Thatway any unwanted
additional interactions can be ruled out. However, during time lapse microscopy
recordings several incidents can occur that might affect the statistical analysis of the
cell population. Cells might migrate out of the field-of-view, an aspect that we will
address by smart repositioning the sample with real-time analysis of the microscopic
pictures. Therefore, the full recording will lack a subset of very motile cells. Cells
might undergo apoptosis and exclude themselves from further analysis reducing
the number of samples. Cells might divide and therefore make the analysis of their
cytoskeletal dynamics very complicated, even precluding it in case of not thoroughly
separating cells. Cells might interact during the time period with neighboring cells
that will also affect their cell-matrix mechanical interplay and acto-myosin structure.
Altogether, it becomes clear that the population subsets of microscopy analysis of
fixed cells and living cells can differ significantly and appropriate measures and
controls need to be developed to fully understand its impact on the statistical analysis.

10.3 Automated Unbiased Binarization of Filament
Structure

The present section is heavily based on the authors’ previous publication [8], which
is published under an open license (CC BY 4.0). The text and contents from said
publication is reproduced here to achieve a self-contained description of the Fila-
mentSensor.

https://creativecommons.org/licenses/by/4.0/
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10.3.1 Related Work

There is an impressive body of techniques for image processing and in particular, for
line detection (for an overview e.g. [13], Chap. 4). Previous to our development of the
FS, however, methods for the detection of filaments in cell images were often ad hoc,
requiredmanual processing to a considerable extent and were computationally rather
time consuming, e.g. [4, 14, 15]. The latter two issues are particularly unfavorable
considering the large number of images to be processed in live cell imaging.

Moreover, there is a large number of algorithms focusing on analyzing networks
of strongly curved microtubuli (this property is not shared by single filaments), such
as line thinning by [16], active contours by [17] and the constrained inverse diffusion
(CID) method by [14]. These methods, however, detect only a skeletal filament
network structure, they leave out filament orientation, length, and width. They aim
at identifying thin microfilaments and not wide stress fibers as we are interested in.

There are methods which aim at extraction not only of filament pixel position
but also of local orientation such as the FiberScore algorithm by [18], elongated
Laplacians of Gaussians (eLoGs) by [4] and gradient based methods, e.g. [15, 19].

The eLoG method, like the gradient method is geared towards the detection not
only of filament pixels but also of their orientations. Although filament width and
length are not extracted by these methods, counting the number of pixels per orien-
tation, they yield histograms of cumulated filament length per orientation angle and
these histograms are then further analyzed [4, 15].

Local orientation and centerline images are produced by the FiberScore program
[18] which provides global information on accumulated line length and average
width. Line objects are not produced, however. For our cell images, we tried out the
methods applied in FiberScore, but did not yield optimal results [8]. A fundamental
drawback for applying FiberScore, however, is that neither the program’s nor its
framework’s source codes are freely available. Even though the original developer
has been very helpful and supportive to make the program run, FiberScore could not
be tailored to our needs.

With the FS we have developed an image processing tool that returns stress fiber
structures from live cell images, as well as from fixed cells images applicable to
the use case where images vary widely in brightness, contrast, sharpness and homo-
geneity of fluorescence, cf. Fig. 10.1. Typically, in our setup of live cell imaging, we
observe 30 cells over a period of 24 h, taking an image every 10 min. As we aim at
real time processing, this leaves about 20 s process time per image.

The FS thus developed can be used to binarize filament structures for any (sets
of) images containing fiber features. Applications in a wide range of use cases come
to mind, in particular in the context of actin fiber structures, e.g. [20, 21], but also
for more general contexts in medical imaging, biology, and in the material science.
As the FS is modular and easily extensible, several authors, including [22, 23], have
built on it after it was first published.

