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Chapter 10
Remote Sensing of Geodiversity as a Link 
to Biodiversity

Sydne Record, Kyla M. Dahlin, Phoebe L. Zarnetske, Quentin D. Read, 
Sparkle L. Malone, Keith D. Gaddis, John M. Grady, Jennifer Costanza, 
Martina L. Hobi, Andrew M. Latimer, Stephanie Pau, Adam M. Wilson, 
Scott V. Ollinger, Andrew O. Finley, and Erin Hestir

10.1  �Conserving Nature’s Stage

Biodiversity is essential for ecosystem functioning and ecosystem services (Chapin 
et al. 1997; Yachi and Loreau 1999). Yet rapid global change is altering biodiversity 
and endangering its vital functions, with human-caused habitat deterioration being 
the number one cause of biodiversity loss (Sala et al. 2000). In addition, climate 
change is directly affecting individual species abundances and distributions and 
indirectly affecting species via biotic interactions (Walther et  al. 2002). When 
combined, these effects lead to novel ecological communities for which there are no 
modern analogs (Williams and Jackson 2007). Although species have continually 
experienced shifts in climate, the recent rate of temperature change is more rapid 
than in any other timeframe in the past 10,000 years (Marcott et al. 2013), and tem-
peratures are expected to rise even faster in the near future (Smith et al. 2015). In 
light of these rapid global changes, a major challenge for biodiversity scientists is to 
generate robust statistical models that describe and predict biodiversity in space and 
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time, from which changes in hot spots (highs) and cold spots (lows) of biodiversity 
may indicate shifts in ecosystem functions and services.

Contemporary strategies for addressing and managing biodiversity loss align 
with a metaphor developed by G. Evelyn Hutchinson in his book The Ecological 
Theater and the Evolutionary Play from Shakespeare’s As You Like It (Hutchinson 
1965). In Act II, Scene VII, of As You Like It, Shakespeare wrote, “All the world’s a 
stage, and all the men and women merely players. They have their exits and their 
entrances.” In Hutchinson’s metaphor, the world’s biota comprises the players, and 
the script is an evolutionary play. More recently, the metaphor has been extended to 
consider the Earth’s abiotic setting as the stage (Beier et al. 2015).

Conservation efforts often emphasize management plans for the actors [e.g., 
Essential Biodiversity Variables (EBVs)] (Fernandez and Pereira, Chap. 18). 
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For instance, the US Endangered Species Act and International Union for 
Conservation of Nature (IUCN) Red List focus on individual species (ESA 1973; 
IUCN 2001). However, an inherent challenge to managing species is that, during the 
course of a play, the actors move across the stage. Geo-referenced fossils from the 
paleoecological record provide evidence of how species’ geographic ranges shifted 
in the past as Earth’s climate fluctuated (Williams and Jackson 2007; Veloz et al. 
2012). For instance, in terms of estimating EBVs (Fernandez and Pereira, Chap. 18), 
species distribution models (SDMs) are one of the most common tools for under-
standing how species ranges might shift over time and space (Elith and Leathwick 
2009; Record and Charney 2016), but they are fraught with statistical (Record et al. 
2013) and biological shortcomings (Belmaker et  al. 2015; Charney et  al. 2016; 
Evans et al. 2016) that hamper their ability to reliably inform management. Given 
the challenges of managing species whose ranges might be shifting in response to 
climate change (Veloz et al. 2012), there is interest in focusing conservation efforts 
on areas that are likely to support biodiversity and on the processes that generate it 
(Pressey et al. 2007; Anderson and Ferree 2010; Beier and Brost 2010). Indeed, The 
Nature Conservancy, one of the world’s leading nonprofit conservation organiza-
tions, has adopted the rallying cry of “conserving nature’s stage” (Beier et al. 2015). 
Conserving nature’s stage entails identifying parcels of Earth that are valuable for 
their geodiversity and for their capacity to support diverse life forms today and into 
the future.

Geodiversity has been defined in several ways (see Table  1.2  in Gray 2013). 
Some definitions of geodiversity refer to variability in soil, geological, and geomor-
phological features and the processes that give rise to them (Gray 2013 and refer-
ences therein). Other definitions tend to have a wider scope and also include 
topography, hydrology, and climate (Benito-Calvo et al. 2009; Parks and Mulligan 
2010). These more inclusive definitions of geodiversity capture variability in the 
entire geosphere (Hjort et al. 2012) that link to important drivers of biodiversity 
(e.g., energy, water, and nutrients (Richerson and Lum 1980; Kerr and Packer 
1997)). The geosphere includes the lithosphere, atmosphere, hydrosphere, and 
cryosphere (Williams 2012) and processes within and among them and encom-
passes the abiotic components of Earth’s “Critical Zone,” or the portion of Earth 
where biotic and abiotic processes support life on Earth’s surface (NRC 2001). Just 
as the Critical Zone arises from interactions among abiotic and biotic processes, 
geodiversity is not separated from biotic influences and biodiversity. A key step in 
the prioritization of conservation areas using this approach is to understand the 
relationships between biodiversity and geodiversity. Remotely sensed biodiversity 
and geodiversity data have the potential to answer questions of scale to better inform 
conservation decisions because they can provide coverage at nearly continuous 
large spatial extents (i.e., regional to global) and at fine spatial and temporal resolu-
tions (Fig. 10.1 for a spatial example). Here, we provide an overview of remotely 
sensed data sources that can be used to measure geodiversity and biodiversity to 
better understand biodiversity-geodiversity relationships, which is a key step in 
conserving nature’s stage.
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10.2  �Geodiversity Indices

Geodiversity represents an opportunity for habitat differentiation (Radford 1981) 
and available niche space (Dufour et al. 2006) that is thought to support biodiversity 
(Gray 2008). The continuous nature of remote sensing (RS) data enables explora-
tion of novel measures of geodiversity. In this section we focus our discussion on 
metrics of variability, although absolute values (e.g., minimum and maximum 
thresholds) of some geographical features are also informative for understanding 
species’ limits and ultimately species diversity. Studies have used two aspects of 
variability: the absolute range of conditions and the spatial configuration of these 
conditions (Spehn and Körner 2005; Dufour et  al. 2006; Jackova and Romportl 
2008; Serrano et al. 2009; Hjort and Luoto 2010; Hjort and Luoto 2012). The range 
in conditions is an estimate of the different elements in the area of interest. Given 
sampling units larger than the minimum pixel resolution, the proportional area cov-
ered by distinct geographical features could be used to calculate an evenness index 
of geodiversity. Categorical features have also treated geodiversity variables simi-
larly to species with measured presences or abundances in various geodiversity met-
rics (Serrano et al. 2009; Tuanmu and Jetz 2015).

Alternatively, geodiversity could be quantified as variability in continuous obser-
vations such as elevation or climate. A focus on variability allows for different geo-
logical contexts (past and present) to be taken into account. One of the most common 
measures of environmental heterogeneity is elevational range (Stein et al. 2014), 
simply the absolute difference between elevation at two sites or sample units 
(i.e., among or within sites, respectively). Using elevation as an example, the average 

Fig. 10.1  Topography at different spatial grains. Hillshade maps calculated from digital elevation 
models (DEMs) at 1 m resolution (a) and (b), 90 m resolution (c), and 1 km resolution (d). The 
inset map in (d) shows the locations of panels (c) and (d) in California, which have the same 
extent. Data for panels (a) and (b) are from the National Ecological Observatory Network’s 
(NEON) Airborne Observation Platform Light Detection and Ranging (LiDAR) system (Kampe 
et al. 2010). Data for panels (c) and (d) are from the Shuttle Radar Topography Mission (SRTM) 
via earthenv.org (Robinson et al. 2014)
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difference, squared, between the elevation in a focal cell and all other cells in a 
sample unit could be used as a measure of topographic heterogeneity. The coeffi-
cient of variation is a similar measure of heterogeneity, though it is standardized to 
the mean elevation of the sample unit. Pairwise site differences in multiple geo-
graphical features can be used as predictors in matrix regression such as generalized 
dissimilarity models (Ferrier et al. 2007) or more generally a Mantel test (Tuomisto 
et al. 2003; Legendre et al. 2005), though mechanistic interpretation is limited when 
geographical features are combined in this way.

Additional approaches include a geodiversity atlas that classifies areas as having 
very high, high, moderate, low, and very low geodiversity (Kozlowski 1999), quan-
tifying geodiversity in terms of total component resource  potential (i.e., energy, 
water, space, and nutrients; Parks and Mulligan 2010), and the geodiversity index 
(Gd) that relates the variety of physical elements (i.e., geomorphological, hydro-
logical, soils) with the roughness and surface of the previously established geomor-
phological units according to the formula:

	
Gd

EgR

lnS
=

	
(10.1)

where Eg is the number of different physical elements, R is the coefficient of rough-
ness of the unit, and S is the surface of the unit (km2). The Gd is a semiquantitative 
scale that permits the establishment of five values of geodiversity, from very low to 
very high for each homogeneous unit. It is argued that use of Gd would allow easier 
comparison of units and aid suitable management of protected areas (Serrano et al. 
2009; Hjort and Luoto 2010; Tukiainen et al. 2017).

With continuously measured remotely sensed geographical features, the sample 
unit (i.e., grain size) can be modified to examine within site and total site (and thus 
between sites) geodiversity. Additionally, RS data can uniquely address how rela-
tionships between geodiversity and biodiversity change across scales. Various com-
binations of changing grain and extent (change grain maintain extent, change extent 
maintain grain, change grain and extent) could be examined to explore scaling rela-
tionships (Barton et al. 2013).

10.3  �Remote Sensing of Geodiversity

In the following sections, we describe the different components of geodiversity 
(Table 10.1), some of the ways they can be quantified, and the current state of tech-
nologies available to measure them remotely via airborne or satellite observations 
(Table 10.2). To match current interests in global biodiversity databases (e.g., the 
Global Biodiversity Information Facility, gbif.org), and because of the importance 
of scaling from local to much larger extents, we focus here on globally available 
data; however, we also mention some local scale RS applications. In particular, 
given that more and more remotely sensed data have been made publically available, 
we highlight open access remotely sensed geodiversity data.
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Table 10.1  Elements of geodiversity

Lithosphere Geology Minerals
Rocks
Unconsolidated solids
Fossils

Geomorphology Tectonics
Soils Soil chemical properties

Soil physical properties
Topography Elevation

Landforms (e.g., ridges, spurs)
Slope
Aspect
Energy
Roughness

Atmosphere Climate and weather Temperature Extreme events
Precipitation
Wind

Hydrosphere Surface water
Groundwater

Cryosphere Ice
Snow

Adapted from Serrano et al. (2009)

Table 10.2  Examples of remotely sensed geodiversity elements

Geosphere
Geodiversity 
element RS data set

Lithosphere Geology Ground-penetrating radar (GPR)
Topography Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER)
Shuttle Radar Topography Mission (SRTM)
Sentinel-2

Atmosphere Surface 
temperature

MODIS (Moderate Resolution Imaging Spectroradiometer) 
surface temperature
AVHRR (Advanced Very High Resolution Radiometer) 
surface temperature
Sentinel-3

Rainfall Tropical Rainfall Measurement Mission (TRMM)
Global Precipitation Measurement (GPM) mission

Wind direction 
and speed

Quick Scatterometer (QuickSCAT)
Rapid Scatterometer (RapidScat)

Hydrosphere Soil moisture ESA’s Soil Moisture and Ocean Salinity (SMOS)
NASA’s Soil Moisture Active Passive (SMAP) observatory

Gravity anomalies Gravity Recovery and Climate Experiment (GRACE)
Cryosphere Ice sheet mass 

balance
Geoscience Laser Altimeter System (GLAS) sensor onboard 
the Ice, Cloud, and land Elevation Satellite (ICESat)

S. Record et al.
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10.3.1  �Lithosphere

10.3.1.1  �Lithosphere: Topography

Topographic barriers can influence geographic patterns of biodiversity by physically 
isolating populations of plants and animals (Janzen 1967). Topography also can be 
used as an indirect measure of microclimate, as topographic position can influence 
temperature and precipitation (e.g., Ollinger et al. 1995). Topography of the litho-
sphere crust is often represented by elevation (the height above sea level of a given 
point on the ground) or bathymetry (the depth to the bottom of a water body). In 
February 2000 the SRTM radar system flew on the US Space Shuttle Endeavour for 
11 days collecting radar-derived elevation data from 60°N to 56°S. These data were 
originally released at 90 m resolution; however, in 2015, 30 m data (1 arc second) 
were released for the entire SRTM extent. There are many other sources of elevation 
data including NASA Advanced Spaceborne Thermal Emission and Reflection 
Radiometer ASTER (Fig. 10.2), active radar satellites designed for ice measurement 
(see the Cryosphere section), and more. NASA is currently working to develop a 
best available digital elevation model (DEM) for the planet, NASADEM. For this 
the entire SRTM data set will be reprocessed, Geoscience Laser Altimeter System 
(GLAS) data will be incorporated to remove artifacts, and the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global Digital Elevation Model ver-
sion 2 (ASTER) and Global Digital Elevation Map (GDEM) V2 DEMs will be used 
for refinement.

Elevation is only one of many products under the umbrella of topography. Slope 
(the angle between two elevation points) and aspect (the direction a slope is facing) 
are two of the many indices that can be derived from elevation data. Importantly, 
most of these indices are kernel-dependent, meaning they rely on data not just from 
an individual point but from surrounding points as well. For example, ArcGIS 10.3 
(ESRI; Redlands, California) calculates the slope of a given pixel (elevation value) 
as the maximum slope between that center pixel and the eight surrounding pixels. 
The “terrain” function in the raster package in R statistical software (Hijmans and 
van Etten 2019) permits several different methods for calculating slope based on 
either a 4- or an 8-cell kernel, and these calculations differ slightly from those in the 
Geospatial Data Abstraction Library (GDAL; gdal.org). Environment for Visualizing 
Images (ENVI) software (Harris Geospatial Solutions, Broomfield, Colorado) 
allows the user to select any kernel size then fits a quadratic surface to the entire 
kernel, calculating slope and other parameters based on that surface (Wood 1996). 
These different methods could lead to somewhat different results; in particular, the 
selection of a small versus a large kernel could change the slope estimated. Imagine, 
for example, with fine-grained data, the inside of a tip-up pit on the side of a north-
facing slope. The local aspect could be south facing, while a larger kernel could 
reveal that the landscape is north facing.

Beyond slope and aspect, there are many other kernel-dependent topographic 
measures. For instance, Topographic Position Index (TPI) is defined as the differ-
ence between a central pixel and the mean of its surrounding pixels. Terrain 
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Ruggedness Index (TRI), in contrast, is the mean of the difference between the 
central pixel and its surrounding pixels (Riley et al. 1999). Wood (1996) describes a 
number of convexity and curvature metrics based on the first and second derivatives 
of the quadratic surface described above. DEMs can also be classified into topo-
graphic features or landforms like peaks, ridges, channels, and pits, though these 
definitions depend on specific threshold values that may either be prescribed by 
software or defined by the user. Incident solar radiation can also be calculated for a 
given day or aggregated for a year based on a given point’s elevation and latitude 
and the elevations of surrounding pixels. Although this section mainly describes 
DEM-derived morphometric landforms, it is also important to acknowledge that the 
genesis of landforms interacts with the ecology of a system. For instance, two hills 
with similar shapes may have very different associated vegetation if one is sandy 
(e.g., a dune) and the other is made of tills (e.g., end moraine).

While SRTM-derived products are typically used to produce “best available” 
topographic information, a challenge with SRTM is that the mission occurred 

Fig. 10.2  Four examples of geodiversity variables derived from National Aeronautics and Space 
Administration (NASA) data products. (a) Earth’s elevation, from which topographic diversity can 
be calculated, from 2009 imagery from the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) instrument aboard NASA’s Terra satellite (30 m spatial resolution). Image 
courtesy of NASA/JPL/METI/ASTER Team, NASA’s Goddard Space Flight Center. https://svs.
gsfc.nasa.gov/11734. Elevation in meters shown with yellows being lower in elevation than greens 
or reds.  (b) Gravity Recovery and Climate Experiment’s (GRACE) Terrestrial Water Storage 
Anomaly as of April 2015 relative to a 2002–2015 mean. Image courtesy of NASA’s Scientific 
Visualization Studio (1° spatial resolution). (c) Soil Moisture Active Passive (SMAP) global radi-
ometer map. Image courtesy of NASA (9 km spatial resolution). H-polarized brightness tempera-
tures are shown in degrees Kelvin with warmer colors (reds and oranges) showing warmer 
temperatures and cooler colors (blues and yellows) showing cooler temperatures. (d) Mean annual 
cloud frequency (%; reds indicate higher cloud frequency than blues) over 2000–2014 derived 
from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) satellites (Wilson and 
Jetz 2016; 1 km spatial resolution)
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only once. In geologically and tectonically active areas and areas where humans are 
influencing geology, satellite-derived data can be used to detect even very small 
changes over time. For example, Ge et  al. (2014) used synthetic aperture radar 
(SAR) interferometry to detect subsidence in the Bandung Basin (Indonesia) likely 
due to groundwater extraction. Yun et al. (2015) used SAR data to map areas of 
change and potential damage after the 2015 Gorkha earthquake in central Nepal. 
Using SAR instruments in concert with LiDAR instruments on airborne flights has 
allowed for greater than 30 cm vertical accuracy (Corbley 2010). The launch of the 
Global Ecosystem Dynamics Investigation (GEDI) mission onboard the International 
Space Station has the potential to allow for improved global topographic data 
(Stavros et al. 2017).

10.3.1.2  �Lithosphere: Geology and Soils

Geology consists of several subdisciplines, including lithology, tectonics, volcanol-
ogy, and seismology. A modern geologic “map” in a geographic information system 
(GIS) framework may include polygons outlining the different substrate types and 
their ages, lines showing faults, and points identifying small outcrops or places 
where cores were collected. These static (unchanging through time) representations 
are developed through the painstaking work of geologists who gather in-situ records 
of rock type and estimates of geologic feature extents. Geologic maps vary in qual-
ity and access due largely to the density and biases of field technicians. When con-
sidering long-term evolutionary histories that generate deeper phylogenetic patterns, 
geological processes of uplift and erosion can become important (Cowling et al. 
2009). Nevertheless, for more historically proximate species, community assembly, 
the available minerals, substrate structure, and topography are likely to play a more 
important role, especially in plants. For example, although all locations across the 
Mauna Loa environmental matrix in Hawai’i share a common parent material, 
differences in age, texture, and nutrient availability (due to variation in climate and 
weathering) lead to dramatically different vegetation patterns (Vitousek et al. 1992).

Similar to geologic maps, soil maps are typically developed through fieldwork 
and image interpretation for a single time period. Nevertheless, soils have higher 
spatial variability than bedrock and may change rapidly in response to natural or 
man-made disturbance. Recently there have been calls to improve the quality and 
dynamism of soil maps (Grunwald et  al. 2011). The SoilGrids1km data product 
(Hengl et al. 2014) is one such example. It is a modeled product that relies on indi-
rect remotely sensed variables, such as Moderate Resolution Imaging 
Spectroradiometer (MODIS), leaf area index (LAI), land surface temperature 
(LST), and topography from the SRTM to produce estimates at six depths of soil 
organic carbon, soil pH, sand, silt, and clay fractions, bulk density, cation-exchange 
capacity, coarse fragments, and depth to bedrock.

Imaging spectroscopy has been broadly applied for geologic mapping (Goetz 
et al. 1985; Gupta 2013). Multispectral imagery, like NASA’s ASTER instrument 
and the European Space Agency’s (ESA’s) Sentinel-2 satellite, that is part of the 
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Copernicus program has long been used for mapping lithography in exposed sur-
face environments (Rowan and Mars 2003; Hewson et al. 2005; Massironi et al. 
2008; van der Werff and van der Meer 2016). Hyperspectral imagery has been used 
successfully to map minerals in many low-vegetation landscapes. For example, the 
Hyperion sensor, aboard the now decommissioned EO-1 satellite, was used to map 
mineralogy in Australia (Cudahy et  al. 2001). The Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) and new AVIRIS-Next Generation missions con-
tinue to push the boundary of imaging spectroscopy used in mineral mapping 
(Krause et al. 1993; Crowley 1993; Green et al. 1998). These instruments can also 
provide information on soil nutrient availability in areas dominated by vegetation 
cover via the influence of soils on foliar chemistry (e.g., Ollinger et al. 2002).

Ground-based RS has also provided insights for subsurface geologic mapping. 
For instance, ground-penetrating radar (GPR) uses radar pulses to map the relative 
densities of materials belowground and effectively maps soil and bedrock in layers 
(Davis and Annan 1989). Airborne GPR can greatly enhance the temporal and spa-
tial resolution of geologic maps (Catapano et al. 2014; Campbell et al. 2018).

10.3.2  �Atmosphere: Climate and Weather

Climate is an important control on mineral weathering, soil formation, and land-
forms (Jenny 1941). Surface temperature and cloud cover are readily observed with 
RS.  The Advanced Very High Resolution Radiometers [AVHRR; National 
Oceanographic and Atmospheric Administration (NOAA)] have been collecting 
surface radiation data in the visible, infrared, and thermal spectra with twice-daily 
global coverage since 1981 that currently gathers data at ~1 km spatial resolution. 
AVHRR data can be used to map cloud cover and land and water surface tempera-
tures; however, changes in satellite technology and the lack of onboard calibration 
in the AVHRR sensors have made the use of these data challenging due to a need for 
standardization of data across satellite technologies (Cao et al. 2008). The launch of 
the MODIS sensors on NASA’s Terra (launched in 1999) and Aqua (launched in 
2002) satellites and ESA’s Sentinel-3 satellite as part of the Copernicus program 
(3-A launched in 2016 and 3-B launched in 2018) significantly improved global 
mapping capabilities. The two MODIS sensors map most of the planet twice a day 
with 36 bands ranging from the visible to the thermal infrared. The MODIS bands 
were selected to capture properties of the land surface but also ocean properties, 
atmospheric water vapor, surface temperature, and clouds (Fig.  10.2). Products 
from MODIS, such as surface temperature and cloud presence, have been used 
either to directly map climate variables for use in ecological research (e.g., Cord and 
Rödder 2011; Wilson and Jetz 2016) or to inform modeled climate products like 
Worldclim-2 (Fick and Hijmans 2017). Furthermore, surface temperature can better 
characterize plant ecological differences (Still et al. 2014) because it more accu-
rately captures canopy temperature, which is not the same as air temperature, and 
because many air temperature products (such as Worldclim-2) are interpolated (see 
Pinto-Ledézma and Cavender-Bares, Chap. 9).
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Satellite-derived rainfall products are estimated through a combination of mea-
surements, including surface reflectance of clouds (i.e., cloud coverage, type, and 
top temperature), passive microwave (i.e., column precipitation content, cloud water 
and ice, rain intensity and type), and lightning sensors. The Tropical Rainfall 
Measurement Mission (TRMM) operated from 1997 to 2015, providing informa-
tion on rainfall amount and intensity and lightning activity globally every 3 hours at 
5  km resolution from 38°N to 38°S.  As a follow-up to TRMM, the Global 
Precipitation Measurement (GPM) mission relies on a constellation of satellites, 
including a core GPM observatory, to produce 0.1° resolution data every 30 minutes 
from 60°N to 60°S.  Initiated in 2014, GPM allows new explorations of extreme 
weather events. Like MODIS temperature measurements, TRMM and GPM pre-
cipitation measures have been directly incorporated into ecological research (e.g., 
Deblauwe et al. 2016) and used to inform modeled climate products like the Climate 
Hazards Group Infrared Precipitation with Station data product (CHIRPS; Funk 
et al. 2015).

There is also a broad set of efforts to generate reanalysis products that combine 
the history of Earth observations to develop temporally and spatially consistent 
global models of climatic and environmental variables. For instance, the NASA 
Modern-Era Retrospective Analysis for Research and Applications (MERRA) mod-
els close to 800 radiative and physical properties of the Earth’s atmosphere at 3- to 
6-hour time steps from 1979 to present at ~50 km spatial resolution (Rienecker et al. 
2011). While this obviously sacrifices spatial resolution, these efforts open the door 
for longer-term analysis of climatic influence on biologic phenomena.

One commonly overlooked source of geologic substrate lies in the atmosphere. 
Airborne dust particles provide an essential source of nutrients in many environ-
ments and can originate from sources hundreds to thousands of miles away 
(Chadwick et al. 1999). Aeolian transport of phosphorus from North Africa to South 
America is thought to be an important driver of Amazonian productivity (e.g., Okin 
et al. 2004). Studies have mapped dust sources and rates using MODIS products 
(Ginoux et al. 2012) and produced 3-D models of dust transportation using LiDAR 
on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO) satellite (Yu et al. 2015). Furthermore, the SeaWinds instrument on the 
Quick Scatterometer (QuickSCAT) satellite and the subsequent Rapid Scatterometer 
(RapidSCAT) aboard the International Space Station measures wind speed and 
direction over the ocean’s surface.

10.3.3  �Hydrosphere

The hydrosphere consists of the water on, in, and above Earth’s surface and is 
known to have a large influence in structuring riparian and aquatic communities of 
organisms (reviewed by Atkinson et al. 2017). The hydrosphere interacts with other 
types of geodiversity in the lithosphere, cryosphere, and atmosphere. Topography 
alone can be used to indirectly provide a crude estimate of many hydrological 
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variables, including watershed size, soil water content (Moore et  al. 1991), flow 
paths, and surface water. In addition, two types of satellite data can be used to esti-
mate soil moisture and groundwater, which in some systems are important drivers 
of plant diversity because drought sensitivity may shape plant distributions (e.g., 
Engelbrecht et  al. 2007). The ESA’s Soil Moisture and Ocean Salinity (SMOS; 
launched 2009) and NASA’s Soil Moisture Active Passive observatory (SMAP; 
launched 2015; Fig. 10.2) both use microwave radiometers to detect surface soil 
moisture globally in areas with low topographic variation and low-vegetation cover. 
The Gravity Recovery and Climate Experiment (GRACE; launched in 2002; 
Fig. 10.2) is a pair of satellites that measure gravity anomalies around the world, 
allowing researchers to estimate available groundwater reserves and their change 
over time.

Water quality is a critical driver of aquatic biodiversity across taxa, from plants 
to animals (Stendera et  al. 2012). Watershed disturbance, sediment runoff, and 
nutrient pollution are major aquatic biodiversity stressors, affecting phytoplankton 
and aquatic and wetland vegetation abundance and diversity (Lacoul and Freedman 
2006; Mouillot et al. 2013) and higher trophic levels (e.g., zooplankton, shrimps, 
larval fish, and birds (Thackeray et al. 2010). Optical RS can be used to retrieve a 
limited but important set of water quality variables, including particulate and dis-
solved organic and inorganic matter, chlorophyll-a, as well as other phytoplankton 
pigments like the phycocyanins common in potentially harmful cyanobacteria 
blooms. Surface or “skin” water temperature is measured from instruments with 
thermal bands (Giardino et al. 2018; Alcântara et al. 2010). The major limitation in 
RS of water quality is in sensor resolution. Sensors must have a fine enough pixel 
size to resolve water bodies, with high enough radiometric sensitivity to detect 
small changes in a dark target (10% or less of the total signal received by the sensor, 
Muller-Karger et al. 2018; Hestir et al. 2015). While some water quality products 
are publically distributed with limited spatial coverage [e.g., United Nations 
Educational, Scientific and Cultural Organization (UNESCO) regions], free data 
processors distributed by NASA (Sea-viewing Data Analysis System [SeaDAS]) 
and the ESA (Sentinel Application Platform) enable users to compute their own 
water quality products.

10.3.4  �Cryosphere

Earth’s fossil record illustrates how changes in glacial cover over time have gov-
erned the distribution of biodiversity (e.g., Veloz et al. 2012), and many aspects of 
the globe’s biodiversity are influenced by snow, ice, and permafrost (reviewed by 
Vincent et al. 2011). The frozen parts of the Earth system, the cryosphere, can be 
detected with a number of different RS tools. The cryosphere can be divided into 
several different components—seasonally snow-covered land, permafrost, glaciers 
and ice sheets, lake ice, and sea ice. Because cloud cover is a frequent problem at 
high latitudes, cryosphere RS often relies on longwave techniques that can pass 
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through clouds. A recent book, Remote Sensing of the Cryosphere (Tedesco 2014), 
describes these tools and methods in great detail; here we review some of the major 
techniques. In all of the discussion below, the importance of change over time is 
paramount; inter- and intra-annual variation in snow and ice cover are important 
drivers of physical and biological processes.

The 3-D extent of snow and ice can easily be mapped using optical techniques; 
snow reflects strongly in the visible and near-infrared (NIR) range but absorbs in the 
shortwave infrared (SWIR), making it spectrally distinct from other white objects 
such as rooftops and clouds. These distinctions may still be challenging with multi-
spectral sensors, but hyperspectral sensors permit mapping of snow versus clouds 
and even some estimation of snow particle size (e.g., Burakowski et  al. 2015). 
Passive microwave sensors can be used to estimate snow depth and snow water 
equivalent, while active microwave sensors can map liquid water content. Tools and 
techniques for mapping snow are reviewed by Dietz et al. (2011).

Ice and permafrost features can be mapped with many of the tools and methods 
described in preceding sections. Snow cover can be mapped using optical sensors 
and methods; subsidence of the cryosphere can be mapped with SRTM (near global 
extent, 30–90 m spatial resolution, single snapshot in time) and SAR (airborne, 2 m 
spatial resolution); and passive microwave radiometers such as SMOS (global 
extent, 50 km spatial resolution, 3-day temporal resolution) and SMAP (near global 
extent for low-vegetation areas, 9–36 km spatial resolution, 8-day temporal resolu-
tion) can be used to map frozen versus thawed ground surfaces (Entekhabi et al. 
2014). Because glaciers and ice sheets are fundamentally a combination of snow, 
ice, and liquid water, many of the techniques described above, such as optical sen-
sors and passive microwave radiometers, can be used to map their extent and status. 
In addition, the GLAS sensor onboard the Ice, Cloud, and land Elevation Satellite 
(ICESat; near global spatial extent, 70 m spatial resolution, 91-day temporal resolu-
tion from 2003 to 2009) permitted the mapping of ice sheet mass balance (Zwally 
et al. 2011). ICESat-2 is scheduled for launch in 2018 (global spatial extent, 14 km 
spatial resolution, 91-day temporal resolution). SAR has also been used to map ice 
flow on Antarctica (Rignot et al. 2011).

Sea, lake, and river ice cover can be mapped using optical techniques (Jeffries 
et al. 2005), while thickness has been measured using ICESat and passive micro-
wave sensors (e.g., Kwok and Rothrock 2009). The difference between first-year 
sea ice and older sea ice can be identified by changes in salinity using multichannel 
passive microwave sensors like the Advanced Microwave Scanning Radiometer for 
Earth Observing System (AMSR-E) onboard NASA’s Aqua satellite (global spatial 
extent, 474  km spatial resolution, 12-hour temporal resolution, operational 
2002–2015). River ice mapping is critical for monitoring and predicting river habi-
tat quality and duration for a variety of organisms (e.g., Charney and Record 2016; 
Pavelsky and Zarnetske 2017). The extent and duration of river icing types have 
been mapped with different polarizations of passive microwave data from Canada’s 
RADARSAT-1 (1995–2013) and RADARSAT-2 (launched 2007) (Weber et  al. 
2003; Jeffries et  al. 2005; Yoshikawa et  al. 2007 for aufeis features) and with 
MODIS Terra (Pavelsky and Zarnetske 2017).
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10.4  �Remote Sensing of Biodiversity

Approaches for using RS to track biodiversity are reviewed in several chapters in 
this book (Fernandez and Pereira, Chap. 18; Serbin and Townsend, Chap. 4; Meireles 
et  al., Chap. 7). Biodiversity has many forms—including taxonomic, functional, 
genetic, and phylogenetic diversity (Serbin and Townsend, Chap. 4; Meireles et al., 
Chap. 7). Each form may exhibit different relationships with both geophysical and 
biological drivers, owing to a variety of mechanisms (Gaston 2000; Lomolino et al. 
2010). For example, reorganization of organisms in response to changing environ-
ments leads to species assemblages becoming more or less similar through biotic 
homogenization or differentiation (Baiser et al. 2012). Such biotic homogenization/
differentiation is usually characterized taxonomically (Olden and Rooney 2006). 
However, functional traits (i.e., traits representing the interface between species and 
their environment) possessed by species are often more important to ecosystem 
functions valued by society (Baiser and Lockwood 2011) and may be more appro-
priate to use in assessing biodiversity-ecosystem function relationships (Flynn et al. 
2011). Many functional traits may also exhibit a phylogenetic signal (Srivastava 
et al. 2012), so it is important to consider multiple measures of diversity (i.e., taxo-
nomic, functional, and phylogenetic) when assessing patterns of biodiversity 
(Serbin and Townsend, Chap. 4; Meireles et al., Chap. 7; Lausch et al. 2016; Lausch 
et al. 2018).

One caveat to measures of biodiversity generated from high-resolution RS data 
is that as the spatial resolution of data increases, the spatial extent typically decreases 
(Turner 2014; Gamon et al., Chap. 16). This limitation hinders our ability to under-
stand how biodiversity relates to different drivers (e.g., geodiversity) at different 
spatial scales to better inform conservation decisions. There have been recent calls 
from scientists for new satellite missions and data integration efforts to address this 
issue (Schimel et al., Chap. 19). For instance, Jetz et al. (2016) call for a Global 
Biodiversity Observatory to generate worldwide remotely sensed data on several 
plant functional traits. Petorelli et al. (2016) and Fernández and Pereira (Chap. 18) 
identify satellite RS data that, given technological and algorithmic developments in 
the near future, could be capable of meeting the criteria of EBVs for conservation 
outlined by the international Group on Earth Observations—Biodiversity 
Observation Network (GEO BON) at a global spatial extent.

Until finer resolution, remotely sensed biodiversity data exist at large spatial 
extents, data available from in-situ measurements of organisms can inform the rela-
tionships between biodiversity and geodiversity. Publically available biodiversity 
data with geographic locations include expert range maps of individual species from 
IUCN (IUCN 2017), occurrence data [e.g., Global Biodiversity Information Facility 
(GBIF, GBIF 2016); Botanical Information and Ecology Network (BIEN, Enquist 
et al. 2016)], citizen science networks [e.g., Invasive Plant Atlas of New England, 
IPANE, Bois et al. 2011], and national [e.g., US Forest Service Forest Inventory and 
Analysis (FIA), Bechtold and Paterson 2005)] and international inventory networks 
[e.g., the Amazon Forest Inventory Network (RAINFOR), Peacock et  al. 2007]. 
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Each of these data sets comes with its own uncertainties (e.g., observation errors) 
and user challenges. For instance, citizen science data require detailed metadata on 
the sampling process to ensure that citizen scientists are able to reduce error and 
bias as they collect data and to enable those analyzing the data to model potential 
uncertainty (Bird et al. 2014). Despite these sources of uncertainty and logistical 
hurdles, these data provide a useful starting point for understanding the relationship 
between biodiversity and geodiversity.

10.5  �A Case Study Linking RS of Geodiversity to Tree 
Diversity in the Eastern United States

To motivate explorations of the relationship between biodiversity and geodiversity 
with remotely sensed data, we provide an example using biodiversity data from the 
FIA program of the US Forest Service (O’Connell et al. 2017) and geodiversity data 
on elevation from SRTM. We selected elevation as a covariate because patterns of 
tree diversity often vary with elevation (Körner 2012). While some studies promote 
the use of many geodiversity components (Serrano et  al. 2009; Hjort and Luoto 
2010; Bailey et al. 2017; Tukiainen et al. 2017), a great deal of the variation in geo-
diversity is captured by the standard deviation in elevation (Hjort and Luoto 2012), 
which is used in this analysis.

The FIA program uses a two-phase protocol to characterize the nation’s forest 
resources. In phase one, all land in the United States is categorized as either “for-
ested” or “not forested” using remotely sensed data. In phase two, in every 2428 ha 
of land classified as forested, one permanent FIA plot is placed for in-situ sampling. 
Each FIA plot consists of four 7.2-m-fixed-radius subplots wherein all trees 
>12.7 cm diameter at breast height are measured. FIA plot measurements began in 
the 1940s, but a consistent nationwide sampling protocol was not implemented until 
2001. In the analysis presented, we used data from the most recent full plot FIA 
inventory from 2012–2016; the SRTM data were collected in 2009. Although there 
is not perfect temporal overlap in the geodiversity and biodiversity data used in this 
example, we do not expect that topography at a spatial resolution of 50 km would 
have changed much over the time period encompassed by both data sets for this part 
of the world.

We fixed the spatial extent of the analysis to the contiguous United States east 
of 100°W longitude (n = 90,250 plots total) and selected a grain size of 50 km for 
calculating alpha (within site), beta (turnover between sites), and gamma (total 
across all sites) diversities within a radius centered on each FIA plot. All biodiver-
sity metrics were based on species abundances as quantified by the total basal area 
of each tree species in each plot. Alpha diversity was calculated as the median 
abundance-weighted effective species number of all plots falling within a 50 km 
radius of the focal FIA plot, including the focal plot. Beta diversity was calculated 
as the mean abundance-weighted pairwise Sørensen dissimilarity of all pairs of 
plots within a 50  km radius of the focal plot, including the focal plot. Gamma 
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diversity was calculated as the aggregated effective species number of all plots 
within a 50 km radius of the focal plot, including the focal plot. For each 50 km 
radius centered on a focal plot, we computed the standard deviation of elevation 
across pixels within the radius from 30 m SRTM data (Fig. 10.3). To avoid edge 
effects, all plots within 100 km of the political borders of the United States were 
excluded, retaining 80,411 plots. To avoid pseudo-replication, we generated 999 
subsamples of plots separated by at least 100 km, yielding ~370 plots per sub-
sample. Because of the saturating relationship between biodiversity and geodiver-
sity, we fit natural splines with 3 degrees of freedom to relate all focal plots’ 
univariate diversity to elevation standard deviation (SD) (linear regression for 
alpha and gamma diversity; beta regression for beta diversity), and goodness of fits 
of the models were assessed with r-squared (Fig. 10.4).

This example shows how the relationships between biodiversity and geodiversity 
for a subset of different biodiversity metrics vary depending on the metric of biodi-
versity calculated. Here beta and gamma diversity do not show a strong relationship 
(r2 = 0.03 and r2 = 0.07, respectively; Figs. 10.3 and 10.4) with geodiversity, but 
alpha diversity shows a stronger, positive relationship with elevation variability 

Fig. 10.3  Mapped variation in tree diversity calculated within 50 km radii. Tree data come from 
the Forest Inventory and Analysis of the US Forest Service (FIA, O’Connell et  al. 2017. (a) 
Taxonomic alpha diversity. (b) Taxonomic beta diversity. (c) Taxonomic gamma diversity. (d) The 
standard deviation of all elevation pixels within the radius from 30 m Shuttle Radar Topography 
Mission (SRTM) data
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(r2 = 0.35; Figs. 10.3 and 10.4). Interestingly, in a sister study, Zarnetske et al. (2019) 
found that FIA tree diversity with a different spatial extent—in California, 
Washington, and Oregon—showed a different relationship with elevation variability. 
Furthermore, beta and gamma diversity showed a strong increasing relationship with 
elevation variability, whereas alpha diversity did not. This comparison between the 
case study illustrated in this chapter and the results of Zarnetske et al. (2019) high-
lights the importance of considering how the relationship between geodiversity and 
biodiversity may change with different spatial scales (Gamon et al., Chap. 16). Bailey 
et al. (2017) also showed that landforms detected with airborne RS at smaller spatial 
resolutions explained more of the variation in alpha diversity of alien vascular plants 
in Great Britain than did climate measured at larger spatial resolutions. While these 
examples do not provide an exhaustive exploration of the ways in which tree diver-
sity responds to geodiversity, they clearly show how remotely sensed data may help 
us understand the relationships between geodiversity and biodiversity and how these 
relationships may be different in different geographic areas.

This example shows how the relationship between taxonomic biodiversity and 
geodiversity depends on the biodiversity metric chosen. There are various method-
ologies for calculating biodiversity metrics and various facets of biodiversity (e.g., 
functional, taxonomic, phylogenetic), and the theoretical pros and cons of each 
remain controversial (e.g., Jost 2007; Clark 2016), so it may not be obvious which 
metric is the best. Furthermore, different conclusions may be drawn depending on 
the types of taxa used in the analysis.

In a similar vein, the choice of an appropriate geodiversity metric may not be 
obvious. Here we use a single measure of geodiversity, standard deviation of eleva-
tion. However, different definitions of the term geodiversity include different com-
ponents of geology, topography, and, in some instances, climate (Parks and Mulligan 
2010; Gray 2013). The amalgamation of these different variables to characterize 
geodiversity as a whole is an area in need of development.

Fig. 10.4  The relationships between three measures of tree taxonomic diversity (alpha, beta, and 
gamma) and geodiversity (i.e., elevation standard deviation) at a spatial resolution of 50 km. Points 
indicate the aggregated plots, and the red line indicates the natural spline relationship fitted with a 
linear regression model for alpha and gamma diversity and a beta regression model for beta diver-
sity. Dotted lines represent the 2.5% and 97.5% quantiles of predicted values across 999 spatially 
stratified random subsamples of the data, and the given r-squared value is the mean across all the 
subsamples
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10.5.1  �Challenges and Opportunities

10.5.1.1  �The Interplay Between Biodiversity and Geodiversity over Time

Although we have focused thus far on the effects of geodiversity on biodiversity, 
biodiversity can also affect geodiversity. Ecosystem engineers (Jones et al. 1994) 
and foundation species (Record et al. 2018) can influence biodiversity through habi-
tat formation (Hastings et  al. 2007). Geodiversity can be modified by species 
impacting the structure and function of landscape features. For example, elephants 
dig, form trails, and trample (Haynes 2012), and vegetation and sediment interact to 
form streams and coastal dunes (Zarnetske et al. 2012; Atkinson et al. 2017). In 
turn, these species-modified features can feed back to mediate the strength and 
direction of biotic interactions among species and ultimately influence patterns of 
biodiversity (Zarnetske et al. 2017). Even climate can be influenced by biodiversity 
and biogeographic patterns. Forests directly affect Earth’s climate through atmo-
spheric exchange (Bonan 2008). If shrubs expand by 20% and continue to dominate 
in areas north of 60°N latitude, for example, Arctic annual temperature could 
increase by 0.66°C– 1.84°C, via decreased albedo and increased evapotranspiration 
(Bonfills et al. 2012).

Many of these feedbacks between biodiversity and geodiversity are not detect-
able given a single snapshot in time and require longer time series. RS with repeat 
samples taken as satellites orbit the Earth provide data with high spatial and deep 
temporal coverage that can be used to assess changes in the dominance of a species 
within a community (Pau and Dee 2016). Changes in the dominance structure of 
communities (or its counterpart, evenness) should be early indicators of global 
change because these changes occur before the complete loss or replacement of spe-
cies (Hillebrand et  al. 2008). Furthermore, tracking dominant species should be 
especially important for quantifying biomass or abundance-driven ecosystem func-
tions and services (Pau and Dee 2016). For instance, Cavanaugh et al. (2013) used 
28 years of Landsat imagery to map the poleward expansion of mangroves, which 
are important in preventing coastal erosion, in the eastern United States. Furthermore, 
the 45-year time series of Landsat data provide an excellent opportunity for detect-
ing changes in habitat due to species, which may have extreme impacts on the abi-
otic stage.

10.5.1.2  �Scale and Expertise Mismatches

The relationships between geodiversity and biodiversity are likely to change across 
spatial and temporal scales. For instance, a focused spotlight shining down on one 
part of the stage (e.g., the tip of a mountaintop) might exhibit different covariation 
between geodiversity and biodiversity than a broad swath of light on another portion 
of the stage (e.g., an expansive low-lying valley). Spatial patterns of biodiversity 
and geodiversity are each scale dependent (Rahbek 2005; Bailey et  al. 2017; 
Cavender-Bares et al., Chap. 2; Gamon et al., Chap. 16), and it is well established 
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that ecological processes influencing the assembly of communities of organisms are 
scale dependent (Levin 1992; McGill 2010). A spatially explicit framework for con-
ceptualizing community assembly describes external filters (e.g., climate or soils) 
that sort species from a regional pool at a spatial scale larger than the community 
and internal filters that sort species into a community from a subset of the species 
that make it through the external filter (e.g., microenvironmental heterogeneity, 
biotic interactions; Violle et al. 2012; Fig. 10.5). These “assembly rules” about how 
communities form remain a controversial paradigm with uncertainty about which 
processes operate at which scales (McGill 2010; Belmaker et al. 2015). Observing 
and quantifying relationships between geodiversity and biodiversity and how these 
relationships change with scale, however, are essential for moving forward regard-
less of one’s position on these controversies. To most effectively use geodiversity to 
help explain and predict patterns of biodiversity, we need a framework that addresses 
the scaling relationship between biodiversity and geodiversity.

Furthermore, there are important disconnects in both scale and expertise between 
biodiversity science and RS (Petorelli et al. 2014) that once addressed will aid in the 
development of such a framework. Whereas the availability of remotely sensed geo-
diversity data products has increased, many of the scales are too coarse to reflect the 
environmental and biological conditions that often drive more fine-scaled spatially 
heterogeneous biodiversity patterns (Nadeau et al. 2017) and thus may require com-
plex post-processing techniques unfamiliar to most biodiversity scientists before 
they can be used appropriately in biodiversity models. Also, there are likely many 
important aspects of geodiversity that at this time can only be derived through in-situ 
measurements and cannot be remotely sensed. Determining how physical and bio-
logical drivers influence biodiversity across spatial and temporal scales is a central 
focus of ecology. However, most models predicting future patterns of biodiversity 
assume broad-scale climatic drivers—temperature and precipitation—are sole driv-
ers and leave out important biological drivers (Zarnetske et al. 2012; Record et al. 
2013). Biological drivers such as dispersal ability and biotic interactions (e.g., com-
petition) are often mediated by the structure of the landscape, including geophysical 
feature configuration, topographic complexity, and habitat patch arrangement 
(Zarnetske et  al. 2017). Yet a significant knowledge gap remains about how the 
relationships between biodiversity and its geophysical and biological drivers change 
with respect to space and time—perhaps owing to the scale mismatch between fine-
scale point-level biodiversity data and many coarse-scale remotely sensed data 
products.

Many ecological questions are addressed at scales much finer than the grain size 
of MODIS or GPM, which makes statistical downscaling a necessity for remotely 
sensed products to be used. Yet the landscape of options for statistical downscaling 
is vast and complex (Pourmokhtarian et al. 2016). In addition, the increasing avail-
ability of airborne topographic data like LiDAR makes the possibility of finer-grain 
analysis even more viable, yet these data also bring another dimension of complex-
ity and a lack of standardization across platforms and methods.

Open access analytical tools and training will provide ways forward given data 
downloading and processing challenges. The Application for Extracting and 
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Fig. 10.5  Conceptual diagram adapted from Violle et al. (2012) showing how spatially explicit 
(i.e., local versus regional) filters influence the assembly of traits in an observed community (bot-
tom schematic). The regional species pool (top schematic) contains all of the species capable of 
seeding into the local community. However, the observed local community may only contain a 
subset of the species in the regional pool after species have passed through a series of filters. Both 
internal and external filters encompass different aspects of the stage, whereas internal filters may 
also include the actors. Examples of external filters include broad-scale climate or soil types for 
which some species may not have physiological tolerances. Internal filters include microenviron-
mental heterogeneity and/or biotic interactions. In this schematic, the traits that passed through the 
external and internal filters partition in the observed local community, perhaps due to competitive 
effects between species for resources
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Exploring Analysis Ready Samples (AppEEARS) offered by NASA and US 
Geological Survey (USGS) is a user-friendly tool that enables simple and efficient 
downloads and transformations of geospatial data from a number of federal data 
archives from the United States [e.g., the Land Process Distributed Active Archive 
Center (LP DAAC)]. Additionally, Geomorphons provides a user-friendly interface 
that automates the calculation of complex geodiversity features from topography 
data (Jasiewicz and Stepinski 2013). Training the next generation of ecologists and 
conservation biologists in RS will be integral to overcoming some of these hurdles 
and bridging the gaps between RS and ecology and conservation.

10.6  �Conclusion

Cross-scale studies of relationships between geodiversity and biodiversity using RS 
and large field-based data sets hold promise for evaluating processes underlying 
biodiversity and identifying scales and methods for its monitoring and management. 
Realizing this potential will require more interaction among biodiversity scientists, 
geoscientists, RS experts, and statisticians to reconcile the challenges associated 
with differences in scales, available data products, disciplinary barriers, and avail-
able methods for connecting geodiversity to biodiversity. These challenges are far 
from trivial, but overcoming them has the potential to result in key ecological 
insights that will help us to be better stewards of the entire ecological theater.
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