Skip to main content

Biomechanics of Vertebral Compression Fractures

  • Chapter
  • First Online:
  • 687 Accesses

Abstract

Vertebral compression fractures (VCFs) are the most common osteoporotic fractures that occur in the United States each year with an estimated incidence of over 700,000 occurring annually (Ensrud and Schousboe, Bone 364:1634–1642, 2011; Riggs and Melton, Bone 17, 1995). These numbers are likely a gross underestimate of the true incidence based on the delay in clinical presentation that is frequently associated with compression fractures (Ensrud and Schousboe, Bone 364:1634–1642, 2011; Riggs and Melton, Bone 17, 1995; Fink, J Bone Miner Res 20(7):1216–1222, 2005; Melton, Am J Epidemiol 129(5):1000–1011, 1989). While decreased bone mineral density secondary to age, endocrinopathies, or other systemic conditions play a large role in the pathophysiology of compression fractures, these factors alone do not explain the common fracture patterns that afflict the osteoporotic population.

In order to fully understand the pathophysiology and management of compression fractures, knowledge of the normal anatomy and physiology of the vertebral column is necessary. Examining the vertebral body, the intervertebral disc, and the biomechanical stresses that act upon them with normal physiologic forces explains why certain fractures occur in predictable locations and patterns.

This understanding gives rise to a morphologic fracture classification that includes anterior wedge, biconcave, and crush fracture patterns, though many different classification systems have also been described. These fracture patterns are largely explained by the unique anatomy and physiology of the vertebral bodies and the adjacent intervertebral discs.

The mechanism by which VCFs cause pain is also worth examining. Multiple studies have shown that VCFs cause pain through multiple mechanisms, though there does not appear to be one predominant pathophysiology. When observing pain patterns associated with VCFs, it is worth differentiating the patients who experience acute pain at the time of injury versus those who experience a more delayed and chronic pain, as the pathophysiology differs significantly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ensrud KE, Schousboe JT. Vertebral fractures. N Engl J Med. 2011;364(17):1634–42. https://doi.org/10.1056/nejmcp1009697.

    Article  CAS  PubMed  Google Scholar 

  2. Riggs Bl, Melton Lj. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17(5):S505. https://doi.org/10.1016/8756-3282(95)00258-4.

    Article  Google Scholar 

  3. Fink HA, et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res. 2005;20(7):1216–22. https://doi.org/10.1359/jbmr.050314.

    Article  PubMed  Google Scholar 

  4. Melton LJ, et al. Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989;129(5):1000–11. https://doi.org/10.1093/oxfordjournals.aje.a115204.

    Article  PubMed  Google Scholar 

  5. Antoniou J, et al. The human lumbar endplate. Spine. 1996;21(10):1153–61. https://doi.org/10.1097/00007632-199605150-00006.

    Article  CAS  PubMed  Google Scholar 

  6. Aspden RM, et al. Determination of collagen fibril orientation in the cartilage of vertebral end plate. Connect Tissue Res. 1981;9(2):83–7. https://doi.org/10.3109/03008208109160244.

    Article  CAS  PubMed  Google Scholar 

  7. Lotz JC, et al. The role of the vertebral end plate in low back pain. Global Spine J. 2013;3(3):153–63. https://doi.org/10.1055/s-0033-1347298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou Y, Luo Z. A study on the structural properties of the lumbar endplate. Spine. 2009;34(12):E427. https://doi.org/10.1097/brs.0b013e3181a2ea0a.

    Article  PubMed  Google Scholar 

  9. Zhao F-D, et al. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone. 2009;44(2):372–9. https://doi.org/10.1016/j.bone.2008.10.048.

    Article  PubMed  Google Scholar 

  10. Jiang G, et al. Vertebral fractures in the elderly may not always be osteoporotic. Bone. 2010;47(1):111–6. https://doi.org/10.1016/j.bone.2010.03.019.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen Ks, et al. A model of vertebral trabecular bone architecture and its mechanical properties. Bone. 1990;11(6):417–23. https://doi.org/10.1016/8756-3282(90)90137-n.

    Article  CAS  PubMed  Google Scholar 

  12. Smit TH, et al. Structure and function of vertebral trabecular bone. Spine. 1997;22(24):2823–33. https://doi.org/10.1097/00007632-199712150-00005.

    Article  CAS  PubMed  Google Scholar 

  13. Hulme Pa, et al. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007;41(6):946–57. https://doi.org/10.1016/j.bone.2007.08.019.

    Article  CAS  PubMed  Google Scholar 

  14. Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg. 2011;131(12):1703–10. https://doi.org/10.1007/s00402-011-1355-9.

    Article  PubMed  Google Scholar 

  15. Pollintine P, et al. Neural arch load-bearing in old and degenerated spines. J Biomech. 2004;37(2):197–204. https://doi.org/10.1016/s0021-9290(03)00308-7.

    Article  CAS  PubMed  Google Scholar 

  16. Hordon Ld, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. two-dimensional histology. Bone. 2000;27(2):271–6. https://doi.org/10.1016/s8756-3282(00)00329-x.

    Article  CAS  PubMed  Google Scholar 

  17. Pollintine P, et al. Intervertebral disc degeneration can lead to stress-shielding of the anterior vertebral body. Spine. 2004;29(7):774–82. https://doi.org/10.1097/01.brs.0000119401.23006.d2.

    Article  PubMed  Google Scholar 

  18. Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure – biomechanical consequences. Bone. 1989;10(6):425–32. https://doi.org/10.1007/978-1-4612-3450-0_4.

    Chapter  Google Scholar 

  19. Adams MA, et al. Stress distributions inside intervertebral discs. J Bone Joint Surg. 1996;78-B(6):965–72. https://doi.org/10.1302/0301-620x.78b6.0780965.

    Article  Google Scholar 

  20. Adams MA, et al. Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res. 2006;21(9):1409–16. https://doi.org/10.1359/jbmr.060609.

    Article  PubMed  Google Scholar 

  21. Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec. 1988;220(4):337–56. https://doi.org/10.1002/ar.1092200402.

    Article  CAS  PubMed  Google Scholar 

  22. Roughley PJ. Biology of intervertebral disc aging and degeneration. Spine. 2004;29(23):2691–9. https://doi.org/10.1097/01.brs.0000146101.53784.b1.

    Article  PubMed  Google Scholar 

  23. Twomey L, Taylor J. Age changes in lumbar intervertebral discs. Acta Orthop Scand. 1985;56(6):496–9. https://doi.org/10.3109/17453678508993043.

    Article  CAS  PubMed  Google Scholar 

  24. Hansson TH, et al. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res. 1987;5(4):479–87. https://doi.org/10.1002/jor.1100050403.

    Article  CAS  PubMed  Google Scholar 

  25. Keller TS, et al. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J Orthop Res. 1987;5(4):467–78. https://doi.org/10.1002/jor.1100050402.

    Article  CAS  PubMed  Google Scholar 

  26. Zioupos P, et al. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 2008;41(14):2932–9. https://doi.org/10.1016/j.jbiomech.2008.07.025.

    Article  PubMed  Google Scholar 

  27. Eastell R, et al. Classification of vertebral fractures. J Bone Miner Res. 2009;6(3):207–15. https://doi.org/10.1002/jbmr.5650060302.

    Article  Google Scholar 

  28. Ismail AA, et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. Osteoporos Int. 1999;9(3):206–13. https://doi.org/10.1007/s001980050138.

    Article  CAS  PubMed  Google Scholar 

  29. Faciszewski T, Mckiernan F. Calling all vertebral fractures classification of vertebral compression fractures: a consensus for comparison of treatment and outcome. J Bone Miner Res. 2002;17(2):185–91. https://doi.org/10.1359/jbmr.2002.17.2.185.

    Article  PubMed  Google Scholar 

  30. Rao RD, Singrakhia MD. Painful osteoporotic vertebral fracture. J Bone Joint SurgAm. 2003;85(10):2010–22. https://doi.org/10.2106/00004623-200310000-00024.

    Article  Google Scholar 

  31. Smith-Bindman R, et al. A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res. 2009;6(1):25–34. https://doi.org/10.1002/jbmr.5650060106.

    Article  Google Scholar 

  32. Genant HK, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. https://doi.org/10.1002/jbmr.5650080915.

    Article  CAS  PubMed  Google Scholar 

  33. Black DM, et al. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res. 1999;14(5):821–8. https://doi.org/10.1359/jbmr.1999.14.5.821.

    Article  CAS  PubMed  Google Scholar 

  34. Holmes Ad, Hukins Dwl. Fatigue failure at the disc-vertebra interface during cyclic axial compression of cadaveric specimens. Clin Biomech. 1994;9(2):133–4. https://doi.org/10.1016/0268-0033(94)90037-x.

    Article  CAS  Google Scholar 

  35. Holmes AD, et al. End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine. 1993;18(1):128–35. https://doi.org/10.1097/00007632-199301000-00019.

    Article  CAS  PubMed  Google Scholar 

  36. Landham PR, et al. Pathogenesis of vertebral anterior wedge deformity. Spine. 2015;40(12):902–8. https://doi.org/10.1097/brs.0000000000000905.

    Article  PubMed  Google Scholar 

  37. Pollintine P, et al. Bone creep can cause progressive vertebral deformity. Bone. 2009;45(3):466–72. https://doi.org/10.1016/j.bone.2009.05.015.

    Article  PubMed  Google Scholar 

  38. Roberts S, et al. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine. 1989;14(2):166–74. https://doi.org/10.1097/00007632-198902000-00005.

    Article  CAS  PubMed  Google Scholar 

  39. Brinckmann P, et al. Deformation of the vertebral end-plate under axial loading of the spine. Spine. 1983;8(8):851–6. https://doi.org/10.1097/00007632-198311000-00007.

    Article  CAS  PubMed  Google Scholar 

  40. Rockoff SD, et al. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res. 1969;3(1):163–75. https://doi.org/10.1007/bf02058659.

    Article  CAS  PubMed  Google Scholar 

  41. Cooper C, et al. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7(2):221–7. https://doi.org/10.1002/jbmr.5650070214.

    Article  CAS  PubMed  Google Scholar 

  42. Lyritis GP, et al. Analgesic effect of Salmon calcitonin suppositories in patients with acute pain due to recent osteoporotic vertebral crush fractures: a prospective double-blind, randomized, placebo-controlled clinical study. Clin J Pain. 1999;15(4):284–9. https://doi.org/10.1097/00002508-199912000-00004.

    Article  CAS  PubMed  Google Scholar 

  43. Bogduk N, et al. The pain of vertebral compression fractures can arise in the posterior elements. Pain Med. 2010;11(11):1666–73. https://doi.org/10.1111/j.1526-4637.2010.00963.x.

    Article  PubMed  Google Scholar 

  44. Gennari C, et al. Use of calcitonin in the treatment of bone pain associated with osteoporosis. Calcif Tissue Int. 1991;49(S2):S9. https://doi.org/10.1007/bf02561370.

    Article  PubMed  Google Scholar 

  45. Knopp JA, et al. Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int. 2004;16(10):1281–90. https://doi.org/10.1007/s00198-004-1798-8.

    Article  CAS  PubMed  Google Scholar 

  46. Silverman S. The clinical consequences of vertebral compression fracture. Bone. 1992;13:S27. https://doi.org/10.1016/8756-3282(92)90193-z.

    Article  PubMed  Google Scholar 

  47. Doo T-H, et al. Clinical relevance of pain patterns in osteoporotic vertebral compression fractures. J Korean Med Sci. 2008;23(6):1005. https://doi.org/10.3346/jkms.2008.23.6.1005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang C. Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med. 1996;156(21):2469–75. https://doi.org/10.1001/archinte.156.21.2469.

    Article  CAS  PubMed  Google Scholar 

  49. Klazen CA, Lohle PN, De Vries J, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an Open-Label Randomised Trial. Lancet. 2010;376(9746):1085–92. Epub 2010 Aug 9.” The Spine Journal, vol. 11, no. 1, 2011, pp. 88–88. https://doi.org/10.1016/j.spinee.2010.11.011.

    Article  PubMed  Google Scholar 

  50. Blasco J, et al. Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res. 2012;27(5):1159–66. https://doi.org/10.1002/jbmr.1564.

    Article  PubMed  Google Scholar 

  51. Lieberman I. Vertebral augmentation for osteoporotic and osteolytic vertebral compression fractures: vertebroplasty and kyphoplasty. Advances in Spinal Stabilization. Prog Neurol Surg. 2003:240–50. https://doi.org/10.1159/000072646.

    Chapter  Google Scholar 

  52. Bostrom MPG, Lane JM. Future directions: augmentation of osteoporotic vertebral bodies. Spine. 1997;22(Supplement):38S. https://doi.org/10.1097/00007632-199712151-00007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Cha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostergaard, P.J., Cha, T.D. (2020). Biomechanics of Vertebral Compression Fractures. In: Razi, A., Hershman, S. (eds) Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-33861-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33861-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33860-2

  • Online ISBN: 978-3-030-33861-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics