Skip to main content

All-Solid-State Batteries Based on Glass-Ceramic Lithium Vanadate

  • Chapter
  • First Online:

Abstract

In this chapter, challenges in the development of all-solid-state batteries designed to solve the problem of safety of the chemical power sources are discussed. Difficulties in the development of such batteries are poor adhesion and electrical conductivity of solids and change in the volume of materials during charge/discharge processes. To solve these problems, the use of glassy or glass-ceramic materials as the electrode is suggested. Based on vanadates glasses and glass-ceramics have attracted the most significant attention among glassy electrode materials since glassy vanadates have rather high electrical conductivity in comparison with other oxide glasses (about 10−5 S·cm−1 at room temperature). In addition, the electrical conductivity of vanadate glasses can be significantly improved by obtaining of glass-ceramic based on them. Further, results of the test of all-solid-state battery with vanadate cathode are presented. It is shown that the voltage of Li–Ga | glassy vanadate single cell achieves the value of 3.3 V.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASSB:

ALL-SOLID-STATE BATTERY

CI:

Current interrupt

CPE:

Constant phase element

CV:

Cyclic voltammetry

DSC:

Differential scanning calorimetry

EIS:

Electrochemical impedance spectroscopy

EMF:

Electromotive force

EPR:

Electron paramagnetic resonance

h:

An hour

LAGP:

Li1.3Al0.3Ge1.7(PO4)3

LATP:

Li1.3Al0.3Ti1.7(PO4)3

LLTO:

Li0.5La0.5TiO3

LLZO:

Li7La3Zr2O12

NaS:

Sodium–sulfur battery

OCV:

Open-circuit voltage

S:

Siemens (=Ohm−1)

SHE:

Standard hydrogen electrode

TFB:

Thin-film battery

T g :

Glass transition temperature

XRD:

X-ray diffraction analysis

References

  1. Sudworth JL, Tilley AR (1985) The Sodium sulfur battery. Chapman & Hall, New York

    Google Scholar 

  2. Koenig AA, Rasmussen JR (1990) Development of a high specific power sodium sulfur cell. In: Proceedings of the 34th international power sources symposium, Cherry Hill, NJ, USA, June 1990. https://doi.org/10.1109/ipss.1990.145783

  3. Sudworth JL (1994) Zebra batteries. J Power Sourc 51:105–114. https://doi.org/10.1016/0378-7753(94)01967-3

    Article  CAS  Google Scholar 

  4. Sudworth JL (2001) Sodium/nickel chloride (ZEBRA) battery. J Power Sour 100:149–163. https://doi.org/10.1016/S0378-7753(01)00891-6

    Article  CAS  Google Scholar 

  5. Parthasarathy G, Weber N, Virkar AV (2007) High temperature sodium–zinc chloride batteries with sodium Beta-alumina solid electrolyte. ECS Trans 6:67–76. https://doi.org/10.1149/1.2811944

    Article  CAS  Google Scholar 

  6. Ellis BL, Nazar FN (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mat Sci 16:168–177. https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  7. Li GS, Lu XC, Kim JY, Lemmon JP, Sprenkle VL (2013) Cell degradation of a Na–NiCl2 (ZEBRA) battery. J Mater Chem A 1:14935–14942. https://doi.org/10.1039/C3TA13644B

    Article  CAS  Google Scholar 

  8. Li GS, Lu XC, Kim JY, Meinhardt KD, Chang HJ, Canfield NL, Sprenkle VL (2016) Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nature Comm 7:10683. https://doi.org/10.1038/ncomms10683

    Article  CAS  Google Scholar 

  9. http://www.ngk.co.jp/english/announce/111031_nas.html. Accessed 26 Jun 2014

  10. Bushkova OV, Andreev OL, Batalov NN, Shkerin SN, Kuznetsov MV, Tyutyunnik AP, Koryakova OV, Song EH, Chung HJ (2006) Chemical interactions in the cathode half-cell of lithium-ion batteries. Part I. Thermodyn Simul J Power Sour 157:477–482. https://doi.org/10.1016/j.jpowsour.2005.07.078

    Article  CAS  Google Scholar 

  11. Tabuchi H (2013) New Problem for Boeing 787 Battery Maker. In: The New York Times. https://www.nytimes.com/2013/03/28/business/gs-yuasa-discovers-problems-with-its-car-battery.html. Accessed 27 March 2013

  12. Mannstein (2013) Mitsubishi reports fire in i-MiEV battery pack, melting in Outlander PHEV pack. In: Green car congress. http://www.greencarcongress.com/2013/03/mmc-20130327.html. Accessed 27 March 2013

  13. Jensen C (2013) Tesla Says Car Fire Started in Battery. In: The New York Times. https://wheels.blogs.nytimes.com/2013/10/02/highway-fire-of-tesla-model-s-included-its-lithium-battery/. Accessed 2 Oct 2013

  14. Vlasic B, Trop J (2013) After 3 Fires, Safety Agency Opens Inquiry Into Tesla Model S. In: The New York Times. https://www.nytimes.com/2013/11/20/business/us-safety-agency-opens-inquiry-into-tesla-fires.html. Accessed 19 Nov 2013

  15. Hradecky S (2010) The risks of lithium batteries in aircraft cargo. In: The Aviation Herald. http://avherald.com/h?article=431f0863. Accessed 8 Oct 2010

  16. Jana A, García RE (2017) Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 41:552–565. https://doi.org/10.1016/j.nanoen.2017.08.056

    Article  CAS  Google Scholar 

  17. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HYe, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sour 282:299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054

    Article  CAS  Google Scholar 

  18. Tan R, Yang J, Zheng J, Wang K, Lin L, Ji Sh, Liu J, Pan F (2015) Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature. Nano Energy 16:112–121. https://doi.org/10.1016/j.nanoen.2015.06.016

    Article  CAS  Google Scholar 

  19. Kamaya N, Homma K, Yamakawa Yu, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Yu, Hama Sh, Kawamoto K, Mitsuiet A (2011) A lithium superionic conductor. Nature Mat 10:682–686. https://doi.org/10.1038/nmat3066

    Article  CAS  Google Scholar 

  20. Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6:3548–3552. https://doi.org/10.1039/C3EE41728J

    Article  CAS  Google Scholar 

  21. Yo Seino, Ts Ota, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631. https://doi.org/10.1039/C3EE41655K

    Article  Google Scholar 

  22. Shkerin SN, Profatilova IA, Lee JH (2009) Frequency dependence of conductivity of ethylene carbonate based electrolyte for Li-ion battery. Ionics 15:35–42. https://doi.org/10.1007/s11581-008-0235-y