Notably, there is also a rising demand to address the task of tracing and tracking
stress fibers, both over space and over time. We mention studies on migrating cells



10 A Statistical and Biophysical Toolbox to Elucidate … 269

which display a variety of stress fiber types (dorsal, ventral, arc) that appear at
different loci inside a migrating cell [21, 24–28]. Their exact cellular function is
still in the dark, it could be clarified, however, using live cell filament digitization.
Indeed, when stress fiber dynamics are followed over time, this may give further
insight into formation and function of filament structure. A novel method to analyze
traction force microscopy data, so called model-based traction force microscopy has
been recently described by [29]. In this context, it is necessary to detect and mark
the stress fibers in a cell in order to link forces to fiber location and develop deeper
insight into cellular force generation and transmission to the substrate. As mentioned
before, ideally, corresponding live cell experiments are performed simultaneously
for many cells in order to arrive at statistics that are sufficiently significant. This
requires that algorithms for fiber analysis perform tracing and tracking in (nearly)
real-time, ideally.

10.3.2 The FilamentSensor and the Benchmark Dataset

To obtain the full information of the stress fibers in cells, namely location, length,
width, and orientation, from repeated observations of living cells under widely vary-
ing conditions in near real time the FS has to extract

(I) fast and unsupervised
(II) robustly
(III) all filament features: location, length, width and orientation;

where (II) implies dealing with several specific problems illustrated in Fig. 10.2

(IIa) detecting darker lines crossing bright lines,
(IIb) dealing with image inhomogeneities and
(IIc) dealing with image blur and noise.

The FS is specifically designed to meet these challenges. Dealing with image
inhomogeneity calls for the application of local image processing tools. Blurring
effects will be mitigated by line enhancement through direction sensitive methods.
Crossings of lines of varying intensities can be successfully detected by what we
call line Gaussians which utilize oriented thin masks. After local binarization, an
adaption of the semilocal line sensor approach to fingerprint analysis [30] is applied
to extract all filament features. As the FS is modularized, employs local and orienta-
tion dependent image analysis methods and outputs the entire filament data, expert
knowledge such as detecting fewer filaments in specific low variance areas, say, can
be easily incorporated.
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Fig. 10.2 Challenges for filament extraction. a blur (detail from Fig. 10.1d). The overall contrast
of the cell body is very low and lines are hardly discernible. b overexposure and noise (Fig. 10.1c).
The extensive regions of maximal brightness hide any structure that may be present in those regions.
Salt and pepper noise is clearly visible as dark spots in bright areas and bright spots in dark areas.
cfilament crossings (Fig. 10.1b).Abundle of roughly vertical filaments of varying brightness crosses
a bundle of roughly horizontal filaments with varying brightness

10.3.3 Detecting Slightly Bent Filaments

After preprocessing and binarization, as described in [8], filament data is extracted
from thewhite pixels of the binarized image.Visual inspection of fluorescencemicro-
scopic images reveals that actin stress fibers can be slightly bent. To take this into
account, we have adjusted the FS to follow slightly curved lines on a piecewise linear
path. Line detection is performed by the following algorithm.

1. Every white pixel (x, y) is assigned a width, W (x, y). This is done by taking
circular pixel neighborhoods of the pixel (cf. Fig. 10.3) with increasing diameter.
A diameter is accepted, if the ratio of white pixels of the binary image is above
an adjustable tolerance (default 95%). If a diameter was accepted, the next larger
diameter is proposed until a diameter is not accepted. The width W (x, y) at the
pixel is then given by the largest accepted diameter at the pixel. In particular, this
gives a range of widths 1 ≤ w1 < . . . < wk = maxW (x, y) attained by pixels.

Fig. 10.3 Some circlemasks.These are examples of the circular masks used by the segment sensor
algorithm to determine line width. The circles displayed here correspond to diameters of 2, 4, 6 and
8 pixels. The masks are squares with an odd number of pixels as they are centered at a unique pixel
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A temporary List L , the filament data set F , and the orientation field O are each
initialized by the empty set.

2. For every white pixel, starting with the highest width value and continuing with
decreasing width value, apply the CurveTracer (CT). The curves are represented
piecewise linearly. The user specifies four parameters, namely the length of lin-
ear pieces llin, the direction step size in degrees φstep, the maximal number of
angle steps between two adjacent linear pieces nstep, leading to maximal angle of
φstep · nstep between adjacent line pieces, and a minimal line length lmin.

a. For each white pixel (x, y) the CT probes into a number of directions
(by default φstep = 3◦; this corresponds to 60 orientations 3◦, 6◦, . . . , 360◦).
For each direction the CT follows a straight line from (x, y) for a num-
ber of 2llin pixels. For each of these directions, the average width value
is calculated and two almost opposite directions (with a relative angle in
[180◦ − nstepφstep, 180◦ + nstepφstep]) with the largest combined average width
are selected. For each of these two directions the CT now proceeds separately
as follows, using a point list P containing the starting point.
i. Move llin pixels in the current direction φc and add the end point p to P . If

the average width along this line is below 1, remove all pixels with width
0 from the end of the line and then proceed removing pixels (possibly with
width greater than 0) from the end until the average width is at least 1.
Then add the new final point p of the line to P and stop.

ii. From p probe for 2llin pixels into the 2nstep + 1 directions {φc − nstepφstep,

φc − (nstep − 1)φstep, . . . , φc + nstepφstep} and calculate averagewidthval-
ues for every direction. Set the new φc to the direction of highest average
width.

iii. Return to step 1.
b. When the CT searches in both directions have reached their end points, the

combined length of the line pieces is determined and if it is larger than lmin the
list of points from both pieces is stored to L . The CT is illustrated in Fig. 10.4.

c. In the next step, segments in L are called in the order of their length, long
segments first. For every segment, the orientation field O (which is empty
when first called) is looked up for every pixel on the segment. If less than
30% of the segment’s pixels have a conflicting orientation entry in O,—i.e.
the entry in O differs by less than an adjustable tolerance angle (per default
20◦) from the segment’s orientation—the segment is accepted as valid. For
every pixel within a circular neighborhood with diameter w j + 2 pixels (in
order to avoid duplicate lines in case the CT does not perfectly follow the path
of maximal width) of a segment pixel, the segment’s orientation is stored to
O overwriting possible previous entries. The segment is then also added to F .
If at least 30% of the pixels on a segment have a conflicting orientation, we
have the following cases.
i. If O does not carry a conflicting orientation for any of the endpoints, the

segment is discarded.
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Fig. 10.4 Illustration of the CT algorithm. The probing distance is twice as far as the step length
of the CT. Per default, the CT probes three directions at each step where the number of directions as
well as the angle between them can be adjusted by the user. The probing directions are visualized
in three shades of blue. The chosen direction is then marked green and the others are marked red

ii. Otherwise, the endpoints with conflicting orientations are iteratively
removed from the segment until the remaining segment’s endpoints no
longer have a conflicting orientation. If the resultant segment length is
above the threshold of minimal filament length, this new segment is added
back to L and the original one is removed. The new segment is revisited
when its length is called.

As lines are blurred due to scattering and as the preprocessing usually enhances
line width, the FS tends to find greater line width than a human expert (cf. benchmark
data set in [8]).

10.4 Orientation Fields

We make use of the individual line data provided by the FS to identify local orienta-
tion fields of fibers. These provide a more detailed picture of the cytoskeleton than
simple summary statistics or orientation histograms, since they take local features
into account. Orientation fields are contiguous regions in the cell filled with filaments
of similar orientation. The local orientation of the field may change slowly over the
cell, so as to encompass the case of a curved cell, where stress fibers follow the cell
shape. As input we use an orientation map denoting the line orientations determined
by the filament sensor at each pixel. Our algorithm uses relaxation labeling, first
described by [31].

As a first step, the image is covered with a rectangular equidistant grid of pixels
with spacing a. The grid points define blocks in the following. The minimal spacing
of the grid is 5 pixels. While the number of blocks b covering the cell area in the
image exceeds 500, the spacing is successively increased by steps of two pixels. As
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a result, the maximal number of non-trivial blocks is 500. In this way, the algorithm
can deal with images of different magnification and cells of different size.

For every block, we use a square isotropic Gaussian mask with σ = max(15,
�1.2a�) centered at the grid point to assign weights to nearby pixels. The length
of the mask from the center is l = �2.5σ� pixels in every direction, after which
it is truncated. Using the orientation map and these weights, we get an orientation
histogram for each block. This orientation histogram is then smoothedwith awrapped
Gaussian kernel with σ = 6◦. Of the smoothed histogram, all maxima are stored as
local orientations of the block. If several neighboring bins of the smoothed histogram
have the same, locallymaximal, value, the leftmost bin, corresponding to the smallest
angle, is used.

To perform relaxation labeling, it is necessary to have a number of blocks with
fixed orientations that can be used as a seed. In order to achieve reliable results, it is
desirable to have as many seed blocks as possible. Therefore, we try to determine at
least s = 0.05b seed blocks. For this we collect all blocks with only one orientation
and apply the following cleanup procedure:

1. Keep only the largest contiguous region.
2. Make a histogram of the block orientation smoothed with a Gaussian kernel with

σ = 6◦. And determine the global maximum φmax.
3. Starting with k = 0, we determine the largest contiguous region of blocks whose

orientation φ satisfies φ − φmax ≤ k. We then increase k by steps of 1, until we
reach k = 6 or until the largest contiguous region of blocks reaches or exceeds
the number of s = 0.05b blocks.

If the number of seed blocks is smaller than s, we repeat the cleanup procedure
for all blocks using all orientations of every block in step 2.

Once we have a set of seed blocks with seed orientations, we fix these orientations
and perform a relaxation labeling over all orientations of all non-seed blocks. For
the relaxation labeling, we use a von Mises type compatibility function

f (φ) = C + B exp(A cos(2φ))

with f (0) = 1, f (90) = −1, f (σ ) = 0

where we start with σ = 15◦. If the largest field contains less than 2/3 of line pixels
or less than 85% of the blocks, we repeat the relaxation labeling, increasing σ by
steps of 5◦ to a maximum of σ = 25◦.

To preclude too large changes of orientation at medium range, we do not use only
nearest neighbors for the relaxation, but every block reacts with isotropic Gaussian
weights with surrounding blocks, where the standard deviation of the Gaussian is
� = 5 blocks. Every block also has a dummy orientation, whose probability will
slowly grow, if none of the block orientations match their neighborhood. Blocks
neighboring on seed blocks and having reached a probability of 0.999 on one of their
orientations will be turned into seed blocks, so the field will gradually “freeze” to
ensure convergence.
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Fig. 10.5 Orientation field detection. Lines segments extracted by the FS (upper left panel) col-
ored by local orientation, giving five dominating orientation fields (their range and local orientations
displayed in the other panels). Indeed, colors of the fields, indicating their local orientation, vary
only slightly

When the relaxation has converged, the resulting field is saved and its correspond-
ing orientations are removed from the blocks. If the remaining nontrivial blocks do
not form a contiguous region, all regions below minimal size s are removed. The
procedure is then repeated until no non-trivial blocks remain. Finally, every filament
is sorted into the orientation field whose local orientation best matches its own ori-
entation (Fig. 10.5). If the filament orientation diverges by more than 15◦ from all
local orientation fields, it is not associated to any field.

10.4.1 Orientation Field Evolution

In most cells on substrates with stiffness 10 and 30 kPa a single orientation field
emerges over 24 h, which contains more than 80% of stress fiber length. In order to
illustrate the evolution of orientation fields in time, we represent the orientation field
at each time point by a gray circle, whose gray level displays the relative amount
of fiber length represented by that field, such that the circle is black when all fibers
are included in the field. The standard deviation of fiber orientations in the field are
displayed by error bars for each circle. The evolution of orientation fields for a typical
cell on an intermediate or stiff gel is displayed in Fig. 10.6.

In Fig. 10.7 we show a typical orientation field evolution for a cell on a soft
substrate with stiffness 1 kPa. In cells on such soft substrates the cytoskeleton is
much less ordered which is reflected by a large number of small orientation fields
which are found over time. In a cell where fibers are not ordered, orientation fields
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Fig. 10.6 Orientation field time series for a typical cell on a substrate with stiffness ≥10 kPa,
at each time point represented by a gray circle, whose gray level displays the relative amount of
fiber length represented by that field (the circle is black when all fibers are included in the field).
The standard deviation of fiber orientations in the field are displayed by error bars for each circle.
As is typical for a cell on a stiff substrate, a single main orientation field emerges after a few hours
and remains stable throughout imaging time

often appear only for few images. While such fields can be considered spurious, they
still serve to illustrate the disorder of the actin cytoskeleton.

In many cells on all gels the cytoskeleton is not fully described by just one orien-
tation field but is partially ordered. A frequently observed evolution starts out with
an almost chaotic cytoskeleton where the short lived small orientation field converge
into amain orientation field over time, as in Figs. 10.6 and 10.7. This process can take
between 4 and 20 h and can even be unfinished at the end of the 24 h observation span.
However, there are also cases, where a main orientation field, which has remained
stable for many hours suddenly disperses as the cell starts to move (corresponding
to Figs. 10.6 and 10.7 with inverted time axis).

A behavior, which is observed in less than 5% of cells, is illustrated in Fig. 10.8.
In this case, a stable main orientation field exists, when at some point in time a new
orientation field begins to form and the original main field starts to dissolve. This
behavior requiresmore thorough investigation, both into theunderlying cell dynamics
and into adequate statistical representation of cytoskeleton order. Elucidating this
behavior is left for future research.
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Fig. 10.7 Orientation field time series for a typical cell on a substrate with stiffness 1 kPa
(notation as in Fig. 10.6) with several local orientation fields indicating a less ordered cytoskeleton.
While over time a dominating orientation field emerges, smaller orientation fields pop out until the
end

Fig. 10.8 Orientation field time series for a cell on a substrate with stiffness 10 kPa (notation
as in Fig. 10.6). The initial main orientation field starts to decay after 10 h and is superseded by a
new orientation field which is almost perpendicular to it
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10.4.2 Backward Nested Descriptor Analysis

In order to use orientation fields for quantitative analysis, we devised the simple low
dimensional orientation fields representation (10.1) in [10]. Denote byM the number
of all filament pixels in a cell image,m1 denotes the number of filament pixels in the
largest orientation field and m2 the number of pixels in all smaller fields combined.
M − m1 − m2 then enumerates the pixels from “rogue” filaments which do not fit
into any of the orientation fields due to strongly deviating orientation. In order to
compare relative diameters rather than relative areas we observe the quantity

x = (x1, x2, x3) := (
√
m1/M,

√
m2/M,

√
1 − (m1 + m2)/M)T ∈ S2 (10.1)

on a two-sphere. In this representation, the spherical data lie in the first octant. We
observe that points tend to accumulate close to the x2 = 0 plane, representing cells
with one single orientation field, cf. Fig. 10.9.

In order to interpret live cell observations, we compare these observations to
time series of cells which were fixed after different times on a gel. We have taken
images of fixed cells for each gel rigidity in intervals of 4 h of time on the gel. The
sample sizes are displayed in Table10.1. These cells were stained with phalloidin
as opposed to the live cells, which were transfected with liveAct. To compare the
live cell experiment to the fixed cell experiment, we only consider images from live
cell movies corresponding to the fixation times. Since we have between 50 and 60
movies on each gel, we can expect a higher data variance for the live cells compared
to fixed cells. Some of the investigated samples are displayed in Fig. 10.9.

We analyze the samples on S2 by applying dimension reduction via principal
nested great spheres from [32]. This means we first identify the great circle which fits
the data best (in terms of accumulated squared spherical distance), then orthogonally
(along great circles) project data to this great circle and determine their Fréchet
mean on this great circle, called the nested mean. Jointly, the two give our backward
nested data descriptor. To estimate its variance, i.e. the variance of the great circle and
the nested mean, we use B = 1000 bootstrap replicates from the data. Figure10.10
displays the backward nested descriptor and bootstrapped means illustrating the
spread of the nested mean estimator.

The lower sample size leads to considerably higher variance for live cells, as
expected. However, fixed and live cells on the same substrates are strikingly different
from each other.

While live cells on the soft (E = 1 kPa) gels show little temporal evolution, the
fixed cells exhibit a development towards a dominant main field with few smaller
fields and eventually less rogue filaments. For the cells on stiffer gels, while the
fixed cells strengthen their main field, mainly at the expense of rogue filaments, for
live cells this effect is stronger, leading to fewer rogue filaments over time as well.
Remarkably, for the fixed cells we observe an increased number of rogue filaments
after 16 and 20 h, which does not occur for live cells. A T 2 hypothesis test developed
in [10] for backward nested descriptors verifies that this effect is significant.
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Fig. 10.9 Visualization of the orientation fields representatives on S2 (blue points) from (10.1)
with backward nested data descriptor given by the best approximating great circle (blue line) with
nested mean (red star). All images correspond to 16 h on the gel. Upper left: 135 fixed cells on a
1 kPa gel; upper right: 127 fixed cells on a 10 kPa gel; lower left: 59 live cells on a 1 kPa gel; lover
right: 53 live cells on a 30 kPa gel

Table 10.1 Sample sizes of hMSC skeleton images over varying Young’s moduli and cultivation
time, left for fixed cells, right for live cells

Time 1 kPa 10 kPa 30 kPa

4h 159 168 153

8h 163 164 153

12h 176 171 173

16h 135 127 147

20h 138 126 127

24h 166 152 152

1 kPa 10 kPa 30 kPa

59 54 53



10 A Statistical and Biophysical Toolbox to Elucidate … 279

Fig. 10.10 Best fitting great circles with nestedmeans. For every time and sample, nested means
of B = 1000 bootstrap samples are displayed to illustrate variance of the mean. Rows from top to
bottom: 1 kPa gel, 10 kPa gel, 30 kPa gel
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Upon closer inspection, as noted in [10], describing cells by their orientation field
decomposition, the temporal evolution of fixed cells comes to a stop and at roughly
12 h, often reversed then, hinting to an increased rate of cell division, albeit cells
near the division process have been singled out previously, cf. Sect. 10.2. Although
these cells are not intentionally synchronized, an increased rate of cell division after a
particular time after seeding is not surprising as trypsinization and re-seeding slightly
decreases the isotropic temporal distribution on the cell cycle. For live cells, such an
effect is not observed, since all movies during which the cells divide are left out. The
statistical analysis confirms our initial hypothesis that a direct comparison of results
from live and fixed cells is complicated due to the different population subsets and
points out the importance of careful experiment design including proper controls for
future studies.

10.5 Outlook

In this chapter we have briefly illustrated the statistical biophysical toolbox devel-
oped over 8 years in project B8 of the SFB 755, the support of which we gratefully
acknowledge, and we have applied a typical set of descriptors (mean great circle and
nested mean on it), exemplary to highlight differences in the actin-myosin cytoskele-
ton structure of live and fixed cells. Future application include tracing and tracking
stress fibers over space and time and usage in many other demanding research areas.
For example, studies on migrating cells indicate various stress fiber types classi-
cally described as (dorsal, ventral, and arcs) appearing at different locations inside
a migrating cell [21, 24–28]. Following the filament dynamics over time will give
further insight into the formation and function of stress fibers. Using our toolbox
applied to live cell imaging, it seems promising that we can come to an unbiased
statistical classification of the cytoskeleton that relates temporal and spatial persis-
tence to function. Recently, [29] described a novel method to analyze traction force
microscopy data, so called model-based traction force microscopy. Here, it is imper-
ative to detect and mark the stress fibers of a cell in order to link forces to fiber
location and gain more insight into cellular force generation and transmission to the
substrate.
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