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Abstract. Point cloud models acquired by passive three-dimensional
reconstruction systems based on binocular or multi-view involve large
amounts of noise and its distribution is uneven, which affects the accu-
racy of surface reconstruction. To tackle the problem, we proposed a
three-dimensional surface reconstruction method based on Delaunay tri-
angulation. First, use Delaunay triangulation to get a fully adaptive
decomposition of point cloud, then the output triangular mesh was rep-
resented using dual graph, so by using graph cut optimization the initial
surface model was obtained. Second, the deformation model was used to
optimize the initial surface model, and then adopted photometric simi-
larity function and Laplace operator to refine surface details. Finally, the
refinement was transformed into an iterative procedure, by which the real
surface of the object was accurately approximated. We experimented on
four standard datasets of Castle-Entry, Castle, Fountain and Herzjesu.
The result showed that compared with Poisson surface reconstruction
and floating scale surface reconstruction algorithm, the proposed method
was more adaptable and robust to noise and outliers, and the detailed
information recovery of local surface reconstruction was better. It showed
that the method proposed in this paper effectively improved the accu-
racy and completeness of surface reconstruction, which could reconstruct
high quality three-dimensional surface models of object from the point
cloud models with lots of noise and complex topological structures.

Keywords: Surface reconstruction · Deformation model · Photometric
similarity function

1 Introduction

3D reconstruction technology is widely applied in many fields such as virtual
simulation [1,23], non-contact measurement [21], virtual reality [7], battlefield
environment perception [4,22], etc. Therefore, it is a significant problem to pro-
cess 3D point cloud acquired by 3D digital scanning devices, and achieve 3D
reconstruction effectively and accurately. In this paper, we focus on processing
point cloud to restore the geometry and topology structure of objects. Con-
sidering that 3D cloud point acquired by passive 3D reconstruction systems
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based on binocular or multi-view involves large amounts of noise and outliers,
which affects results of surface reconstruction, we proposed an approach based
on Delaunay triangulation. First, Delaunay triangulation was constructed by
incremental insertion, after that output triangular mesh was converted into the
representation of dual graph, and then we transform the initial surface extrac-
tion problem into graph cut optimization. Then due to the loss of details and
the roughness of initial surface model, we optimized the initial surface by mini-
mizing the internal and external energy functions of deformation model globally.
Finally, surface model was approximated to the real surface of the object through
several iterations of all vertices on the surface.

2 Related Work

Surface reconstruction is a major field in computer vision at present. Many sur-
face reconstruction methods is summarized in [2], in this section, we intend to
introduce related approaches to our method, including implicit surface recon-
struction approaches [5,9,10,20], and surface reconstruction approaches based
on Delaunay triangulation [8,11–15].

Kazhdan et al. [9] formulates the surface reconstruction from oriented points
as a spatial poisson problem, which suffers a tendency to oversmooth the data.
Kazhdan et al. [10] modifies the poisson reconstruction algorithm to add incor-
porate positional constraints, which improves the geometric surface and detail
characteristics of the surface. However, reconstruction results of the approach is
easily affected by data redundancy. Fuhrmann et al. [5] achieves surface recon-
struction by extracting the zero-level set of the implicit function. Their approach
could be extended theoretically, but the interpolation ability of the approach is
limited due to the small support area. Wang et al. [20] proposes a surface recon-
struction approach based on implicit pht-splines. Their approach could recon-
struct high-quality results, but which requires high demand of memory.

The visual hull introduced in [13] is unsuitable for outdoor scene reconstruc-
tion because of the dependence on separating object from background. Pan et
al. [15] extracts surface by using probabilistic tetrahedron carving algorithm.
But their approach is not resistant against outliers and inflexible for the batch
processing of data. An approach of multi-view reconstruction is proposed in
[12]. They define an energy equation based on visibility information and sur-
face parameters, and minimize this energy by graph cuts [3]. Labatut et al. [11]
improves the approach in [12], the photo-consistency is replaced by surface qual-
ity term in [11] and smoothing term is combined with a purely discrete visibility
term. Their approach has good scalability, but it cannot construct weak-support
surface well. Jancosek et al. [8] achieves multi-view reconstruction preserving
weakly-supported surfaces which works on [11]. Mostegel et al. [14] proposes a
scalable approach of surface reconstruction from 3D multi-scale multi-view stereo
point clouds. Their approach extracts surface hypotheses from local Delaunay
tetrahedralization and merges overlapping surface hypotheses by graph cuts [3],
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finally a consistent mesh is generated. Their approach is resilient to outliers frag-
ments and vast scale changes, but the results of reconstruction is limited by the
localized strategies taken in the original detection process.

3 Initial 3D Surface Reconstruction

In this paper, bundle system [16,17] is adopted to obtain camera parameters
and initial 3D point cloud. The point cloud is processed by PMVS [6], and then
we apply Delaunay triangulation to get a fully adaptive decomposition of point
cloud, which is constructed by incremental insertion. For the initial dense point
cloud, we find the nearest point of the point to be inserted in Delaunay triangu-
lation based on the visibility information of the point, and then the maximum
reprojection error between two 3D points is computed. If the reprojection error
is above threshold e, the point would be inserted in Delaunay triangulation, or
the position of the nearest point would be recomputed. In addition, the visibility
information and confidence information of the nearest point would be updated.
This step outputs a Delaunay triangulation T through traversing all 3D points.

Next we convert the Delaunay tetrahedralization T into the representation of
a dual graph and set weight associated with it. Therefore, the surface is extracted
by performing graph cut optimization on this dual graph. The detailed procedure
is as follows: we assign weights to directed edges of dual graph based on visibility
information and smoothing terms. Accordingly, the minimum cut is extracted by
solving the energy equation as shown in formula (1). S is the initial reconstruction
surface, Evisibility is the visibility term, Esmooth is the smoothing term and λ is
the weight coefficient. The energy equation is as follows:

E(S) = Evisibility + λEsmooth(S) (1)

According to the visibility constraints, all vertices v appearing on the final sur-
face S should not be occluded from the viewpoints b they come from and there-
fore visibility item could be computed as the collision detection problem of the
line-face intersection conflict, as shown in Fig. 1. pi is a 3D point, cj is the cen-
ter of camera j. We calculates the intersection of the ray cjpi and Delaunay
tetrahedralization T. λvisibility is the size of visibility information set. Tj(pi) is

Fig. 1. The visibility conflict is the edge interested with ray cjpi, the arrowed edges
are parts of the representation of the dual graph, which weight the edge.
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the credibility of the perspective, which represents the probability that vertex
appears on the final surface model. Combining the Gaussian kernel function to
reduce noise, the formula is as follows:

Evisibility(S) =
∑

t∈T

∑

(p,c) �=Ø

λvisibility(1 − Tj(pi)(1 − e
−d2

2σ2 )) (2)

In formula (2), t is the edge in the dual graph and the intersecting triangle of
the adjacent tetrahedron in the Delaunay tetrahedralization, p is the vertex in
the Delaunay, c is camera center, (p, c) ∩ t is the ray pc intersects t, d is the
distance from the intersection with pi, σ is the standard deviation of Gaussian
function. Traversing all vertexes in the Delaunay tetrahedralization, we com-
pute the visibility term by accumulating the directed edges weights as shown in
formula (2).

The surface model will be uneven while the energy equation is only computed
by Evisibility. In order to reduce the influence of outliers and noise points and
restore the detailed information of the surface model. Triangle t is the intersect-
ing of adjacent Delaunay tetrahedrons. The angle between the triangle plane
and the external sphere of two tetrahedrons is α, β. The representation of the
angle is shown in Fig. 2. While α, β is getting smaller, the possibility of cutting
edge passing through triangle t is greater, which means the possibility of the cut
edge appearing on the final surface is higher. α is calculated as.

cos(α) =
−→pc · n

|−→pc| · |n| (3)

−→pc is the vector from vertex p to sphere centre c. n is the normal vector of
triangle plane, Esmooth is computed as:

Esmooth(S) =
∑

t∈T

1 − min{cos(α), cos(β)} (4)

The Smooth term is computed by traversing all the edges of dual graph. The
Delaunay tetrahedron is labelled as inside/outside by graph cut optimization [3].
Triangles from label outside to inside are extracted as minimum cut edges and
the initial reconstructed surface result S is obtained.

4 Surface Optimization Based on Deformation Model

Details are inevitably lost when smoothing the initial surface model. In this
section, initial surface model is the input, which is optimized by deformation
model to achieve surface optimization. In the deformation model, we adopted
photometric similarity function as date term, and the internal energy function
of the active contour model is calculated as regularization item by using Laplace
operator. As the internal and external energy functions are minimized globally,



44 W. Miao et al.

Fig. 2. It shows the 2D representation of the angle, α is the angle between triangle
plane and external sphere of tetrahedrons, β is calculated the same way.

details of the surface model can be restored and a more refined surface recon-
struction model can be obtained. The energy equation of the deformation model
is as:

E(S) = Eint(S) + λEext(S) (5)

S is the initial surface model, λ is the weight of data item, Eint(S) is the reg-
ularization item, which is responsible for constraining the topological structure
of the surface model to prevent self-intersection and producing over smooth
surface in the reconstruction process. Eint(S) is computed by active contour
model. Eext(S) is data item, which approximates the surface model to target
model. Eext(S) is computed by photometric similarity function.

4.1 Data Term

The data term Eext(S) in the deformation model is computed by the photometric
difference of images as:

∇Eext =
n∑

Ii=0

n∑

Ij=0∩Ii �=Ij

∇MIi,Ij
(S) (6)

Matching function MIi,Ij
(S) is the difference between Ii and Ij ,

∏
j is the pro-

jection of the camera j,
∏−1

i,S is reprojecting Ii onto the surface, Ij ◦ ∏
j ◦∏−1

i,S

is reprojecting the Ij onto Ii, ΩS
i,j is the reprojection domain. MIi,Ij

(S) is as
follows:

MIi,Ij
(S) = M |Ωi∩ΩS

i,j
(Ii, Ij ◦

∏

j

◦
−1∏

i,S

) (7)

The data item gradient value of surface S is obtained by partial derivative of
matching function with respect to variable x as:

∇MIi,Ij
(S) =

∫

Ωi∩ΩS
i,j

∂MIi,Ij
(xi)DIj(xj)D

∏

j

(x)
nT δS(x)
nTdi

didxi (8)
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x is the reprojection 3D point of xi, DIj(xj) is the gradient of the image, D
∏

j(x)
is Jacobian matrix of

∏
j , di is the vector representing the camera i and the point

x, n is the normal vector of 3D points.

4.2 Photometric Similarity Function

Matching function MI,J (S) is constructed by LI,J (x) on the basis of the local
dependency between image I and image J.

M(I, J) =
∫

Ωi∩ΩS
i,j

1 − LI,J (xi)dx (9)

LI,J (x) is photometric similarity function of image I and J at pixel x, ΩS
i,j is the

reprojection domain. In Ii, wi is n × n pixel block centered on xi, wj is n × n
pixel block centered on xj . gi is the grayscale value at pixel xi, σg is the color
standard deviation, σx is the distance standard deviation.

LI,J (xi) =
cov(wi, wj)√

cov(wi)cov(wj , wj)
(10)

E(x) =
∑n×n

m wmxm∑n×n
m wm

(11)

wm = e
(− |gm−gi|2

2σ2
g

+
|xm−xi|2

2σ2
x

)
(12)

4.3 Regularization Term

The regularization term is constructed by the internal function of the active
contour models to prevent the self-intersection or producing over smooth of the
surface model. We simplify the weight, λ1 is the elasticity, λ2 is the intensity
coefficient to control the curves degree of surface, which ultimately makes the
curvature of the surface tend to be stable. The minimum of energy function for
equation is solved by Euler-Lagrange theorem as:

∇Eint(S) == λ1�S − λ2�2S (13)

Δ is the laplace operator, Δ2 is the biharmonic Operator. For each vertex v in
the surface S, the laplace operator is computed as formula (14), N(v) is a set of
1-ring nearest vertices of v. n is the number of N(v). The gradient of v is as:

�v = (
∑

i∈N(v)

(
vi

n
)) − v (14)

�2v is calculated as:

�2v =
∑

i∈N(v)

(
�vi

n
) − �v (15)
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For all vertices v of the surface, the ∇Eint(v) is accumulated by ∇Eint(S), as
shown in formula (16):

∇Eint(S) =
∑

v∈S

∇Eint(v) (16)

4.4 Optimizing of the Final Surface

Finally, the surface is optimized by formula (5), and the discrete form of formula
(5) is shown in formula (17). After several iterations of all vertices on the surface
by gradient descent, surface model is approximated to the real surface of the
object.

Sk+1 = Sk + �t(∇Eint(S) + λ∇Eext(S)) (17)

λ is the weight of data term, Δt is the incremental step. All vertices v are iterated
until the whole surface model converges. Finally, the reconstructed surface model
is obtained.

5 Experiments

In this section, experiments are divided into two parts. To confirm the effec-
tiveness of our method, we tested on four standard datasets [18]: Castle-Entry,
Castle, Fountain and Herzjesu, and compared the experimental results with PSR
[10] and FSSR [5]. Moreover, in order to verify the accuracy of our approach, we
compared the reconstructed surface models with real three-dimensional models,
and have experimented our method and GDMR on four datasets [18] to evaluate
the similarity between the experiment results and ground truth of models.

In experiments, bundle system [16,17] is adopted to obtain the initial 3D
point cloud, and then we process the point cloud by PMVS [6], which is used
as the input of the surface reconstruction. In the proposed approach, we get
the initial reconstruction surface with parameter σ = l/2, where l represents the
median of Delaunay side length, after that we optimize the surface by deforma-
tion model, and set threshold n = 4, we weight λ1 = 0.8, λ2 = 0.2 in optimation
energy formulation, the weight factor λ of the iteration equation is set λ = 0.5,
step �t at each iterations is set �t = 0.5, which is reduced by 0.02 times after
each iteration.

For the qualitative evaluation, we conducted on the four standard datasets
[18] compared with PSR [10] and FSSR [5]. PSR is experimented at a depth of 11.
Octree depth of FSSR is set to 10. As illustrated in Fig. 3, we can see that in the
easily occluded areas such as pillars of the Herzjesu, our method reconstruct the
surface with more details. In areas with uneven distribution of samples such as
windows of the Herzjesu, our method reconstruct smoother wall than the others.
In Fig. 4, surface details of spiral sculpture of the Fountain are more accurate
and closer to the real model. In Fig. 5, the pillar and edge of Castle-entry are
more detailed, while the reconstructed surfaces of PSR and FSSR are smoother
and image details are lost. In Fig. 6, the reconstruction results of Castle show
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that the proposed algorithm is superior to PSR [10] and FSSR [5] in terms of
detail recovery and reconstruction integrity.

Figures 3, 4, 5 and 6 demonstrate that our method increases the local details
information of reconstructed surface, and it can be found that PSR [10] and
FSSR [5] are vulnerable to a large number of noise points and outliers, resulting
in poor reconstruction effect. Our method improves the precision of the surface
reconstruction due to decomposing the surface model, and obtains accurate sur-
face reconstruction by optimizing the surface details through the deformation
model.

Fig. 3. The reconstruction result experimented on Herzjesu shows that the door and
door frame reconstructed by the proposed method is more clearly than the other meth-
ods [5,10].

For the quantitative evaluation, we compared the reconstructed surface model
and GDMR [19] with the real three-dimensional model respectively. We adopted
the four standard datasets [18] as the assessment model. Table 1 and Table 2
show the error statistics of the surface model reconstructed by the algorithm
and the ground truth on the Fountain and Herzjesu, and the error statistics of
the GDMR and ground truth. In Table 1, the accuracy of the model after opti-
mization of the deformation model in this paper is reduced when the error is
0.1. In Table 2, When the error is 0.045 and 0.06, the accuracy of the model is
reduced, which is because the partial occlusion area increases the number of ver-
tices and triangles of the occlusion area by triangulation during the deformation
optimization process, resulting in an increase in the number of error points and
optimization. In addition, from Table 1 and Table 2, it can be seen that the accu-
racy of the algorithm in this paper is better than that of GDMR. The initial
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Fig. 4. The reconstruction result experimented on Fountain shows that outline of the
statue and the wall reconstructed by the proposed method is more complete than the
other methods [5,10].

Fig. 5. The reconstruction result experimented on Castle-entry shows that the outline
of the castle is clearer, and pillars is more complete than the other methods [5,10].
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Fig. 6. The reconstruction result experimented on Castle shows that the completeness
and detail of our approach is reconstructed better than the other methods [5,10].

Table 1. Relative errors between reconstructed results of our approach, GDMR [19]
and the Fountain ground truth.

surface model

ratio(%) error(m)

0.02 0.04 0.06 0.80 0.10

the initial surface 78.415 96.24 98.235 98.686 99.572
optimization surface 78.552 96.657 98.268 98.841 99.361
GDMR 76.436 95.985 98.379 98.794 99.358

Table 2. Relative errors between reconstructed results of our approach, GDMR [19]
and the Herzjesu ground truth.

surface model

ratio(%) error(m)

0.015 0.030 0.045 0.060 0.075

the initial surface 93.068 97.489 98.985 99.681 99.868
optimization surface 94.585 97.337 98.151 98.538 99.746
GDMR 94.385 97.364 98.086 98.479 99.685

model, deformation optimization model of our method and GDMR are quan-
titatively analyzed by experiments. The experiments show that our algorithm
achieves higher accuracy than GDMR [19].

6 Conclusion

In this paper, we presented an approach of 3D surface reconstruction based on
Delaunay triangulation. The initial surface model is derived by Delaunay trian-
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gulation and graph-cut optimization. Then we optimized the initial surface by
deformation model and gradient descent to obtain the final surface. We exper-
imented on four standard datasets of Castle-Entry, Castle, Fountain and Herz-
jesu. The proposed approach could reconstruct high quality three-dimensional
surface models of object from the point cloud models with lots of noise and
complex topological structures.
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