Skip to main content

Sperm DNA Damage, ART Outcomes, and Laboratory Methods for Selecting DNA Intact Sperm for ICSI

  • Chapter
  • First Online:

Abstract

Sperm DNA fragmentation analysis involves a number of different molecular biology techniques able to determine specific harm on the DNA structure and has evolved from the initial and pioneering studies in the mid-1980s on animal models, where a strong link between sperm DNA damage and fertility was established, to later studies trying to associate these parameters with human male fertility status in addition to conventional semen analysis, also with the purpose to select the most DNA intact sperm within an ejaculate.

The more techniques and research available, the more heterogeneity and confusion generated, while clinical decisions to take are confusing and sometimes have been wrongly taken on the basis of biased or incomplete studies together with a misinterpretation of the results obtained or the lack of accuracy of the employed techniques, adapted through the years not always supported by the best clinical evidences available. Nevertheless, the link with male infertility seems clear, the impact on assisted reproduction technique outcomes is generally accepted, and the availability of lab and surgical procedures to diminish the risk of using DNA damaged sperm is becoming more frequent and present on the routine clinical practice.

The aim with this chapter is to provide a comprehensive review of the rationale and use of DNA fragmentation analysis in sperm and its clinical value, evaluating under the evidence-based medicine perspective the accuracy, robustness, and quantitative contribution of DNA intact sperm selection techniques to the patients’ success likelihood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010. p. 7–113.

    Google Scholar 

  2. Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40(4):443–53.

    Article  PubMed  Google Scholar 

  3. Pacey A. Is sperm DNA fragmentation a useful test that identifies a treatable cause of male infertility? Best Pract Res Clin Obstet Gynaecol. 2018;53:11–9.

    Article  PubMed  Google Scholar 

  4. Rex AS, Aagaard J, Fedder J. DNA fragmentation in spermatozoa: a historical review. Andrology. 2017;5(4):622–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. The etiologies of DNA abnormalities in male infertility: an assessment and review. Int J Reprod Biomed (Yazd). 2017;15(6):331–44.

    CAS  Google Scholar 

  6. Cho CL, Agarwal A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab J Urol. 2017;16(1):21–34.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oleszczuk K, Giwercman A, Bungum M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology. 2016;4(2):290–6.

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez Sedo C, Bilinski M, Lorenzi D, Uriondo H, Noblia F, Longobucco V, et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017;21(4):343–50.

    PubMed  Google Scholar 

  9. Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789–99.

    Article  CAS  PubMed  Google Scholar 

  10. Sakkas D, Seli E, Manicardi GC, Nijs M, Ombelet W, Bizzaro D. The presence of abnormal spermatozoa in the ejaculate: did apoptosis fail? Hum Fertil (Camb). 2004;7(2):99–103.

    Article  Google Scholar 

  11. Said TM, Paasch U, Glander HJ, Agarwal A. Role of caspases in male infertility. Hum Reprod Update. 2004;10(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  12. Foroozan-Broojeni S, Tavalaee M, Lockshin RA, Zakeri Z, Abbasi H, Nasr-Esfahani MH. Comparison of main molecular markers involved in autophagy and apoptosis pathways between spermatozoa of infertile men with varicocele and fertile individuals. Andrologia. 2019;51(2):e13177.

    Article  CAS  PubMed  Google Scholar 

  13. Steger K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl). 1999;199(6):471–87.

    Article  CAS  Google Scholar 

  14. Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology. 2017;5(2):204–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Marin C, Gosalvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castillo J, Estanyol JM, Ballesca JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl. 2015;17(4):601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atig F, Kerkeni A, Saad A, Ajina M. Effects of reduced seminal enzymatic antioxidants on sperm DNA fragmentation and semen quality of Tunisian infertile men. J Assist Reprod Genet. 2017;34(3):373–81.

    Article  PubMed  Google Scholar 

  18. Atig F, Raffa M, Habib BA, Kerkeni A, Saad A, Ajina M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012;12:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang G, Yang W, Zou P, Jiang F, Zeng Y, Chen Q, et al. activity, acrosome reaction capability and chromatin integrity. Hum Reprod. 2019;34(1):3–11.

    Article  PubMed  Google Scholar 

  21. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  22. Condorelli RA, La Vignera S, Mongioi LM, Alamo A, Calogero AE. Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne). 2018;9:268.

    Article  Google Scholar 

  23. Ghezzi M, Berretta M, Bottacin A, Palego P, Sartini B, Cosci I, et al. Impact of Bep or carboplatin chemotherapy on testicular function and sperm nucleus of subjects with testicular germ cell tumor. Front Pharmacol. 2016;7:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boeri L, Capogrosso P, Ventimiglia E, Pederzoli F, Cazzaniga W, Chierigo F, et al. High-risk human papillomavirus in semen is associated with poor sperm progressive motility and a high sperm DNA fragmentation index in infertile men. Hum Reprod. 2019;34(2):209–17.

    Article  PubMed  Google Scholar 

  25. Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I, et al. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res. 2010;683(1–2):9–15.

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira JBA, Petersen CG, Mauri AL, Vagnini LD, Renzi A, Petersen B, et al. Association between body mass index and sperm quality and sperm DNA integrity. A large population study. Andrologia. 2018;50(3) https://doi.org/10.1111/and.12889. Epub 2017 Aug 30.

  27. Aboulmaouahib S, Madkour A, Kaarouch I, Sefrioui O, Saadani B, Copin H, et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: Looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia. 2018;50(3) https://doi.org/10.1111/and.12926. Epub 2017 Nov 21.

  28. Omran GA, Gaber HD, Mostafa NAM, Abdel-Gaber RM, Salah EA. Potential hazards of bisphenol A exposure to semen quality and sperm DNA integrity among infertile men. Reprod Toxicol. 2018;81:188–95.

    Article  CAS  PubMed  Google Scholar 

  29. Zini A, Nam RK, Mak V, Phang D, Jarvi K. Influence of initial semen quality on the integrity of human sperm DNA following semen processing. Fertil Steril. 2000;74(4):824–7.

    Article  CAS  PubMed  Google Scholar 

  30. Borges EJ, Braga DPAF, Zanetti BF, Iaconelli AJ, Setti AS. Revisiting the impact of ejaculatory abstinence on semen quality and intracytoplasmic sperm injection outcomes. Andrology. 2019;7(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  31. Meseguer M, Santiso R, Garrido N, Garcia-Herrero S, Remohi J, Fernandez JL. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pollister AW, Mirsky AE. The nucleoprotamine of trout sperm. J Gen Physiol. 1946;30(2):101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  34. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod BioMed Online. 2018;37(3):315–26.

    Article  CAS  PubMed  Google Scholar 

  35. Kim GY. What should be done for men with sperm DNA fragmentation? Clin Exp Reprod Med. 2018;45(3):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Esteves SC, Roque M, Garrido N. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis. Asian J Androl. 2018;20(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ringertz NR, Gledhill BL, Darzynkiewicz Z. Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Sensitivity of DNA to heat denaturation. Exp Cell Res. 1970;62(1):204–18.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935–50.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Evenson DP. The sperm chromatin structure assay (SCSA((R))) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56–75.

    Article  CAS  PubMed  Google Scholar 

  40. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210(4474):1131–3.

    Article  CAS  PubMed  Google Scholar 

  41. Kamkar N, Ramezanali F, Sabbaghian M. The relationship between sperm DNA fragmentation, free radicals and antioxidant capacity with idiopathic repeated pregnancy loss. Reprod Biol. 2018;18(4):330–5.

    Article  PubMed  Google Scholar 

  42. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.

    Article  PubMed  Google Scholar 

  43. Pereira AF, Borges P, Fontbonne A, Cardoso L, Gaivao I, Martins-Bessa A. The comet assay for detection of DNA damage in canine sperm. Reprod Domest Anim. 2017;52(6):1149–52.

    Article  CAS  PubMed  Google Scholar 

  44. Enciso M, Sarasa J, Agarwal A, Fernandez JL, Gosalvez J. A two-tailed comet assay for assessing DNA damage in spermatozoa. Reprod BioMed Online. 2009;18(5):609–16.

    Article  PubMed  Google Scholar 

  45. Esteves SC, Roque M, Bradley CK, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017;108(3):456–67.e1.

    Article  CAS  PubMed  Google Scholar 

  46. Gold R, Schmied M, Rothe G, Zischler H, Breitschopf H, Wekerle H, et al. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem. 1993;41(7):1023–30.

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez JL, Muriel L, Goyanes V, Segrelles E, Gosalvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.

    Article  CAS  PubMed  Google Scholar 

  48. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99(3):673–7.

    Article  CAS  Google Scholar 

  49. Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357–60.

    Article  CAS  PubMed  Google Scholar 

  50. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79(Suppl 3):1597–605.

    Article  PubMed  Google Scholar 

  51. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28(3):164–71.

    Article  PubMed  Google Scholar 

  52. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  53. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17(12):3122–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  55. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85.

    Article  PubMed  Google Scholar 

  56. Muriel L, Meseguer M, Fernandez JL, Alvarez J, Remohi J, Pellicer A, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2006;21(3):738–44.

    Article  PubMed  Google Scholar 

  57. Xue LT, Wang RX, He B, Mo WY, Huang L, Wang SK, et al. Effect of sperm DNA fragmentation on clinical outcomes for Chinese couples undergoing in vitro fertilization or intracytoplasmic sperm injection. J Int Med Res. 2016;44(6):1283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang WJ, Jin F, Zhou LM. Influence of the DNA integrity of optimized sperm on the embryonic development and clinical outcomes of in vitro fertilization and embryo transfer. Zhonghua Nan Ke Xue. 2016;22(5):425–31.

    PubMed  Google Scholar 

  59. Sun TC, Zhang Y, Li HT, Liu XM, Yi DX, Tian L, et al. Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. Taiwan J Obstet Gynecol. 2018;57(4):493–8.

    Article  PubMed  Google Scholar 

  60. Al Omrani B, Al Eisa N, Javed M, Al Ghedan M, Al Matrafi H, Al SH. Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reprod Biol Endocrinol. 2018;16(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muriel L, Garrido N, Fernandez JL, Remohi J, Pellicer A, de los Santos MJ, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  62. Bach PV, Schlegel PN. Sperm DNA damage and its role in IVF and ICSI. Basic Clin Androl. 2016;26:15. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Esbert M, Pacheco A, Soares SR, Amoros D, Florensa M, Ballesteros A, et al. High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology. 2018;6(5):697–706.

    Article  CAS  PubMed  Google Scholar 

  64. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19(1):80–90.

    PubMed  Google Scholar 

  65. Chi HJ, Kim SG, Kim YY, Park JY, Yoo CS, Park IH, et al. ICSI significantly improved the pregnancy rate of patients with a high sperm DNA fragmentation index. Clin Exp Reprod Med. 2017;44(3):132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simon L, Emery BR, Carrell DT. Review: diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.

    Article  PubMed  Google Scholar 

  67. Bareh GM, Jacoby E, Binkley P, Chang TC, Schenken RS, Robinson RD. Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: a prospective study. Fertil Steril. 2016;105(2):329–36.e1.

    Article  CAS  PubMed  Google Scholar 

  68. Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui I, Sallem A, et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril. 2016;105(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  69. Bellver J, Meseguer M, Muriel L, Garcia-Herrero S, Barreto MA, Garda AL, et al. Y chromosome microdeletions, sperm DNA fragmentation and sperm oxidative stress as causes of recurrent spontaneous abortion of unknown etiology. Hum Reprod. 2010;25(7):1713–21.

    Article  CAS  PubMed  Google Scholar 

  70. Cho CL, Agarwal A, Majzoub A, Esteves SC. A single cut-off value of sperm DNA fragmentation testing does not fit all. Transl Androl Urol. 2017;6(Suppl 4):S501–3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barratt CL, Aitken RJ, Bjorndahl L, Carrell DT, de Boer P, Kvist U, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications--a position report. Hum Reprod. 2010;25(4):824–38.

    Article  PubMed  Google Scholar 

  72. Garrido N, Rivera R, Lujan S. Clinical use of sperm DNA fragmentation analysis results, a practical example of how to deal with too much information from the literature in reproductive medicine. Transl Androl Urol. 2017;6(Suppl 4):S547–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Garrido N, Pellicer A, Niederberger C. Testing the water before swimming: satisfying the need for clinical trials of devices, media, and instruments before their use in assisted reproduction laboratories. Fertil Steril. 2012;97(2):245–6.

    Article  PubMed  Google Scholar 

  74. González-Martínez M, Sánchez-Martín P, Dorado-Silva M, Fernández J, Girones E, Johnston S, et al. Magnetic-activated cell sorting is not completely effective at reducing sperm DNA fragmentation. J Assist Reprod Genet. 2018;35(12):2215–21.

    Article  Google Scholar 

  75. Ziarati N, Tavalaee M, Bahadorani M, Nasr Esfahani MH. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum Fertil (Camb). 2018;22(2):118–25.

    Google Scholar 

  76. Romany L, Garrido N, Cobo A, Aparicio-Ruiz B, Serra V, Meseguer M. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 2017;34(2):201–7.

    Article  PubMed  Google Scholar 

  77. Fang L, Ye YH, Li ES, Feng GF. Magnetic-activated cell sorting (MACS) versus density gradient centrifugation (DGC) for the selection of human sperm in assisted reproductive techniques. Zhonghua Yi Xue Za Zhi. 2018;98(40):3263–7.

    CAS  PubMed  Google Scholar 

  78. Stimpfel M, Verdenik I, Zorn B, Virant-Klun I. Magnetic-activated cell sorting of non-apoptotic spermatozoa improves the quality of embryos according to female age: a prospective sibling oocyte study. J Assist Reprod Genet. 2018;35(9):1665–74.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cakar Z, Cetinkaya B, Aras D, Koca B, Ozkavukcu S, Kaplanoglu I, et al. Does combining magnetic-activated cell sorting with density gradient or swim-up improve sperm selection? J Assist Reprod Genet. 2016;33(8):1059–65.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sanchez-Martin P, Dorado-Silva M, Sanchez-Martin F, Gonzalez Martinez M, Johnston SD, Gosalvez J. Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod BioMed Online. 2017;34(5):506–12.

    Article  PubMed  Google Scholar 

  81. Romany L, Garrido N, Motato Y, Aparicio B, Remohi J, Meseguer M. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102(6):1567–75.e1.

    Article  PubMed  Google Scholar 

  82. Berteli TS, Da Broi MG, Martins WP, Ferriani RA, Navarro PA. Magnetic-activated cell sorting before density gradient centrifugation improves recovery of high-quality spermatozoa. Andrology. 2017;5(4):776–82.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang H, Xuan X, Yang S, Li X, Xu C, Gao X. Selection of viable human spermatozoa with low levels of DNA fragmentation from an immotile population using density gradient centrifugation and magnetic-activated cell sorting. Andrologia. 2018;50(1) https://doi.org/10.1111/and.12821. Epub 2017 May 3.

  84. Beck-Fruchter R, Shalev E, Weiss A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod BioMed Online. 2016;32(3):286–98.

    Article  CAS  PubMed  Google Scholar 

  85. Erberelli RF, Salgado RM, Pereira DH, Wolff P. Hyaluronan-binding system for sperm selection enhances pregnancy rates in ICSI cycles associated with male factor infertility. JBRA Assist Reprod. 2017;21(1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Torabi F, Binduraihem A, Miller D. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid. Reprod BioMed Online. 2017;34(3):298–311.

    Article  CAS  PubMed  Google Scholar 

  87. Rashki Ghaleno L, Rezazadeh Valojerdi M, Chehrazi M, Sahraneshin Samani F, Salman Yazdi R. Hyaluronic acid binding assay is highly sensitive to select human spermatozoa with good progressive motility, morphology, and nuclear maturity. Gynecol Obstet Investig. 2016;81(3):244–50.

    Article  CAS  Google Scholar 

  88. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. "Physiologic ICSI": hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93(2):598–604.

    Article  PubMed  Google Scholar 

  89. Goswami G, Sharma M, Jugga D, Gouri DM. Can intracytoplasmic morphologically selected spermatozoa injection be used as first choice of treatment for severe male factor infertility patients? J Hum Reprod Sci. 2018;11(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gatimel N, Parinaud J, Leandri RD. Intracytoplasmic morphologically selected sperm injection (IMSI) does not improve outcome in patients with two successive IVF-ICSI failures. J Assist Reprod Genet. 2016;33(3):349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. He F, Wang MJ, Li SL, Zhang CY, Hu LN. IMSI versus ICSI for male factor infertility: a meta-analysis. Zhonghua Nan Ke Xue. 2018;24(3):254–62.

    PubMed  Google Scholar 

  92. Maettner R, Sterzik K, Isachenko V, Strehler E, Rahimi G, Alabart JL, et al. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity. Andrologia. 2014;46(5):547–55.

    Article  CAS  PubMed  Google Scholar 

  93. Hammoud I, Boitrelle F, Ferfouri F, Vialard F, Bergere M, Wainer B, et al. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia. 2013;45(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  94. Avendano C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.

    Article  PubMed  Google Scholar 

  95. Garolla A, Cosci I, Menegazzo M, De Palo R, Ambrosini G, Sartini B, et al. Sperm selected by both birefringence and motile sperm organelle morphology examination have reduced deoxyribonucleic acid fragmentation. Fertil Steril. 2014;101(3):647–52.

    Article  CAS  PubMed  Google Scholar 

  96. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4(5):903–10.

    Article  CAS  PubMed  Google Scholar 

  97. Pabuccu EG, Caglar GS, Tangal S, Haliloglu AH, Pabuccu R. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia. 2017;49(2) https://doi.org/10.1111/and.12609. Epub 2016 Apr 25.

  98. Esteves SC, Miyaoka R, Agarwal A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol. 2011;37(5):570–83.

    Article  PubMed  Google Scholar 

  99. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21:109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ainsworth CJ, Nixon B, Aitken RJ. The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation. Int J Androl. 2011;34(5 Pt 2):e422–34.

    Article  CAS  PubMed  Google Scholar 

  101. Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Micro-electrophoresis: a noninvasive method of sperm selection based on membrane charge. Fertil Steril. 2015;103(2):361–6.e3.

    Article  CAS  PubMed  Google Scholar 

  102. Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20(8):2261–70.

    Article  CAS  PubMed  Google Scholar 

  103. Ainsworth C, Nixon B, Jansen RP, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22(1):197–200.

    Article  CAS  PubMed  Google Scholar 

  104. Schroter S, Derr P, Conradt HS, Nimtz M, Hale G, Kirchhoff C. Male-specific modification of human CD52. J Biol Chem. 1999;274(42):29862–73.

    Article  CAS  PubMed  Google Scholar 

  105. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21.e1.

    Article  CAS  PubMed  Google Scholar 

  106. Yetkinel S, Kilicdag EB, Aytac PC, Haydardedeoglu B, Simsek E, Cok T. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: a prospective, randomized controlled trial. J Assist Reprod Genet. 2019;36(3):403–9.

    Article  PubMed  Google Scholar 

  107. Quinn MM, Jalalian L, Ribeiro S, Ona K, Demirci U, Cedars MI, et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod. 2018;33(8):1388–93.

    Google Scholar 

  108. Buitrago-Perez A, Garaulet G, Vazquez-Carballo A, Paramio JM, Garcia-Escudero R. Molecular signature of HPV-induced carcinogenesis: pRb, p53 and gene expression profiling. Curr Genom. 2009;10(1):26–34.

    Article  CAS  Google Scholar 

  109. Meseguer M, Santiso R, Garrido N, Fernandez JL. The effect of cancer on sperm DNA fragmentation as measured by the sperm chromatin dispersion test. Fertil Steril. 2008;90(1):225–7.

    Article  CAS  PubMed  Google Scholar 

  110. Kaarouch I, Bouamoud N, Madkour A, Louanjli N, Saadani B, Assou S, et al. Paternal age: negative impact on sperm genome decays and IVF outcomes after 40 years. Mol Reprod Dev. 2018;85(3):271–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Garrido Puchalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picó, J., Rivera, R., Puchalt, N.G. (2020). Sperm DNA Damage, ART Outcomes, and Laboratory Methods for Selecting DNA Intact Sperm for ICSI. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics