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Abstract. In most existing SLAM (Simultaneous localization and map-
ping) methods, it is always assumed that the scene is static. Lots of errors
would occur when the camera enters a highly dynamic environment. In
this paper, we present an efficient and robust visual SLAM system which
associates dynamic feature points detection with semantic segmentation.
We obtain the stable feature points by the proposed depth constraint.
Combined with the semantic information provided by BlitzNet, every
image in the sequence is divided into environment region and potential
dynamic region. Then, using the fundamental matrix obtained from the
environment region to construct epipolar line constraint, dynamic fea-
ture points in the potential dynamic region can be identified effectively.
We estimate the motion of the camera using the stable static feature
points obtained by the joint constraints. In the process of constructing
environment map, moving objects are removed while static objects are
retained in the map with their semantic information. The proposed sys-
tem is evaluated both on TUM RGB-D dataset and in real scenes. The
results demonstrate that the proposed system can obtain high-accuracy
camera moving trajectory in dynamic environment, and eliminate the
smear effects in the constructed semantic point cloud map effectively.

Keywords: SLAM · Semantic segmentation · Joint constraint ·
Dynamic objects

1 Introduction

SLAM plays an important role in the field of robot navigation and unmanned
driving. Many excellent achievements have been produced in visual SLAM, which
are mainly classified into direct method based on photometric error [1,2] and
indirect method based on salient points matching [3]. The main purpose of both
methods is to obtain environmental information through sensors to achieve cam-
era pose estimation and map construction. It is a premise for most of the current
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visual slam systems that the environment is static, which severely limits the
application of visual SLAM due to lots of dynamic objects in the environment.

With the development of deep neural networks, target detection and seman-
tic segmentation algorithms have achieved great progress, and many experts are
committed to integrating visual SLAM with deep learning. Some studies spec-
ify dynamic targets by directly regarding people, cars or animals as dynamic
objects, such as [4,22]. However, it may cause the loss of useful information in
the constructed map.

In this work, a robust SLAM system to deal with dynamic objects on RGB-
D data is proposed. The image is divided into environment region and poten-
tial dynamic region by the semantic information provided by the improved
BlitzNet [17]. In order to eliminate the influence of missing values in the depth
image and the sudden changes of the depth value in the edge of objects and
environment, we proposed a depth constrain to obtain the stable feature points.
And the dynamic feature points can be identified effectively by the epipolar line
constraint constructed by the environment region. The static feature points are
used to estimate the motion trajectory of the camera, while the dynamic feature
points are used to determine the motion state of the potential dynamic objects.
Finally, the point cloud map with semantic information is built.

RGB

CNN

Depth

+

Segmentation

×8 ×4
×2

Visual Odometry

Detection

4×64

PointCloudDepth
Constraint

Epipolar
Constraint

Fig. 1. Overview of the system.

2 Related Work

2.1 Dynamic SLAM

The presence of dynamic objects will seriously affect the mapping results and
the estimation of the camera pose. Specified priori dynamic targets are utilized
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in [4,5] to handle dynamic environment. Burgard et al. [6] propose a data asso-
ciation technique to incorporate both dynamic and stationary objects directly
into camera pose estimation. A different multi-camera combination strategy is
introduced to deal with dynamic object effectively in [7]. Whats more, Henri
Rebecq et al. [8] propose a method of using a special event camera which can
achieve robust performances in highly dynamic environment, however, high cost
limits the use of such methods.

2.2 Semantic Segmentation Based on Deep Learning

At present, most of the advanced semantic segmentation techniques based on
deep learning are derived from full convolution network (FCN) [9], and different
strategies are proposed to improve the segmentation effect. In terms of mod-
els, encoder-decoder architecture has been widely used, such as [10,11]. About
convolution kernel, authors of [12,13] have done a lot of important work using
dilated convolution to enhance receptive field to integrate context information.
Starting from multi-scale feature fusion, Zhao et al. [14,15] use spatial pyra-
mid pooling to integrate different scale features to obtain global information.
As for instance segmentation, Mask R-CNN can detect objects in an image
while simultaneously generating a segmentation mask for each instance, but it
lacks real-time performance [16]. In this paper, a real-time semantic segmen-
tation algorithm BlitzNet [17] is used to transform semantic segmentation into
instance segmentation.

2.3 Semantic SLAM

Some approaches combine classic SLAM with semantic segmentation to build a
more robust semantic map such as [18,19], but both of them do not focus on
the localization of camera. Other approaches focus on locating and processing
dynamic objects. For instance, Bowman et al. [20] propose probabilistic data
association to improve the robustness of localization, and some algorithms [21,22]
combine different deep network with moving consistency check to reduce the
impact of dynamic objects. However, most of these methods roughly treat certain
classes of objects as dynamic objects, even if these objects are static in the
images, thus dynamic objects detection is not precise enough.

3 System Description

3.1 Framework of Our System

The overview of our system is presented in Fig. 1. Firstly, the RGB images pass
through a CNN (Convolution Neural Network) that performs object detection
and pixel-wise segmentation at the same time. The detected information includes
some common objects such as people, screens, tables and chairs, etc. As for
RGB-D data, we employ depth constraint and epipolar line constraint combined
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with object bounding box to determine potential dynamic points. After the
instance segmentation result arrives, potential dynamic feature points will be
added to the fusion module. Outliers located in the real moving objects can
be removed effectively. More accurate camera trajectory can be obtained by
the visual odometry. Finally, the constructed point cloud map and semantic
information are integrated to obtain a semantic point cloud map.

3.2 Potential Dynamic Point Detection

Dynamic object detection algorithms are generally based on regional features
of the image, such as texture, color, grayscale, and so on. In this paper, the
potential dynamic points detection is realized by the proposed joint constraints.
Finally, the dynamic objects can be detected by fusing the semantic segmentation
algorithm.

For two adjacent frames of depth image, there are regions with incomplete
depth (the depth value of these regions is 0), and there is a sudden change of
depth value at the edge of the object [23]. The most stable feature points are
on the surface of certain objects, such as the regions on the desk marked by the
red dashed frame as shown in Fig. 2. Using image depth information to obtain
stable feature points can effectively reduce the problem of high false alarm rate
caused by strong parallax.

1 1,i j 2 2,i j

2Patch1PatchLast Frame Current Frame

Fig. 2. Patches centered on the integer pixel coordinates of the feature points in two
adjacent depth images. (Color figure online)

In order to find the stable feature points on the image, we consider a 3 × 3
image patch centered on the integer pixel coordinates of the feature points. As
shown in Fig. 2, the red crosses represent the locations of the corresponding
feature points on the two frames of depth image, where (i1, j1) and (i2, j2) are
the integer pixel coordinates of the feature points on the previous and current
frame, respectively. If any depth value on the image patch is 0, the depth value
of the feature point is considered missing and the corresponding feature point
pair is deleted. The depth value of the feature point is replaced by the average
depth of the patch as shown in the following equation:

d̂ =
1
9

3∑

x=1

3∑

y=1

Patch(x, y) (1)
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where x, y are the coordinates of pixels in the patch. The Euclidean distance of
the average depth of two feature points d̂1, d̂2 is used to exclude outliers with
greater depth deviation to obtain stable feature points, as shown in Eq. 2.

Dd =
√

(d̂1 − d̂2)
2

(2)

By setting a threshold ξ, we can get the stable matching points Ps1, Ps2 as
shown in Eq. 3.

Ps1, Ps2 = {P1, P2|Dd(d̂1, d̂2) < ξ} (3)

Using BlitzNet, the potential moving objects region can be obtained, such
as the person region, and other region as the environment region. Therefore,
the fundamental matrix F can be calculated by stable matching points in the
environment region using RANSAC algorithm. Epipolar geometric describes the
constraint relationship between the matching points in different angles of view.
Pm1, Pm2 denote feature points in the potential moving objects region of the
previous frame and current frame, respectively.

Pm1 = [u1, v1, 1]T , Pm2 = [u2, v2, 1]T (4)

We can distinguish the dynamic feature points in potential moving region by
the epipolar line constraint as follows:

De =

∣∣Pm2
TFPm1

∣∣
√

lx
2 + ly

2
(5)

where lx, ly represent epipolar lines coordinate. De only depends on the epipo-
lar geometry theory and the consistency relationship between the projection of
the feature points. The specific algorithm process is described in Algorithm 1.

Algorithm 1. Joint Constraint Detection Algorithm

Input: Previous frame’s feature points, P1, Previous frame’s depth, d1;
Current frame’s depth, d2;
Output: The set of potential dynamic points, S;
1: Calculate current frame’s feature points P2 by optical flow pyramid,
2: Obtain stable matching points Ps1, Ps2 by depth constraint
3: Calculate fundamental matrix F = findFundamentalMat(Ps1, Ps2 )
4: for each matched point pair p1, p2 in P1, P2 do
5: if p1 is not in potential moving objects region then
6: continue
7: Calculate epipolar line L = computeCorrespondEpilines(p1, F )
8: Calculate distance from epipolar line constrain De by Eq. 5
9: if De > ξ then
10: Append p2 toS
11: end if
12: end for
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3.3 Sematic Segmentation

For scene analysis, BlitzNet, a deep neural network which can complete the
object detection and semantic segmentation in one-time forward propagation, is
used as the basic network in our experiment, whose backend is changed to meet
the requirement of instance level segmentation tasks in our system.

BlitzNet only takes RGB image as input. In this experiment, VOC and COCO
datasets are used for joint training and SSD300 is used as the backbone network,
moreover, the object detection mAP on the VOC12 verification set can reach up
to 83.6, while the semantic division mIOU reaches approximately 75.7. It has a
good effect in the general scene, as shown in Fig. 3(a) and (b). The combination
of the detection results and the segmentation results obtained by the network
can get the desired instance segmentation image as shown in Fig. 3(c).

Fig. 3. Results of the improved BlitzNet. (a) Object detection. (b) Semantic segmen-
tation. (c) Instance segmentation.

3.4 Dynamic Object Detection

In Sect. 3.2, the algorithm of detecting potential dynamic feature points is intro-
duced, which can roughly find the dynamic feature points in the image. In this
section, we will get more accurate dynamic points to detect dynamic objects
in scene. Each segmented target in the image is enclosed by the detection box
defined as the influence area. We divide feature points into four sets of points,
as shown in Fig. 4: static points in potential moving region Us ∈ R

n×2, potential
dynamic points Ud ∈ R

m×2, outliers in environment Vd ∈ R
M×2, and stable

points in environment Vs ∈ R
N×2. We propose two proportions, one is region

dynamic point ratio τd, and the other is region points ratio τr, as shown in Eq. 6.

τd =
m

m + n
, τr =

m + n

m + n + N
(6)

The value of threshold τd is 0.5 and τr is 0.15 in this experiment. Once the
results of both equations are greater than their threshold, segmented targets
within the detection box will be classified as dynamic targets, like the yellow
part in the right figure in Fig. 4. The external parameter matrix to estimate
trajectory of the camera can be obtained to estimate trajectory of the camera
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by solving the least squares problem shown below:

min
R,t

N+n∑

i=1

‖Pai − (RPbi + t)‖2 (7)

where, Pb ⊆ Us ∪ Vs and Pa is matching points in the previous frame.

dUsVdV sU

Fig. 4. Four types of points in dynamic objects detection. (Color figure online)

4 Experiments and Results

This section shows the experimental results of the proposed method. We have
evaluated our system both on TUM RGB-D dataset [24] and in real-world envi-
ronment.

4.1 Dynamic Points Detection

TUM datasets provide several image sequences in dynamic environment with
accurate ground truth and camera parameters, and it is divided into categories
of walking, sitting, and desk. We mainly test the dynamic feature points detection
experiment in the walking sequence, and the motion amplitude of the dynamic
object in this sequence is large.

The process of dynamic points detection and dynamic objects segmentation
is shown in Fig. 5. The image can be divided into potential dynamic region
and environment region by the semantic information provided by BlitzNet. The
approximate distribution of the dynamic points in potential moving region can
be obtained by the proposed joint constraint. According to the calculation results
of τd and τr, we can judge that the two people in the bounding boxes are dynamic
objects and feature points in the mask of people is regarded as dynamic points.
It is obvious that the person is classified as dynamic object in this experiment
automatically, and our algorithm retains a lot of static scenarios and removes
dynamic part as much as possible.
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Fig. 5. Combination BlitzNet and joint constraint. (a) Stable feature points obtained
by the depth constraint on the current frame. (b) Potential dynamic point detection
by the joint constraint. (c) Fusion results. (d) Segmented dynamic objects.

4.2 Evaluation of SLAM System

In this section, we demonstrate the proposed method on TUM RGB-D datasets
and adopt ORB-SLAM2 as the global SLAM solution. We select highly dynamic
sequence walking and weakly dynamic sequence sitting to evaluation the SLAM
system. Quantitative comparison results are shown in Tables 1, 2 and 3, where
static, rpy, xyz, and half in the first column stand for four types of camera
motions. The proposed dynamic detection thread combined with CNN is added
to the system to accomplish the task of localization, thus metrics of absolute
trajectory error (ATE) and relative pose error (RPE) are used for evaluation.

As we can see from Table 1, our method can make better performance in most
high dynamic sequence such as fr3/w/rpy, fr3/w/xyz and fr3/w/half. Compared
with ORB-SLAM2, our algorithm gets an order of magnitude improvement par-
ticularly in walking sequence, meanwhile, our positioning accuracy is better than
DynaSLAM on rpy, xyz, and half camera motions in walking sequence.

What Table 2 gives is the relative attitude error under the same datasets,
where RMSE (T) is the root mean square error of translation, and RMSE (R)
the root mean square error of rotation. It can be seen from the data that our
algorithm still has better robustness in relative posture than DynaSLAM and
ORB-SLAM2.

Table 1. Results of absolute trajectory error

Sequence ORB-SLAM2 DynaSLAM Ours

RMSE Mean Median RMSE Mean Median RMSE Mean Median

fr3/w/static 0.3194 0.2626 0.3761 0.0068 0.0061 0.0056 0.0078 0.0068 0.0062

fr3/w/rpy 0.5391 0.4884 0.4419 0.0354 0.0302 0.0260 0.0320 0.0260 0.0209

fr3/w/xyz 0.5979 0.5421 0.4707 0.0164 0.0140 0.0121 0.0153 0.0133 0.0118

fr3/w/half 0.4543 0.3777 0.2740 0.0296 0.0251 0.0200 0.0268 0.0228 0.0195

fr3/s/half 0.0185 0.0145 0.0123 0.0229 0.0201 0.0179 0.0235 0.0204 0.0178

For ORB-SLAM2, camera trajectories are more complete because the
dynamic targets are not eliminated. Although a large number of frames can
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Table 2. Results of relative pose error

Sequence ORB-SLAM2 DynaSLAM Ours

RMSE (T) RMSE (R) RMSE (T) RMSE (R) RMSE (T) RMSE (R)

fr3/w/static 0.1928 3.5992 0.0089 0.2612 0.0103 0.2714

fr3/w/rpy 0.3881 1.5906 0.0448 0.9894 0.0426 0.9483

fr3/w/xyz 0.4090 7.6553 0.0217 0.6284 0.0199 0.6018

fr3/w/half 0.3215 6.6515 0.0284 0.7842 0.0261 0.7394

fr3/s/half 0.0209 0.5614 0.0325 0.8822 0.0276 0.7475

Table 3. Results of successfully tracked trajectory

Sequence Total ORB-SLAM2 DynaSLAM Ours

Tracked Ratio (%) Tracked Ratio (%) Tracked Ratio (%)

fr3/w/static 717 714 99.6 375 52.3 692 96.5

fr3/w/rpy 866 825 99.8 546 63.0 806 93.1

fr3/w/xyz 827 795 91.8 757 91.5 824 99.6

fr3/w/half 1021 942 92.3 525 51.4 1018 99.7

be ensured to be tracked, the accumulation of errors can eventually lead to fail-
ure of the navigation. DynaSLAM achieves a more accurate camera trajectory
than the ORB-SLAM2, however, the frames tracked ratio of DynaSLAM without
inpainting is not as good as the ORB-SLAM2. As shown in Table 3, our algo-
rithm can keep most of the frames tracked with high accuracy, which provides
a guarantee for long-term navigation.

An example of the estimated trajectories of the three systems compared to
the ground-truth in fr3/w/half are illustrated in Fig. 6. There is a large dif-
ference between the trajectory of ORB-SLAM2 and the real trajectory, while
DynaSLAM and our system maintain a smaller difference but our trajectory
is more complete than DynaSLAM. In addition, the translation error diagram
shows that our algorithm has better stability and robustness.

Dynamic object removal can improve the mapping quality effectively. Because
of the limitation of computing resources, we adopt the way of off-line mapping.
As shown in Fig. 7 ORB-SLAM2 cannot handle the dynamic environment in
fr3/w/xyz dataset, in which point cloud with smear will be built. DynaSLAM
can get a point cloud without semantics because it only identifies people in
TUM data, whereas our algorithm can deal with dynamic object effectively and
eliminate the drag effect significantly. Furthermore, the semantic information is
mapped to the point cloud. It is clear that the static objects such as screens are
marked by blue and chairs are marked by red in our results.
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Fig. 6. Results of three algorithms in fr3/w/half. (a), (d) from ORB-SLAM2, (b), (e)
from DynaSLAM, (c), (f) from our system.

Fig. 7. Point cloud comparison of three algorithms in fr3/w/xyz. (a) ORB-SLAM2. (b)
DynaSLAM. (c) Our system. (Color figure online)

4.3 Evaluation in Real-World Environment

In order to verify the robustness of moving object detection in dynamic environ-
ment, we use Xtion Pro camera to conduct extensive experiments in a laboratory
environment. Xtion Pro camera can capture RGB images and depth images with
640 × 480 resolution. Before testing, we calibrate the camera in detail and use
ROS to transmit the image data. The results obtained by the proposed method
are shown in Fig. 8. In the experiment, the red points represent the dynamic
feature points and the green points are the static feature points.

The first line shows a sequence of images taken in an office, there is a walker
and a sitting person, and the sitting person can be regarded as a static target
during this period of time. In the second line, most of the correct dynamic points
can be constrained within the range of dynamic targets by the proposed joint
constraints, but it is still a little insufficient, parts of the dynamic feature points
on the walker are judged to be stationary. In the third line, combined with the
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Fig. 8. Results in Lab environment. (Color figure online)

semantic information provided by the improved BlitzNet, the walker and the
sitting person are distinguished effectively by the bounding boxes with region
IDs. In the fourth line, we obtained a pixel-wise segmentation of the walker. In
the real-world environment, the proposed algorithm is sample and feasible, and
it can effectively identify the motion state of pedestrians.

5 Conclusion

In this paper, a semantic SLAM system based on joint constraint is proposed
to detect the dynamic objects in the dynamic scene and accomplish the task of
localization and mapping. The experiments on TUM dataset demonstrate the
effectiveness and robustness of our system in localization. In addition, our system
can obtain a more complete map with semantic information. Finally, we apply
our algorithm to the real environment and it still has a notable performance.
Future extensions of this work might include, among others, adaptive threshold
method, on-line mapping and breaking the restrictions of application scope from
semantic segmentation network.
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