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Chapter 18
Essential Biodiversity Variables: 
Integrating In-Situ Observations 
and Remote Sensing Through Modeling

Néstor Fernández, Simon Ferrier, Laetitia M. Navarro, 
and Henrique M. Pereira

18.1  �Introduction

Which facets of biodiversity are changing, and what is the magnitude and direction 
of these changes? How is biodiversity responding to the variety of human pres-
sures? Are the management policies put into place effective to tackle the impact of 
those pressures? While the scientific community has been addressing these ques-
tions for decades, the information gap in biodiversity science remains a major obsta-
cle for reducing the large uncertainties associated with answering those questions. 
Technological advances, collection of data by an increasing number of scientists 
and volunteer citizens, and increased access to Earth observations (EO) should help 
reduce this gap. Yet quantitative information is still limited, as has been its ability to 
inform important international commitments such as the Aichi Biodiversity Targets 
in response to the global biodiversity crisis (Tittensor et al. 2014). Data collection 
and monitoring protocols are often adopted by scientists, public administrations, 
and environmental organizations with no effective international coordination, and 
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there is no consensus on adopting priority metrics to quantify biodiversity change. 
While strengthening efforts to reduce the multiple biases present in biodiversity 
data remains critical (including spatial, temporal, and taxonomic biases, among oth-
ers; Meyer et al. 2016; Proença et al. 2017), parallel efforts are needed to consoli-
date data from in-situ and remote sensing (RS) EO so as to increase their usability 
and information value.

The concept of essential biodiversity variables (EBVs) was proposed in 2013 as 
a framework to prioritize, integrate, and consolidate biodiversity observations and 
monitoring programs worldwide (Pereira et al. 2013). Since then, EBVs have gained 
acceptance among scientists, along with the interest and endorsement of the policy-
making community, including the Convention on Biological Diversity (e.g., 
Decision XI/3  in UNEP/CBD/COP/11/35) and the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services (IPBES). By providing an 
integrative framework for quantifying biodiversity change in time, EBVs also hold 
great potential for advancing research on biodiversity and responses to pressures 
and conservation actions. However, the concept is still evolving, and divergent 
viewpoints have emerged on what actually constitutes an EBV. Here we discuss 
recent progress in defining an operational EBV framework and the importance of 
this framework for biodiversity data integration. We start with discussing key attri-
butes of EBVs. We then describe recent conceptual developments in support of their 
implementation. Finally, we illustrate the role of biodiversity models as a corner-
stone for integrating data obtained from in-situ and satellite RS EO to support global 
assessments of biodiversity change and as a critical component of a global biodiver-
sity monitoring system (Geller et al., Chap. 20).

18.2  �The EBV Framework

18.2.1  �Definition of Essential Biodiversity Variables

EBVs are defined as a minimum set of complementary measurements needed to 
detect and document biodiversity change across all levels of biodiversity, from 
genes to species and ecosystems (Pereira et al. 2013). EBVs are part of a larger fam-
ily of Essential Variables (EVs) that was first conceptualized by the climate com-
munity with the Essential Climate Variables (Box 18.1).

Like all EVs, EBVs must meet the criteria of feasibility, cost-effectiveness, and 
scientific and policy relevance. Additional characteristics that might be specific to 
the EBVs are generalization (to the best extent possible) across terrestrial, marine, 
and freshwater realms and scalability. Importantly, the EBVs evolved from initially 
covering multiple aspects of the Driver-Pressure-State-Impact-Response (DPSIR) 
framework to focusing exclusively on biological state variables (i.e., EBVs describe 
the condition or the status of a particular biological entity). This is not to say that 
nonbiological variables are irrelevant for EBVs. On the contrary, some of these 
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variables, such as temperature, fire occurrence, or elevation, may be extremely 
important (e.g., as covariates in biodiversity models); however, they do not consti-
tute EBVs themselves. Furthermore, EBVs can be analyzed in relation to other vari-
ables to attribute biodiversity change to specific pressures and drivers (Pereira et al. 
2012), to predict how different biodiversity metrics might behave with different 
scenarios of change (Kim et al. 2018), and to assess the effectiveness of manage-
ment policies for biodiversity and ecosystem services (Geijzendorffer et al. 2016).

EBVs are best understood as the level of integration between primary observa-
tions, including in-situ and RS EO, and indicators of biodiversity change, calculated 
for a given spatial reporting unit (country, set of protected areas, etc.; Fig. 18.1). The 
power of EBVs emerges from their flexibility to incorporate new data as technology 
evolves and/or more exhaustive primary data are collected. This is already the case 
with the advent of citizen science and the technical progress made with, for instance, 
metagenomics, metabarcoding, field sensor networks, and RS (Turner 2014; Bush 
et  al. 2017; Haase et  al. 2018; Muller-Karger et  al. 2018a). This means that the 
underlying measurement, coverage, and frequency of primary observations are 
likely to change (Fig. 18.2). Likewise, the needs of end users in terms of biodiversity 

Time

Sp
ac
e

En
tity

EBVs
Observa�on

systems Primary datasets IndicatorsUsers

Fig. 18.1  EBVs are intermediate products between primary observations and biodiversity change 
indicators. Observations obtained with different methods and protocols require different levels of 
integration, often with the use of biodiversity models, to consolidate the information in an 
EBV.  The EBV cube typically structures biological measurements in a space defined by geo-
graphic and temporal references and a biological entity, such as species or ecosystem class. While 
end users (including scientists, managers, public administrations, and international policy forums 
and bodies) determine the need for indicators, they also influence the implementation of observa-
tion systems. However, the EBV remains the same so that it is complemented with new primary 
data, e.g., from repeated in-situ surveys or future satellite missions
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change indicators have evolved in the past and will continue to do so. However, the 
EBVs are designed to remain conceptually stable, making them adaptable to differ-
ent and unforeseen users’ needs. For example, even though the methods used to 
acquire and integrate data on species occurrence, and the indicators it can inform 
on, are likely to change in the future, the species distribution variable remains 
essential.

Fig. 18.2  Framework of the six classes of EBVs grouped by species-focused and ecosystem-
focused approaches

Box 18.1 Essential Variables
Essential variables (EVs) emerged from the need for openly available data 
sets with transparent production processes that offer an appropriate spatial 
and temporal coverage to allow their use in policy- and decision-making 
(Bojinski et al. 2014). As a result, EVs are meant to allow the development of 
indicators that can support dynamic users’ needs while being resilient to 
changing and/or evolving observation systems (Reyers et al. 2017). From a 
pool of candidate variables, both science and technology will determine 
which are feasible, cost-effective, and, most importantly, relevant, and thus 
essential (Bojinski et al. 2014). In practice, although EVs can be interpreted 
and adapted differently among disciplines, the process of their development 
and endorsement remains similar, with a community of practice that self-
organizes to provide both the scientific foundation (research, data, monitor-
ing) and technical guidance to produce those EVs.

EVs were first adopted by the climate community as the Essential Climate 
Variables (ECVs) in the early 1990s, to respond to the needs of Parties of the 
United Nations Framework Convention on Climate Change and the 
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18.2.2  �A Space-Time-Biology Cube

The data structure of an EBV can be described as a hypercube and has analogy to 
a multidimensional data array in computer programming. The first two dimensions 
of the hypercube are space (latitude and longitude) and time, while the third dimen-
sion represents biological entities (Fig.  18.1). The latter dimension can, for 
instance, describe taxonomy in a species-centered EBV (see below), and values 
will inform the presence/absence or population abundance (e.g., Kissling et  al. 
2018a). Unlike the Essential Climate Variables (ECVs), the biological dimension 
of the EBVs makes them especially challenging in terms of developing the concep-
tual framework and producing the EBV data products. For ecosystem-level EBVs, 
this dimension can also inform ecosystem structure metrics (e.g., extent of differ-
ent habitat types) or functions (e.g., primary productivity) in the time-space coor-
dinates. The hypercube thus provides an intuitive representation of the EBV 
concept and at the same time has a direct translation in data computing language 
that suits implementation. Other EBVs are also more challenging to represent with 
three dimensions, even more so when considering that their value is likely to 
change depending on the spatial scale and extent, as is the case for the community 
spatial turnover.

18.2.3  �Six EBV Classes

Each EBV measures a particular attribute (property) of a given entity (object). 
EBVs are grouped into six broad classes based on similarities and differences in the 
attributes and entities they address (Fig. 18.2). These classes are sets of variables 

Intergovernmental Panel on Climate Change, but the concept has since been 
expanded to go beyond climate science, including with the Essential 
Biodiversity Variables (EBVs) and the Essential Ocean Variables (EOVs, 
Miloslavich et al. 2018). While there is value in increasingly expanding the 
concept to other domains, a coordinated approach within disciplines to define 
and prioritize the EVs and avoid the duplication of efforts is currently being 
discussed within the Group on Earth Observations (GEO). One example is the 
joint effort by the Marine Biodiversity Observation Network of the Group on 
Earth Observations Biodiversity Observation Network (GEO BON) and the 
Global Ocean Observing System (GOOS) of the Intergovernmental 
Oceanographic Commission (IOC) to streamline the marine observations that 
underpin the EBVs and EOVs (Muller-Karger et al. 2018b). The discussion 
on EVs is also permeating other domains, such as agriculture, health, and 
disaster risk reduction (Reyers et al. 2017).
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describing the structure, composition, and function of biodiversity across its hierar-
chical levels (Noss 1990). The entity addressed by an EBV can be of two broad 
types, distinguished by the approach used to define the set of organisms forming 
this entity.

In the first approach, entities are formed by grouping organisms primarily on the 
basis of their species identity. In other words, EBVs of this broad type measure 
particular attributes of species—i.e., genetic diversity within a species in the case of 
the Genetic Composition Class; distribution and abundance of a species in the 
Species Populations Class; and traits of a species in the Species Traits Class.

The second approach to forming entities involves grouping organisms primarily 
on the basis of where they occur. EBVs of this broad type measure collective attri-
butes of the entire ecosystem formed by all of the organisms occurring within a 
defined area (most typically an individual cell within a regular grid)—i.e., struc-
tural attributes of the ecosystem in the case of the Ecosystem Structure Class; func-
tional attributes of the ecosystem in the Ecosystem Function Class; and various 
dimensions of compositional diversity (e.g., taxonomic, genetic/phylogenetic, 
functional) of organisms occurring within the ecosystem in the Community 
Composition Class.

The relationships between these six EBV classes is depicted in Fig. 18.2. A few 
key aspects of this overall typology are worth noting. First, the two broad approaches 
to defining the entity addressed by an EBV, species-focused and ecosystem-
focused, essentially work with the same pool of individual organisms but view 
these organisms from two different perspectives—one grouping organisms accord-
ing to species identity and the other according to location. While the entity 
employed in species-focused EBVs will typically be defined primarily on the basis 
of species identity, this could in some instances be qualified to focus, for example, 
on the population of a species occurring in a particular area. Likewise, ecosystem-
focused EBVs might, in some instances, focus on measuring collective attributes of 
a particular subset of organisms occurring in an ecosystem rather than all organ-
isms, with this subset defined in terms of taxonomy (e.g., all birds) or any other 
trait of interest (e.g., all pollinators). Finally, it is important to caution against 
directly equating the species-focused versus ecosystem-focused typology with 
major sources of in-situ versus RS observation. Many different sources and types 
of data can, and should, contribute to the population of EBVs across this entire 
framework. Any given EBV class can typically be populated using data from mul-
tiple sources of in-situ and remote-sensing observation, and any given source will 
typically contribute data to more than one EBV class. For example, EBVs in the 
Community Composition Class could be populated with data both from RS of 
compositional diversity (e.g., Morsdorf et al., Chap. 4) and from aggregation of 
in-situ species observations and models (e.g., Pinto-Ledezma and Cavender-Bares, 
Chap. 9), with the latter also contributing data simultaneously to the Species 
Populations Class.
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18.3  �Production Workflows for EBVs

The estimation of EBV information products typically involves multiple levels of 
data integration, from the collection of raw observations to the production of a final, 
consistent information set that provides comparable measurements in space and 
time. Data integration procedures need to be customized for almost every EBV, 
since they need to accommodate highly diverse biological quantities that are often 
specific to a particular EBV.  Designing open, consistent, and fully reproducible 
workflows is key to support the full operationalization process, from data collection 
to publication of an EBV product that is ready to use for multiple science and policy 
purposes.

18.3.1  �The Need for Open EBV Workflows

Workflows are defined as precise descriptions of data processing from one analyti-
cal step to another in a formal language. In recent years a multiplication of biodiver-
sity data availability, novel analytical capabilities, and virtual infrastructures have 
laid the foundations for producing better integrated and more detailed information 
for measuring biodiversity change (e.g., Jetz et  al. 2012; Hansen et  al. 2013). 
However, the increasing variety of analytical procedures and project-specific 
designs also means that analytical standards are difficult to establish (Borregaard 
and Hart 2016). Open workflows benefit the preservation of processing steps and 
support data interoperability and the automation of biological and environmental 
data integration (e.g., via virtual biodiversity e-infrastructures; La Salle et al. 2016). 
These workflows require provenance of derived products to be also recorded so oth-
ers can understand the relationships among data, processing, and results (Michener 
and Jones 2012) and thus facilitate product updating as new data and better process-
ing algorithms become available. All these aspects are critical in the EBV frame-
work since the production of EBVs depends on large research collaborations built 
on the basis of knowledge transfer and open access to data and production protocols.

At present, fully operational workflows that facilitate the automated and wide-
spread production of EBVs are missing. However, recent efforts have identified 
critical steps and bottlenecks for the definition of workflows in support of the pro-
duction of specific EBVs.

18.3.2  �From Data Collection to Biodiversity Models

Generic workflows have been outlined so far for the production of a few species-
centered EBVs, including species distributions, population abundances, and species 
traits (Kissling et al. 2018a, b). For example, 11 steps have been identified to build 
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spatially continuous and temporally consistent EBV products for species distribu-
tions, from the integration of multiple data sources, including traditional direct spe-
cies observations collected in many different ways, automated records from sensor 
networks—such as camera traps and sound detection—and emerging uses of satel-
lite remote sensing (RS) for detecting species (Kissling et al. 2018a). These work-
flows pay special attention to the integration among in-situ observations and RS 
data. Other approaches may use in-situ observations only as ground-truth data, 
while the rest of the process is dominated by image processing (e.g., mapping veg-
etation cover; Hansen et al. 2013). However, traceability of the ground-truth sam-
pling and processing remains equally important and therefore also applies to the 
entire process similar principles of annotation, uncertainty reporting, and confor-
mance with data management guidelines (see below).

The key workflow steps can be summarized into three main groups (Fig. 18.3):

	1.	 Standardization of primary biodiversity observations. At the core of the EBV 
concept is the aggregation of primary observations from multiple sources into a 
harmonized product that provides more comprehensive and richer information 
than each individual data set. Before this aggregation can take place, primary 
data must be curated, standardized, and annotated with appropriate metadata that 
record characteristics such as location, time, measurement units, and, ideally, 
sampling designs, collection procedures, and data quality control procedures 
(Rüegg et al. 2014). For example, for Species Populations EBVs, harmonized 
observations would consist of sets of species occurrence and abundance data 
expressed in appropriate units (such as species occupancies and number of indi-
viduals per unit area, respectively) complemented with metadata in appropriate 
standards such as the “Darwin Core Standard” with the “Event Core” extension 
(Wieczorek et al. 2012), which makes it possible to capture monitoring protocols 
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Fig. 18.3  Outline of an EBV production workflow for the integration of in-situ and RS data from 
disparate primary sources of data to final modeled information and publishing. Some authors con-
sider the result of the intermediate data integration level also as an EBV-ready data set from which 
some indicators can be calculated, even from sparse observations in space and time (Kissling 
2018a), while fully continuous coverage in the spatial and temporal dimensions is typically 
obtained only in the last level of integration 
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and sampling efforts together with the data (https://www.gbif.org/darwin-core). 
Full documentation of sampling events using adequate metadata standards not 
only is critical for facilitating reuse of data by secondary users but also provides 
important information for quantifying the associated uncertainty and eventually 
applying correction techniques in subsequent steps. In practice, for a decade or 
so, the critical importance of annotating data with standard metadata has guided 
data management practices (e.g., in the context of long-term ecological research 
networks; Michener et al. 2011). However, poor data practices that ignore the 
annotation of metadata or that fail to adopt interoperable formats are still com-
mon for many biodiversity data sets, including those accessible through public 
data archives of scientific journals (Roche et al. 2015). These deficiencies consti-
tute a major bottleneck for building EBVs (Hugo et al. 2017).

	2.	 Primary data aggregation. A second set of steps leads to the production of con-
solidated data products that typically conform to all or most of the following 
characteristics: They contain consistent biological quantities expressed in the 
same measurement unit; other relevant biological attributes have been checked 
and harmonized (e.g., into a harmonized taxonomy or a consistent typology of 
traits or of ecosystem types); spatial and temporal references are matched; and 
data uncertainties have been quantified. Standardized observations need to be 
checked at this stage using quality control (QC) mechanisms that are documented 
transparently (Rüegg et al. 2014), for example, looking at outliers to ensure data 
quality. Collation of data in support of user requirements will ideally be auto-
mated using virtual infrastructures that are able to map the different (standard-
ized) data sets with metadata into fully interoperable formats (Hugo et al. 2017). 
As detailed in Kissling et al. (2018b), an excellent example of this for the Species 
Traits EBVs is the Global Plant Phenology Data Portal (https://www.plantphe-
nology.org), a platform that integrates phenology observations from three differ-
ent networks using disparate data frameworks (Stucky et al. 2018). Key for this 
integration was the design of a new “Plant Phenology Ontology” that was able to 
provide a semantic framework as a basis to overcome interoperability problems 
produced by network-specific terminologies for data recording. Finally, data 
integration needs to deal with, and report on, uncertainties resulting from errors 
that may propagate throughout the different EBV production steps, including 
uncertain geographic locations of in-situ data, heterogeneous sampling methods 
and efforts (Proença et al. 2017), and measurement errors.

	3.	 Model-based estimation. Final EBV products ideally provide continuous infor-
mation in space and at different time periods so biodiversity change can be mea-
sured throughout the entire spatial domain. This is the case for EBVs that can be 
directly estimated using algorithms applied to satellite RS imagery with com-
plete area coverage. On the contrary, for many EBVs that are primarily estimated 
from in-situ data, an additional level of integration is required to overcome the 
sparsity of data. Biodiversity models provide this level of integration by combin-
ing the strengths of in-situ observations and state-of-the-art RS products based 
on correlative or deductive approaches (Jetz et al. 2012; Ferrier et al. 2017). For 
instance, species distribution models are often based on a correlative relationship 
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between environmental variables and the probability of the occurrence of a spe-
cies. These models are calibrated or trained using species occurrence and some-
times absence data as response variables and environmental variables as 
predictors. The probability of occurrence of a species can be spatially interpo-
lated between the observation points because environmental variables are avail-
able as continuous surfaces (i.e., wall-to-wall), which are themselves generated 
from models using in-situ and EO data. In deductive habitat modeling, expert-
based assessment of the habitat preference and environmental constraints of spe-
cies is used to refine the potential species distribution. When habitat predictors 
are available in high resolution, this makes it possible to go from coarse potential 
species distributions to fine-grain species distributions because species also 
respond more locally to habitat variables than to, for instance, climate (Triviño 
et al. 2011; Martins et al. 2014). Other EBVs can also be projected with models 
that integrate in-situ observations with RS data and other environmental data. 
Community composition variables such as the beta diversity between two sites 
can be projected from climate and other variables using generalized dissimilarity 
models (Ferrier et al. 2007), while alpha and gamma diversity can be projected 
from land-use using the countryside species-area model (Pereira and Borda-de-
Água 2013). Hence, environmental predictors derived from RS constitute the 
backbone of higher-resolution EBV products that are consistent in space and 
time. However, it is important to note that such model-based EBVs provide 
information that is fundamentally different from the aggregated data sets 
described in the preceding steps and that while it improves the spatial and tem-
poral coverage of the data set, it also introduces additional uncertainties that 
need to be documented.

Massive integration of biodiversity data based on the EBV framework and work-
flows requires implementation via interoperable informatics infrastructures (Hugo 
et al. 2017). Projects aligned with the mission and concepts of EBVs, such as Map 
of Life (www.mol.org) or the Biogeographic Infrastructure for Large-scaled 
Biodiversity Indicators (BILBI) (Hoskins et al. 2018), already constitute a proof of 
concept of the potential of virtual infrastructures for developing a biodiversity-
modeling framework that delivers global information from multi-sourced EO data 
integration. While the technological implementation of these infrastructures should 
not constitute a major limitation, redoubled efforts are needed, first, on making the 
large amounts of in-situ data being collected available and interoperable and, sec-
ond, on developing and adapting biodiversity models that are able to ingest massive 
and novel sources of data, both in-situ (e.g., eDNA data) and RS (e.g., imaging 
spectroscopy).

N. Fernández et al.
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18.3.3  �Access Principles

The open publication of intermediate and final processed products and the adher-
ence to open data-sharing principles is key to maximize scientific and policy bene-
fits of the EBV framework. The Group on Earth Observations (GEO) has established 
a set of Data Management Principles to support publication of information using 
open standards and to ensure discoverability and accessibility through GEOSS, the 
Global Earth Observation System of Systems (Fig. 18.4). These principles allow 
full traceability, ensuring accessible information on data sources and processing 
history via provenance information. All of these management principles are directly 
applicable to EBVs. For example, traceability is critical for facilitating the updating 
of the information contained in an EBV product with new data (e.g., from new 
monitoring and/or observation systems) and the timely incorporation of new biodi-
versity model developments.

In addition, GEO BON is developing an “Essential Biodiversity Variables Portal” 
that supports this process and enhances accessibility to EBV products. Open distri-
bution of these products is complemented by reporting on their compliance with a 
set of “EBV Minimum Information Standards”. Besides ensuring good data man-
agement practices, these information standards aim to provide a guideline for the 
standardized description of EBV products. The purpose is to ensure consistent 
information about the EBV hypercube (i.e., the attributes of space, time, biological 
entity, and uncertainties) among the different EBV classes so that final users can 
easily access the relevant information (e.g., when searching for suitable EBVs for 
specific indicators).

1. Discoverable data and metadata with access

conditions clearly indicated

2. Accessible online, preferably with services for access

3. Data encoding following community standards

4. Data documented via metadata

5. Data traceable with provenance metadata

6. Data quality control and results indicated in metadata

7. Data preservation planned for future use

8. Data and metadata verified to ensure integrity

9. Data reviewed and updated, including

10.Persistent identifiers are assigned to the datawww.geolabel.info

Fig. 18.4  The ten GEOSS Data Management Principles promote the practical implementation of 
openness in scientific data and best practices ensuring that data are easily discoverable, accessible, 
and (re)usable. Data providers may assess conformance with each of the principles, in which case 
a labeling system helps the user to recognize such conformance. For detailed guidelines on the 
implementation of these principles, see www.geolabel.info. 
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18.4  �Seamless Integration of Past Trends to Future Scenarios 
Using EBVs

Besides providing spatial interpolation of EBVs, biodiversity models can project 
changes in EBVs over time based on the relationship between drivers of biodiver-
sity change and state variables of biodiversity. This means that, when historical data 
on drivers is available, past trends for an EBV can be backcast. In other words, a 
single snapshot of biodiversity and driver data at a given moment in time can be 
used to establish the relationship between driver variables and biodiversity variables 
across points in space (Fig. 18.5). Then, in order to project for other moments in 
time, these spatially inferred relationships are assumed to also hold when drivers 
evolve over time, using space-for-time replacement. When scenarios exist for the 
future trajectories of the drivers, the future trends in the EBV can be forecast as well 
(Fig.18.5; Ferrier et al. 2017). Estimated EBVs allow for seamless comparison of 
historical trends of biodiversity to future scenarios of biodiversity change. Indicators 
aggregating spatial information can be easily calculated from the spatially explicit 
EBV and plotted in time for any spatial unit of interest, such as a country or region 
(GEO BON 2015; Navarro et al. 2017).

Recently, a set of EBVs was historically reconstructed and projected into the 
future in an inter-model comparison study carried out by the Expert Group on 
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Fig. 18.5  Estimation of EBVs using biodiversity models. In-situ observations of an EBV often are 
sparse in space, and only a few time series exist. Drivers are often modeled continuously in space 
for a given moment in time and can be used by biodiversity models to project an EBV continuously 
in space after calibration and validation with the in-situ observations. When driver layers exist for 
other moments in time, either from RS observations or from scenario projections using models, the 
EBV can be estimated over time
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Scenarios and Models of the Intergovernmental Platform on Biodiversity and 
Ecosystem Services (Kim et al. 2018). Species distribution, community composition, 
ecosystem function variables, and ecosystem services variables were reconstructed 
since 1900 and projected to 2050 globally, at a 0.5° resolution, using harmonized 
land-use data sets developed for the shared-socioeconomic pathways and climate 
data sets for the relative concentration pathway scenarios. In this exercise, a space-
for-time substitution was used in the biodiversity models. In other words, no explicit 
time series biodiversity data were used to calibrate the models. Instead, current 
spatial patterns of biodiversity and drivers were used to infer how biodiversity 
changes over time when driver variables change. A future challenge for biodiversity 
modelers is to use biodiversity time series to fully model biodiversity across space 
and time (Ferrier et al. 2017).

18.5  �Concluding Remarks

Since EBVs were first defined, there have been significant advances in the consolida-
tion of the framework, substantial conceptual work on implementation, and increas-
ing enthusiasm about their many potential applications in biodiversity science and 
policy. Now the scientific community needs to face the challenge of delivering EBV 
products and workflows that provide estimates of changes for the main facets of 
biodiversity and support our understanding of the driving mechanisms and the con-
sequences of such changes. There are important opportunities for mobilizing pri-
mary data offered by the open-access movement, which continue to permeate the 
biodiversity community. These include public institutions responsible for promoting 
scientific and technological advancement. Data gaps will be covered by combining 
technological development with appropriate biodiversity models. For example, 
spaceborne sensors such as the Global Ecosystem Dynamics Investigation (GEDI) 
Lidar launched in 2018 are providing unprecedented global coverage in vertical 
measurements of vegetation and topography and will most likely support model-
based integration of information for biodiversity variables in unforeseen ways.

Fulfilling the EBV vision requires renewed efforts, first, in continued scientific 
and technological support for the mobilization of in-situ data and for designing 
more comprehensive and better coordinated monitoring schemes and, second, in the 
implementation of workflows and interoperable infrastructures that support wall-to-
wall integration of biodiversity data. GEO BON as a network defined at multiple 
levels, from scientific to institutional and infrastructure support, is instrumental for 
this endeavor (Hugo et al. 2017; Navarro et al. 2017). Key priorities are the imple-
mentation of mechanisms that enhance data mobilization as exemplified by the 
Darwin Event Core; a common understanding between the biodiversity research 
community and the space agencies of the processes to develop the technology 
required for detecting biodiversity change (Paganini et al. 2016); global informatics 
infrastructure support that meets the requirements for operationalizing EBVs 
(Hardisty et al. 2019); and broad scientific cooperation in implementing and enhanc-
ing biodiversity models that integrate all types of Earth observations.
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