    Article  CAS  Google Scholar 

  23. Shkerin SN, Profatilova IA, Roh S (2009) Effect of ethylene carbonate concentration on the conductivity of carbonate-based electrolytes with LiPF6 for Li-ion batteries. Ionics 15:761–764. https://doi.org/10.1007/s11581-009-0376-7

    Article  CAS  Google Scholar 

  24. Tukamoto H, West AR (1997) Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping. J Electrochem Soc 144:3164–3168. https://doi.org/10.1149/1.1837976

    Article  CAS  Google Scholar 

  25. Takada K, Aotani N, Iwamoto K, Kondo Sh (1996) Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88:877–882. https://doi.org/10.1016/0167-2738(96)00199-3

    Article  Google Scholar 

  26. Ya Iriyama, Kako T, Yada Ch, Abe T, Ogumi Z (2005) Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface. Solid State Ionics 176:2371–2376. https://doi.org/10.1016/j.ssi.2005.02.025

    Article  CAS  Google Scholar 

  27. Hayashi M, Takahashi M, Sakurai Y (2007) Preparation of positive LiCoO2 films by electron cyclotron resonance (ECR) plasma sputtering method and its application to all-solid-state thin-film lithium batteries. J Power Sources 174:990–995. https://doi.org/10.1016/j.jpowsour.2007.06.081

    Article  CAS  Google Scholar 

  28. Kim KH, Ya Iriyama, Yamamoto K, Kumazaki Sh, Asaka T, Tanabe K, Fisher CAJ, Ts Hirayama, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sour 196:764–767. https://doi.org/10.1016/j.jpowsour.2010.07.073

    Article  CAS  Google Scholar 

  29. Kotobuki M, Kanamura K, Sato Y, Yoshida T (2011) Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J Power Sour 196:7750–7754. https://doi.org/10.1016/j.jpowsour.2011.04.047

    Article  CAS  Google Scholar 

  30. Kotobuki M, Kanamura K (2013) Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte. Ceram Int 39:6481–6487. https://doi.org/10.1016/j.ceramint.2013.01.079

    Article  CAS  Google Scholar 

  31. Yubuchi S, Teragawa Sh, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2015) Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J Power Sour 293:941–945. https://doi.org/10.1016/j.jpowsour.2015.05.093

    Article  CAS  Google Scholar 

  32. Huang B, Yao X, Huang Z, Guan Y, Yi J, Xu X (2015) Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J Power Sour 284:206–211. https://doi.org/10.1016/j.jpowsour.2015.02.160

    Article  CAS  Google Scholar 

  33. Okumura T, Takeuchi T, Kobayashi H (2016) All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte. Solid State Ionics 288:248–252. https://doi.org/10.1016/j.ssi.2016.01.045

    Article  CAS  Google Scholar 

  34. Schichtel P, Geiß M, Leichtweiß T, Sann J, Weber DA, Janek J (2017) On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. J Power Sour 360:593–604. https://doi.org/10.1016/j.jpowsour.2017.06.044

    Article  CAS  Google Scholar 

  35. Woo SP, Lee SH, Soo Yoon YS (2017) Characterization of LiCoO2/multiwall carbon nanotubes with garnet-type electrolyte fabricated by spark plasma sintering for bulk-type all-solid-state batteries. Compos Part B: Eng 124:242–249. https://doi.org/10.1016/j.compositesb.2017.05.025

    Article  CAS  Google Scholar 

  36. Ito Y, Otoyama M, Hayashi A, Ohtomo T, Tatsumisago M (2017) Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. J Power Sour 360:328–335. https://doi.org/10.1016/j.jpowsour.2017.05.112

    Article  CAS  Google Scholar 

  37. Yoon M, Lee S, Lee D, Kim J, Moon J (2017) All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition. J Power Sour 412:537–544. https://doi.org/10.1016/j.apsusc.2017.03.268

    Article  CAS  Google Scholar 

  38. Lin J, Wu Y, Bi R, Guo H (2017) All-solid-state microscale lithium-ion battery fabricated by a simple process with graphene as anode. Sensor Actuat A-Phys 253:218–222. https://doi.org/10.1016/j.sna.2016.10.029

    Article  CAS  Google Scholar 

  39. Glenneberg J, Andre F, Bardenhagen I, Langer F, Schwenzel Ju, Kun R (2016) A concept for direct deposition of thin film batteries on flexible polymer substrate. J Power Sour 324:722–728. https://doi.org/10.1016/j.jpowsour.2016.06.007

    Article  CAS  Google Scholar 

  40. Ahmed NA, Hammache H, Eyraud M, Chassigneux C, Knauth P, lahreche A, Makhloufi L, Gabouzedoi N (2018) Morphological and optical properties of ZnO thin films grown on Si and ITO glass substrates. Ionics 24:277–284. https://doi.org/10.1007/s11581-017-2194-7

    Article  Google Scholar 

  41. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135:33–45. https://doi.org/10.1016/S0167-2738(00)00327-1

    Article  CAS  Google Scholar 

  42. Pelé V, Flamary F, Bourgeois L, Pecquenard B, Le Cras F (2015) Perfect reversibility of the lithium insertion in FeS2: the combined effects of all-solid-state and thin film cell configurations. Electrochem Commun 51:81–84. https://doi.org/10.1016/j.elecom.2014.12.009

    Article  CAS  Google Scholar 

  43. Pat S, Özen S, Yudar H, Korkmaz Ş, Pat Z (2017) The transparent all-solid-state rechargeable micro-battery manufacturing by RF magnetron sputtering. J Alloy Compd 713:64–68. https://doi.org/10.1016/j.jallcom.2017.04.169

    Article  CAS  Google Scholar 

  44. Yu R, Bao JJ, Chen TT, Zou BK, Wen ZY, Guo XX, Chen ChH (2017) Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. Solid State Ionics 309:15–21. https://doi.org/10.1016/j.ssi.2017.06.013

    Article  CAS  Google Scholar 

  45. Julien C (1996) Electrochemical properties of disordered cathode materials. Ionics 2:169–178. https://doi.org/10.1007/BF02376017

    Article  CAS  Google Scholar 

  46. Hammou A, Hammouche A (1988) All solid state Li-Li1+xV3O8 secondary batteries. Electrochim Acta 33:1719–1720. https://doi.org/10.1016/0013-4686(88)85005-9

    Article  CAS  Google Scholar 

  47. Zhu Y, Li J, Liu J (2017) A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J Power Sour 351:17–25. https://doi.org/10.1016/j.jpowsour.2017.03.072

    Article  CAS  Google Scholar 

  48. Chen S, Zhao Y, Yang J, Yao L, Xu X (2017) Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 23:2603–2611. https://doi.org/10.1007/s11581-016-1905-9

    Article  CAS  Google Scholar 

  49. Peng G, Yao X, Wan H, Huang B, Yin J, Ding F, Xu X (2016) Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. J Power Sour 307:724–730. https://doi.org/10.1016/j.jpowsour.2016.01.039

    Article  CAS  Google Scholar 

  50. Wakasugi J, Munakata H, Kanamura K (2017) Effect of Gold Layer on Interface Resistance between Lithium Metal Anode and Li6.25Al0.25La3Zr2O12 Solid Electrolyte. J Electrochem Soc 164:A1022–A1025. https://doi.org/10.1149/2.0471706jes

    Article  CAS  Google Scholar 

  51. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16:572–579. https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  Google Scholar 

  52. Pershina SV, Druzhinin KV, Shevelin PYu, Raskovalov AA (2016) Cathode half-cell of all-solid-state battery, modified with LiPO3 glass. Russ J Appl Chem 89:71–75. https://doi.org/10.1134/S1070427216060094

    Article  CAS  Google Scholar 

  53. Suzuki Sh, Kawaji J (2017) Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte. J Power Sour 359:97–103. https://doi.org/10.1016/j.jpowsour.2017.05.019

    Article  CAS  Google Scholar 

  54. Il’ina EA, Saetova NS, Raskovalov AA (2016) All-solid-state battery Li–Ga–Ag | Li7La3Zr2O12 + Li2O–Y2O3–SiO2 | Li2O–V2O5–B2O3. Russ J Appl Chem 89:1434–1439. https://doi.org/10.1134/s1070427216090081

    Article  Google Scholar 

  55. Kercher AK, Chapel AS, Kolopus JA, Boatner LA (2017) Mixed polyanion glass cathodes: mixed alkali effect. J Electrochem Soc 164:A2777–A2782. https://doi.org/10.1149/2.1881712jes

    Article  CAS  Google Scholar 

  56. Machida N, Fuchida R, Minami T (1989) Electrochemical insertion of lithium ions into V2O5 glasses containing transition-metal oxides. Solid State Ionics 35:295–298. https://doi.org/10.1016/0167-2738(89)90311-1

    Article  CAS  Google Scholar 

  57. Machida N, Fuchida R, Minami T (1990) Cyclic voltammetric study on vanadium oxide based glasses as cathode in rechargeable lithium batteries. Solid State Ionics 37:299–302. https://doi.org/10.1016/0167-2738(90)90191-S

    Article  CAS  Google Scholar 

  58. Machida N, Fuchida R, Minami T (1990) Preparation and lithium intercalation properties of rapidly quenched glasses in the system Fe2O3-V2O5. Solid State Ionics 40(41):589–592. https://doi.org/10.1016/0167-2738(90)90077-5

    Article  Google Scholar 

  59. Denis S, Baudrin E, Touboul M, Tarascon JM (1997) Synthesis and electrochemical properties of amorphous vanadates of general formula RVO4 (R = In, Cr, Fe, Al, Y) vs. Li. J Electrochem Soc 144:4099–4109. https://doi.org/10.1149/1.1838150

    Article  CAS  Google Scholar 

  60. Piffard Y, Leroux F, Guyomard D, Mansot JL, Tournoux M (1997) The amorphous oxides MnV2O6+δ (0 < δ < 1) as high capacity negative electrode materials for lithium batteries. J Power Sour 68:698–703. https://doi.org/10.1016/S0378-7753(96)02576-1

    Article  CAS  Google Scholar 

  61. Sabi Yu, Sato S, Hayashi S, Furuya T, Kusanagi S (2014) A new class of amorphous cathode active material LixMyPOz (M = Ni, Cu Co, Mn, Au, Ag, Pd). J Power Sour 258:54–60. https://doi.org/10.1016/j.jpowsour.2014.02.021

    Article  CAS  Google Scholar 

  62. Kerchera AK, Ramey JO, Carroll KJ, Kiggans JO, Dudney NJ, Meisner RA, Boatner LA, Veith GM (2014) Mixed polyanion glass cathodes: iron phosphate vanadate glasses. J Electrochem Soc 161:A2210–A2215. https://doi.org/10.1149/2.0881414jes

    Article  CAS  Google Scholar 

  63. Kerchera AK, Kolopus JA, Carroll KJ, Unocic RR, Kirklin S, Wolverton C, Stooksbury SL, Boatner LA, Dudney NJ (2016) Mixed polyanion glass cathodes: glass-state conversion reactions. J Electrochem Soc 163:A131–A137. https://doi.org/10.1149/2.0381602jes

    Article  CAS  Google Scholar 

  64. Kercher AK, Kolopus JA, Sacci RL, Ruther RE, Gallego NC, Stooksbury SL, Boatner LA, Dudney NJ (2017) Mixed polyanion glass cathodes: effect of polyanion content. J Electrochem Soc 164:A804–A809. https://doi.org/10.1149/2.1341704jes

    Article  CAS  Google Scholar 

  65. Aoyagi T, Fujieda T, Toyama T, Kono K, Takamatsu D, Hirano T, Naito T, Hayashi Y, Takizawa H (2016) Electrochemical properties and in-situ XAFS observation of Li2O–V2O5–P2O5–Fe2O3 quaternary-glass and crystallized-glass cathodes. J Non-Cryst Solids 453:28–35. https://doi.org/10.1016/j.jnoncrysol.2016.09.016

    Article  CAS  Google Scholar 

  66. Yamauchi H, Park G, Nagakane T, Honma T, Komatsu T, Sakai T, Sakamoto A (2013) Performance of lithium-ion battery with tin-phosphate glass anode and its characteristics. J Electrochem Soc 160:A1725–A1730. https://doi.org/10.1149/2.049310jes

    Article  CAS  Google Scholar 

  67. Bates JB, Dudney NJ, Lubben DC, Gruzalski GR, Kwak BS, Yu X, Zuhr RA (1995) Thin-film rechargeable lithium batteries. J Power Sour 54:58–62. https://doi.org/10.1016/0378-7753(94)02040-A

    Article  CAS  Google Scholar 

  68. Afyon S, Krumeich F, Mensing C, Borgschulte A, Nesper R (2014) New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses. Sci Rep 4:7113–7117. https://doi.org/10.1038/srep07113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 10:4271–4302. https://doi.org/10.1021/cr020731c

    Article  CAS  Google Scholar 

  70. Murphy DW, Christian PA, DiSalvo FJ, Carides JN (1979) Vanadium oxide cathode materials for secondary lithium cells. J Electrochem Soc 126:497–499. https://doi.org/10.1149/1.2129070

    Article  CAS  Google Scholar 

  71. Cocciantelli JM, Doumer JP, Pouchard M, Broussely M, Labat J (1991) Crystal chemistry of electrochemically inserted LixV2O5. J Power Sour 34:103–111. https://doi.org/10.1016/0378-7753(91)85029-V

    Article  CAS  Google Scholar 

  72. Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69:257–264. https://doi.org/10.1016/0167-2738(94)90414-6

    Article  CAS  Google Scholar 

  73. Miyaji F, Sakka S (1991) Structure of PbO-Bi2O3-Ga2O3 glasses. J Non-Cryst Solids 134:77–85. https://doi.org/10.1016/0022-3093(91)90013-V

    Article  CAS  Google Scholar 

  74. Mekki A, Khattak GD, Wenger LE (2003) Structure and magnetic properties of lead vanadate glasses. J Non-Cryst Solids 330:156–167. https://doi.org/10.1016/j.jnoncrysol.2003.08.039

    Article  CAS  Google Scholar 

  75. Milanova M, Iordanova R, Kostov KL (2008) Glass formation in the MoO3-CuO-PbO system. J Non-Cryst Solids 355:379–385. https://doi.org/10.1016/j.jnoncrysol.2008.12.004

    Article  CAS  Google Scholar 

  76. Doweidar H, El-Damrawi G, Mansour E, Fetouh RE (2012) Structural role of MgO and PbO in MgO–PbO–B2O3 glasses as revealed by FTIR; a new approach. J Non-Cryst Solids 358:941–946. https://doi.org/10.1016/j.jnoncrysol.2012.01.004

    Article  CAS  Google Scholar 

  77. Cozar O, Ardelean I, Bratu I, Simon S, Craciun C, David L, Cefan C (2001) IR and EPR studies on some lithium-borate glasses with vanadium ions. J Mol Struct 563:421–425. https://doi.org/10.1016/S0022-2860(01)00442-2

    Article  Google Scholar 

  78. Barczyński RJ, Król P, Murawski L (2010) AC and DC conductivities in V2O5–P2O5 glasses containing alkaline ions. J Non-Cryst Solids 356:1965–1967. https://doi.org/10.1016/j.jnoncrysol.2010.07.001

    Article  CAS  Google Scholar 

  79. Saetova NS, Raskovalov AA, Antonov BD, Yaroslavtseva TV, Reznitskikh OG, Zabolotskaya EV, Kadyrova NI, Telyatnikova AA (2017) Conductivity and spectroscopic studies of Li2O-V2O5-B2O3 glasses. Ionics Press. https://doi.org/10.1007/s11581-018-2452-3

    Article  Google Scholar 

  80. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693. https://doi.org/10.1016/0038-1098(93)90841-A

    Article  CAS  Google Scholar 

  81. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1989) Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) systems. J Electrochem Soc 136:590–591. https://doi.org/10.1149/1.2096693

    Article  CAS  Google Scholar 

  82. Leo CJ, Chowdari BVR, Rao GVS, Souquet JL (2002) Lithium conducting glass ceramic with Nasicon structure. Mater Res Bull 37:1419–1430. https://doi.org/10.1016/S0025-5408(02)00793-6

    Article  CAS  Google Scholar 

  83. Thokchom JS, Gupta N, Kumar B (2008) Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J Electrochem Soc 155:A915–A920. https://doi.org/10.1149/1.2988731

    Article  CAS  Google Scholar 

  84. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  85. Murugan R, Ramakumar S, Janani N (2011) High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem Commun 13:1373–1375. https://doi.org/10.1016/j.elecom.2011.08.014

    Article  CAS  Google Scholar 

  86. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0-2). J Power Sources 196:3342–3345. https://doi.org/10.1016/j.jpowsour.2010.11.089

    Article  CAS  Google Scholar 

  87. Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13:509–512. https://doi.org/10.1016/j.elecom.2011.02.035

    Article  CAS  Google Scholar 

  88. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL (2012) Synthesis and high Li–ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater Chem Phys 134:571–575. https://doi.org/10.1016/j.matchemphys.2012.03.054

    Article  CAS  Google Scholar 

  89. Li Y, Han JT, Wang CA, Xie H, Goodenough JB (2012) Optimizing. Li+ conductivity in a garnet framework. J Mater Chem 22:15357–15361. https://doi.org/10.1039/C2JM31413D

    Article  CAS  Google Scholar 

  90. Huang M, Dumon A, Nan CW (2012) Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem Commun 21:62–64. https://doi.org/10.1016/j.elecom.2012.04.032

    Article  CAS  Google Scholar 

  91. Yang C, Yi-Qiu L, Xiang-Xin G (2013) Densification and lithium ion conductivity of garnet-type Li7−xLa3Zr2−xTaxO12 (x = 0.25) solid electrolytes. Chin Phys B 22:0782011–0782015. https://doi.org/10.1088/1674-1056/22/7/078201

    Article  CAS  Google Scholar 

  92. Raskovalov AA, Il’ina EA, Antonov BD (2013) Structure and transport properties of Li7La3Zr2−0.75xAlxO12 superionic solid electrolytes. J Power Sources 238:48–52. https://doi.org/10.1016/j.jpowsour.2013.03.049

    Article  CAS  Google Scholar 

  93. El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sour 225:13–19. https://doi.org/10.1016/j.jpowsour.2012.09.111

    Article  CAS  Google Scholar 

  94. Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R (2013) Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sour 240:18–25. https://doi.org/10.1016/j.jpowsour.2013.03.166

    Article  CAS  Google Scholar 

  95. Song S, Yan B, Zheng F, Duong HM, Lu L (2014) Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. Solid State Ionics 268:135–139. https://doi.org/10.1016/j.ssi.2014.10.009

    Article  CAS  Google Scholar 

  96. Janani N, Deviannapoorani C, Dhivya L, Murugan R (2014) Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 4:51228–51238. https://doi.org/10.1039/C4RA08674K

    Article  CAS  Google Scholar 

  97. Takano R, Tadanaga K, Hayashi A, Tatsumisago M (2014) Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process. Solid State Ionics 255:104–107. https://doi.org/10.1016/j.ssi.2013.12.006

    Article  CAS  Google Scholar 

  98. Tadanaga K, Takano R, Ichinose T, Mori S (2013) Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites. Electrochem Commun 33:51–54. https://doi.org/10.1016/j.elecom.2013.04.004

    Article  CAS  Google Scholar 

  99. Il’ina EA, Raskovalov AA, Saetova NS, Antonov BD, Reznitskikh OG (2016) Composite electrolytes Li7La3Zr2O12-glassy Li2O-B2O3-SiO2. Solid State Ionics 296:26–30. https://doi.org/10.1016/j.ssi.2016.09.003

    Article  Google Scholar 

  100. Il’ina EA, Raskovalov AA, Antonov BD, Pankratov AA, Reznitskikh OG (2017) Composite electrolytes ceramic Li7La3Zr2O12/glassy Li2O-Y2O3-SiO2. Mater Res Bull 93:157–161. https://doi.org/10.1016/j.materresbull.2017.04.050

    Article  Google Scholar 

  101. Pershina SV, Il’Ina EA, Reznitskikh OG (2017) Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition. Inorg Chem 56:9880–9891. https://doi.org/10.1021/acs.inorgchem.7b01379

    Article  CAS  PubMed  Google Scholar 

  102. Tammann G, Jenckel E (1929) Die zunahme der dichte von gläsern nach erstarrung unter erhöhtem Druck und die Wiederkehr der natürlichen dichte durch temperatursteigerung. Z Anorg allge Chem 184:416–420. https://doi.org/10.1002/zaac.19291840134

    Article  CAS  Google Scholar 

  103. Stanworth JE (1952) Tellurite glasses. J Soc Glass Tech 36:217–241

    CAS  Google Scholar 

  104. Denton EP, Rawson H, Stanworth JE (1954) Vanadate glasses. Nature 173:1030–1032. https://doi.org/10.1038/1731030b0

    Article  CAS  Google Scholar 

  105. Baynton PL, Rawson H, Stanworth JE (1957) Semiconducting properties of some vanadate glasses. J Electrochem Soc 104:237–240. https://doi.org/10.1149/1.2428544

    Article  CAS  Google Scholar 

  106. Kitaigorodskii II, Karpechenko VG (1958) Synthesis and investigation of certain vanadium glasses. Glass and Ceram 15:294–297. https://doi.org/10.1007/BF00669325

    Article  Google Scholar 

  107. Munakata M (1960) Electrical conductivity of high vanadium phosphate glass. Solid-State Electron 1:159–163. https://doi.org/10.1016/0038-1101(60)90001-0

    Article  CAS  Google Scholar 

  108. Mott NF, Twose WD (1961) The theory of impurity conduction. Adv Phys 10:107–163. https://doi.org/10.1080/00018736100101271

    Article  CAS  Google Scholar 

  109. Mott NF (1961) Electrons in disordered structure. Adv Phys 16:49–144. https://doi.org/10.1080/00018736700101265

    Article  Google Scholar 

  110. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1–17. https://doi.org/10.1016/0022-3093(68)90002-1

    Article  CAS  Google Scholar 

  111. Lindsey GS (1970) Electron conduction in vanadium phosphate glasses. J Non-Cryst Solids 4:208–219. https://doi.org/10.1016/0022-3093(70)90043-8

    Article  Google Scholar 

  112. Frazier LL, France PW (1977) Compositional dependence of the electrical conductivity of vanadium phosphate glass. J Phys Chem Solids 38:801–808. https://doi.org/10.1016/0022-3697(77)90075-0

    Article  CAS  Google Scholar 

  113. Feltz A, Wollenhaupt R (1980) Electrical conductivity of VO2 containing glasses in dependence on the polarizability of the oxide ions. J Non-Cryst Solids 35:1015–1020. https://doi.org/10.1016/0022-3093(80)90334-8

    Article  Google Scholar 

  114. Chung CH, Mackenzie JD (1980) Electrical properties of binary semiconducting oxide glasses containing 55 mole % V2O5.J. Non-Cryst Solids 42:357–370. https://doi.org/10.1016/0022-3093(80)90036-8

    Article  CAS  Google Scholar 

  115. Nassau K, Murphy DW (1981) The quenching and electrochemical behavior of Li2O–V2O5glasses. J Non-Cryst Solids 44:297–304. https://doi.org/10.1016/0022-3093(81)90032-6

    Article  CAS  Google Scholar 

  116. Dhawan VK, Mansingh A, Sayer M (1982) DC conductivity of V2O5–TeO2 glasses. J Non-Cryst Solids 51:87–103. https://doi.org/10.1016/0022-3093(82)90190-9

    Article  CAS  Google Scholar 

  117. Calestani G, Marghignani L, Montenero A, Bettinelli M (1986) DC conductivity of ZnO-V2O5 glasses. J Non-Cryst Solids 86:285–292. https://doi.org/10.1016/0022-3093(86)90016-5

    Article  CAS  Google Scholar 

  118. Ghosh A, Chaudhuri BK (1986) DC conductivity of V2O5-Bi2O3 glasses. J Non-Cryst Solids 83:151–161. https://doi.org/10.1016/0022-3093(86)90065-7

    Article  CAS  Google Scholar 

  119. Levy M, Rousseau F, Duclot MJ (1988) Electrochemical properties of glasses in the TeO2–V2O5 system. Solid State Ionics 2:376–378. https://doi.org/10.1016/S0167-2738(88)80136-X

    Article  Google Scholar 

  120. Levy M, Duclot MJ, Rousseau F (1989) V2O5-based glasses as cathodes for lithium batteries. J Power Sour 26:381–388. https://doi.org/10.1016/0378-7753(89)80150-8

    Article  CAS  Google Scholar 

  121. Ghosh A, Chaudhuri BK (1988) Anomalous conductivity and other properties of V2O5-P2O5 glasses with Bi2O3 or Sb2O3 glasses. J Non-Cryst Solids 103:83–92. https://doi.org/10.1016/0022-3093(88)90419-X

    Article  CAS  Google Scholar 

  122. Khawaja EE, Salim MA, Khan MA, Al-Adel FF, Khattak GD, Hussain Z (1989) XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nickel oxide. J Non-Cryst Solids 110:33–43. https://doi.org/10.1016/0022-3093(89)90179-8

    Article  CAS  Google Scholar 

  123. Lebrun N, Lévy M, Souquet JL (1990) Electronic conductivity in glasses of the TeO2-V2O5-MoO3system. Solid State Ionics 40–41:718–722. https://doi.org/10.1016/0167-2738(90)90107-3

    Article  Google Scholar 

  124. Miura T, Kishi T (1993) Inhomogeneous electrochemical lithiation of V2O5–TeO2 binary glasses in a propylene carbonate solution. J Power Sour 44:645–649. https://doi.org/10.1016/0378-7753(93)80214-A

    Article  CAS  Google Scholar 

  125. Mori H, Kitami T, Sakata H (1994) Electrical conductivity of V2O5–Sb2O3–TeO2 glasses. J Non-Cryst Solids 168:157–166. https://doi.org/10.1016/0022-3093(94)90132-5

    Article  CAS  Google Scholar 

  126. Mori H, Gotoh K, Sakata H (1995) Low-temperature dc conductivity of V2O5–SnO–TeO2, glasses. J Non-Cryste Solids 183:122–125. https://doi.org/10.1016/0022-3093(94)00585-0

    Article  CAS  Google Scholar 

  127. Sakata H, Amano M, Yagi T (1996) DC conductivity of V2O5–PbO–TeO2 glasses and the effect of pressure. J Non-Cryst Solids 194:198–206. https://doi.org/10.1016/0022-3093(95)00478-5

    Article  CAS  Google Scholar 

  128. Jayasinghe GDLK, Dissanayake MAKL, Careem MA, Souquet JL (1997) Electronic to ionic conductivity of glasses in the Na2O–V2O5–TeO2 system. Solid State Ionics 93:291–295. https://doi.org/10.1016/S0167-2738(96)00494-8

    Article  CAS  Google Scholar 

  129. Jayasinghe GDLK, Dissanayake MAKL, Bandaranayake PWSK, Souquet JL, Foscallo D (1999) Electronic to ionic conductivity of glasses in the Li2O–V2O5–TeO2 system. Solid State Ionics 121:19–23. https://doi.org/10.1016/S0167-2738(98)00336-1

    Article  CAS  Google Scholar 

  130. Ungureanu MC, Levy M, Souquet JL (1998) Mixed conductivity of glasses in the P2O5–V2O5–Na2O system. Ionics 4:200–206. https://doi.org/10.1007/BF02375946

    Article  CAS  Google Scholar 

  131. Mori H, Matsuno H, Sakata H (2000) Small polaron hopping conduction in V2O5–Sb–TeO2 glasses. J Non-Cryst Solids 276:78–94. https://doi.org/10.1016/S0022-3093(00)00280-5

    Article  CAS  Google Scholar 

  132. Salman FE, Snash NH, El-Haded HA, El-Mansy MK (2002) Electrical conduction and dielectric properties of vanadium phosphate glasses doped with lithium. J Phys Chem Solids 63:1957–1966. https://doi.org/10.1016/S0022-3697(02)00164-6

    Article  CAS  Google Scholar 

  133. El-Desoky MM (2002) Potassium doping of semiconducting vanadium tellurate glasses. J Phys Chem Solids 73:259–262. https://doi.org/10.1016/S0254-0584(01)00390-X

    Article  CAS  Google Scholar 

  134. El-Desoky MM (2005) Characterization and transport properties of V2O5–Fe2O3–TeO2 glasses. J Non-Cryst Solids 351:3139–3146. https://doi.org/10.1016/j.jnoncrysol.2005.08.004

    Article  CAS  Google Scholar 

  135. El-Desoky MM, Al-Assiri MS (2007) Structural and Polaronic transport properties of semiconducting CuO–V2O5–TeO2 glasses. Mater Sci Eng B-Adv 137:237–246. https://doi.org/10.1016/j.mseb.2006.11.032

    Article  CAS  Google Scholar 

  136. Montani RA, Lorente A, Vincenzo MA (2000) Effect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses. Solid State Ionics 130:91–95. https://doi.org/10.1016/S0167-2738(00)00280-0

    Article  CAS  Google Scholar 

  137. Montani RA, Lorente A, Frechero MA (2002) Effect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses: Part II. Solid State Ionics 146:323–327. https://doi.org/10.1016/S0167-2738(01)01023-2

    Article  CAS  Google Scholar 

  138. Montani RA, Frechero MA (2003) The conductive behaviour of silver vanadium–molybdenum tellurite glasses. Solid State Ionics 158:327–332. https://doi.org/10.1016/S0167-2738(02)00902-5

    Article  CAS  Google Scholar 

  139. Montani RA, Frechero MA (2006) Mixed ion-polaron transport in lithium vanadium–molybdenum tellurite glasses. Solid State Ionics 177:2911–2915. https://doi.org/10.1016/j.ssi.2006.08.015

    Article  CAS  Google Scholar 

  140. Turky G, Dawy M (2003) Spectral and electrical properties of ternary (TeO2–V2O5–Sm2O3) glasses. Mat Chemy Phys 77:48–59. https://doi.org/10.1016/S0254-0584(01)00574-0

    Article  CAS  Google Scholar 

  141. Dutta B, Fahmy NA, Pegg IL (2005) Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system. J Non-Cryst Solids 351:1958–1966. https://doi.org/10.1016/j.jnoncrysol.2005.05.005

    Article  CAS  Google Scholar 

  142. Dutta B, Fahmy NA, Pegg IL (2005) Effect of mixing transition ions in glasses. II. The P2O5–Fe2O3–MnO system. J Non-Cryst Solids 351:2552–2561. https://doi.org/10.1016/j.jnoncrysol.2005.06.044

    Article  CAS  Google Scholar 

  143. Dutta B, Fahmy NA, Pegg IL (2006) Effect of mixed transition-metal ions in glasses. Part III: The P2O5–V2O5–MnO system. J Non-Cryst Solids 352:2100–2108. https://doi.org/10.1016/j.jnoncrysol.2006.02.043

    Article  CAS  Google Scholar 

  144. Szu S, Chang F (2005) Impedance study of V2O5–TeO2–BaO glasses. Solid State Ionics 176:2695–2699. https://doi.org/10.1016/j.ssi.2005.09.004

    Article  CAS  Google Scholar 

  145. Krins N, Rulmont A, Grandjean J, Gilbert B, Lepot L, Cloots R, Vertruyen B (2006) Structural and electrical properties of tellurovanadate glasses containing Li2O. Solid State Ionics 177:3147–3150. https://doi.org/10.1016/j.ssi.2006.07.034

    Article  CAS  Google Scholar 

  146. Behzad H, Hekmatshoar MH, Mirzayi M, Azmoonfar M (2009) Activation energy and conductivity of glasses in the P2O5–V2O5–Li2O system. Ionics 15:547–650. https://doi.org/10.1007/s11581-009-0319-3

    Article  CAS  Google Scholar 

  147. Pant M, Kanchan DK, Sharma P (2010) Characterization and transport properties of 10BaO-xAg2O-(85-x)V2O5-5TeO2 glass system. Ionics 16:797–805. https://doi.org/10.1007/s11581-010-0464-8

    Article  CAS  Google Scholar 

  148. Souri D (2010) Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. J Non-Cryst Solids 356:2181–2184. https://doi.org/10.1016/j.jnoncrysol.2010.08.020

    Article  CAS  Google Scholar 

  149. Shapaan M (2010) Effect of heat treatment on the hyperfine structure and the dielectric properties of 40P2O5-40V2O5-20Fe2O3 oxide glass. J Non-Cryst Solids 356:314–320. https://doi.org/10.1016/j.jnoncrysol.2009.11.042

    Article  CAS  Google Scholar 

  150. Devidas GB, Sankarappa T, Sujatha T, Kumar MP, Sadashivaiah PJ, Naik PS (2011) Polaron transport studies in La2O–V2O–P2O5 glasses. Solid State Sci 13:1385–1390. https://doi.org/10.1016/j.solidstatesciences.2011.04.008

    Article  CAS  Google Scholar 

  151. Khattak GD, Mekki A, Siddiqui MN (2012) Compositional dependence of DC electrical conductivity of SrO-vanadate glasses. Solid State Ionics 211:5–11. https://doi.org/10.1016/j.ssi.2012.01.012

    Article  CAS  Google Scholar 

  152. Mirzayi M, Hekmatshoar MH (2013) Study of electrical conductivity and memory switching in the zinc-vanadium-phosphate glasses. Phys B 420:70–73. https://doi.org/10.1016/j.physb.2013.03.026

    Article  CAS  Google Scholar 

  153. Szreder NA, Kosiorek P, Karczewski J, Gazda M, Barczyński RJ (2014) Microstructure and dielectric properties of barium-vanadate glasses. Procedia Engineer 98:62–70. https://doi.org/10.1016/j.proeng.2014.12.489

    Article  CAS  Google Scholar 

  154. Salehizadeh SA, Melo BMG, Freire FNA, Valente MA, Graça MPF (2016) Structural and electrical properties of TeO2–V2O5–K2O glassy systems. J Non-Cryst Solids 443:65–74. https://doi.org/10.1016/j.jnoncrysol.2016.03.012

    Article  CAS  Google Scholar 

  155. Mori H (2016) Effect of annealing in an H2 gas atmosphere on the physical properties for 70V2O5·30TeO2 (mol%) glasses. J Non-Cryst Solids 463:163–168. https://doi.org/10.1016/j.jnoncrysol.2017.02.018

    Article  CAS  Google Scholar 

  156. Dixit VG, Singh K (1983) Electrical conductivity of transition metal oxide glasses in the system V2O5–B2O3–TeO2 at high temperatures. J Phys Chem Solids 44:859–864. https://doi.org/10.1016/0022-3697(83)90122-1

    Article  CAS  Google Scholar 

  157. Sharma BK, Dube DC, Mansingh A (1984) Preparation and characterization of V2O5–B2O3 glasses. J Non-Cryst Solids 65:39–51. https://doi.org/10.1016/0022-3093(84)90353-3

    Article  CAS  Google Scholar 

  158. Culea E, Nicula A1 (1986) Electrical properties of V2O5-B2O3 glasses. Solid State Commun 58:545–549. https://doi.org/10.1016/0038-1098(86)90793-3

    Article  CAS  Google Scholar 

  159. Ichinose N, Nakai Y (1996) Electrical conductivity of V2O5–SrO–B2O3 glasses. J Non-Cryst Solids 203:353–358. https://doi.org/10.1016/0022-3093(96)00369-9

    Article  CAS  Google Scholar 

  160. El Mkami H, Deroide B, Backov R, Zanchetta JV (2000) dc and ac Conductivities of (V2O5)x(B2O3)1-x oxide glasses. J Phys Chem Solids 61:819–826. https://doi.org/10.1016/S0022-3697(99)00306-6

    Article  Google Scholar 

  161. Sindhu S, Sanghi S, Sonam AA, Seth VP Kishore N (2005) The role of V2O5 in the modification of structural, optical and electrical properties of vanadium barium borate glasses. Phys B Cond Mat 1:65–75. https://doi.org/10.1016/j.physb.2005.04.037

    Article  CAS  Google Scholar 

  162. Choi S, Ryu B (2016) Effects of crystallization on the structural, electrical, and catalytic properties of 75V2O5-15B2O3-10P2O5 glass. J Non-Cryst Solids 431:112–117. https://doi.org/10.1016/j.jnoncrysol.2015.05.009

    Article  CAS  Google Scholar 

  163. Sujatha B, Viswanatha R, Nagabushana H, Reddy CN (2017) Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions. J Mat Res Tech 6:7–12. https://doi.org/10.1016/j.jmrt.2016.03.002

    Article  CAS  Google Scholar 

  164. Rajashekara G, Sangamesh J, Arunkumar B, Nagaraja N, Kumar MP (2017) Anomalous DC electrical conductivity in mixed transition metal ions doped borate glasses. J Non-Cryst Solids 481:289–294. https://doi.org/10.1016/j.jnoncrysol.2017.10.056

    Article  CAS  Google Scholar 

  165. Garbarczyk JE, Wasiucionek M, Jozwiak P, Tykarski L, Nowinski JL (2002) Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ionics 154:367–373. https://doi.org/10.1016/S0167-2738(02)00574-X

    Article  Google Scholar 

  166. Jozwiak P, Garbarczyk JE (2005) Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ionics 176:2163–2169. https://doi.org/10.1016/j.ssi.2004.06.028

    Article  CAS  Google Scholar 

  167. Garbarczyk JE, Jozwiak P, Wasiucionek M, Nowinski JL (2004) Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization. Solid State Ionics 175:691–694. https://doi.org/10.1016/j.ssi.2004.08.025

    Article  CAS  Google Scholar 

  168. Garbarczyk JE, Jozwiak P, Wasiucionek M, Nowinski JL (2007) Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses. J Power Sources 173:743–747. https://doi.org/10.1016/j.jpowsour.2007.05.069

    Article  CAS  Google Scholar 

  169. Garbarczyk JE, Jozwiak P, Wasiucionek M, Nowinski JL (2006) Effect of nanocrystallization on the electronic conductivity of vanadate–phosphate glasses. Solid State Ionics 177:2585–6258. https://doi.org/10.1016/j.ssi.2006.04.038

    Article  CAS  Google Scholar 

  170. Garbarczyk JE, Wasiucionek M, Jozwiak P, Nowinski JL, Julien CM (2009) Novel nanomaterials based on electronic and mixed conductive glasses. Solid State Ionics 180:531–536. https://doi.org/10.1016/j.ssi.2008.09.021

    Article  CAS  Google Scholar 

  171. Pietrzak TK, Garbarczyk JE, Gorzkowska I, Wasiucionek M, Nowinski JL, Gierlotka S, Jozwiak P (2009) Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses. J Power Sources 173:743–747. https://doi.org/10.1016/j.jpowsour.2009.02.031

    Article  CAS  Google Scholar 

  172. Takahashi H, Karasawa T, Sakuma T, Garbarczyk JE (2010) Electrical conduction in the vitreous and crystallized Li2O–V2O5–P2O5 system. Solid State Ionics 181:27–32. https://doi.org/10.1016/j.ssi.2009.12.001

    Article  CAS  Google Scholar 

  173. Pietrzak TK, Garbarczyk JE, Wasiucionek M, Gorzkowska I, Nowinski JL, Gierlotka S (2011) Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses - An extended temperature range study. Solid State Ionics 192:210–214. https://doi.org/10.1016/j.ssi.2010.05.018

    Article  CAS  Google Scholar 

  174. Pietrzak TK, Wasiucionek M, Nowiński JL, Garbarczyk JE (2013) Isothermal nanocrystallization of vanadate–phosphate glasses. Solid State Ionics 251:78–82. https://doi.org/10.1016/j.ssi.2013.01.004

    Article  CAS  Google Scholar 

  175. Pietrzak TK, Pawliszak Ł, Michalski PP, Wasiucionek M, Garbarczyk JE (2013) Highly conductive 90V2O5·10P2O5 nanocrystalline cathode materials for lithium-ion batteries. Procedia Engineer 251:78–82. https://doi.org/10.1016/j.proeng.2014.12.483

    Article  CAS  Google Scholar 

  176. Pietrzak TK, Michalski PP, Wasiucionek M, Garbarczyk JE (2016) Synthesis of nanostructured Li3Me2(PO4)2F3 glass-ceramics (Me = V, Fe, Ti). Solid State Ionics 288:193–198. https://doi.org/10.1016/j.ssi.2015.11.021

    Article  CAS  Google Scholar 

  177. Al-Syadi AM, Al-Assiri MS, Hassan HMA, El-Desoky MM (2016) Grain size effects on the transport properties of Li3V2(PO4)3 glass–ceramic nanocomposites for lithium cathode batteries. J Mater Sci-Mater El 27:4074–4083. https://doi.org/10.1007/s10854-015-4266-7

    Article  CAS  Google Scholar 

  178. Al-Syadi AM, Al-Assiri MS, Hassan HMA, El-Desoky MM (2016) Grain size effects on dynamics of Li-ions in Li3V2(PO4)3 glass-ceramic nanocomposites. Ionics 22:2281–2290. https://doi.org/10.1007/s11581-016-1772-4

    Article  CAS  Google Scholar 

  179. El-Desoky MM, Al-Syadi AM, Al-Assiri MS, Hassan HMA, El Enany G (2016) Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. J Solid State Electrochem 20:2663–2671. https://doi.org/10.1007/s10008-016-3267-7

    Article  CAS  Google Scholar 

  180. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18:41–102. https://doi.org/10.1080/000187369-00101267

    Article  CAS  Google Scholar 

  181. Il’ina EA, Andreev OL, Antonov BD, Batalov NN (2012) Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. J Power Sources 201:167–173. https://doi.org/10.1016/j.jpowsour.2011.10.108

    Article  Google Scholar 

  182. Tolkacheva AS, Shkerin SN, Plaksin SV, Vovkotrub EG, Bulanin KM, Kochedykov VA, Ordinartsev DP, Gyrdasova OI, Molchanova NG (2011) Synthesis of Dense Ceramics of Single-Phase Mayenite (Ca12Al14O32)O. Russ J Appl Chem 84:907–911. https://doi.org/10.1134/S1070427211060012

    Article  CAS  Google Scholar 

  183. Pecharsky VK, Zavalij PY (2009) Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09579-0

    Article  Google Scholar 

  184. McKnight M, Whitmore KA, Bunton PH, Baker DB, Vennerberg DC, Feller SA (2010) EPR study of RLi2O·V2O5, RNa2O·V2O5, RCaO·V2O5 and RBaO·V2O5 modified vanadate glass system. J Non-Cryst Solids 356:2268–2272. https://doi.org/10.1016/j.jnoncrysol.2010.07.016

    Article  CAS  Google Scholar 

  185. Svistunenko DA, Sharpe MA, Nicholls P, Wilson MT, Cooper CE (2000) A new method for quantitation of spin concentration by EPR spectroscopy: application to methemoglobin and metmyoglobin. J Magn Resonan 142:226–275. https://doi.org/10.1006/jmre.1999.1935

    Article  CAS  Google Scholar 

  186. Eaton GR, Eaton SS, Barr DP, Weber RT (2010) Quantitative EPR. SpringerWienNewYork, Wien

    Book  Google Scholar 

  187. Choi HU, Jin JS, Park J-Y, Lim H-T (2017) Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode. J Alloys and Comp 723:787–794. https://doi.org/10.1016/j.jallcom.2017.06.135

    Article  CAS  Google Scholar 

  188. Hayes M, Kuhn AT, Patefield W (1977) Techniques for the determination of ohmic drop in half-cells and full cells: A review. J Power Sources 2:121–136. https://doi.org/10.1016/0378-7753(77)80013-X

    Article  CAS  Google Scholar 

  189. Cooper KR, Smith M (2006) Electrical test methods for on-line fuel cell ohmic resistance measurement. J Power Sources 160:1088–1095. https://doi.org/10.1016/j.jpowsour.2006.02.086

    Article  CAS  Google Scholar 

  190. Mench MM (2008) Experimental diagnostic and diagnosis. Mench MM. Fuel cell engines. Wiley, New Jersey, pp 453–485

    Google Scholar 

  191. Amiki Y, Sagane F, Yamamoto K, Hirayama T, Sudoh M, Motoyama M, Iriyama Y (2013) Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet. J Power Sources 241:583–588. https://doi.org/10.1016/j.jpowsour.2013.05.006

    Article  CAS  Google Scholar 

  192. Kato T, Yoshida R, Yamamoto K, Hirayama T, Motoyama M, West WC, Iriyama Y (2016) Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. J Power Sources 325:584–590. https://doi.org/10.1016/j.jpowsour.2016.06.068

    Article  CAS  Google Scholar 

  193. Iriyama Y, Yada C, Abe T, Ogumi Z, Kikuchi K (2006) A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a D.C. high voltage. Electrochem Commun 8:1287–1291. https://doi.org/10.1016/j.elecom.2006.03.003

    Article  CAS  Google Scholar 

  194. Yada C, Iriyama Y, Abe T, Kikuchi K, Ogumi Z (2009) A novel all-solid-state thin-film-type lithium-ion battery with in situ prepared positive and negative electrode materials. Electrochem Commun 11:413–416. https://doi.org/10.1016/j.elecom.2008.12.004

    Article  CAS  Google Scholar 

  195. Chebotin VN, Perfil’ev MV (1978) Electrohimiya tverdyh electrolitov (Electrochemistry of solid electrolytes). Himiya, Moscow

    Google Scholar 

  196. Sangster J, Pelton AD (1991) The Ga-Li (Gallium-Lithium) System. J Phase Equilib 12:33–36. https://doi.org/10.1007/BF02663670

    Article  CAS  Google Scholar 

  197. Saint J, Morcrette M, Larcher D, Tarascon JM (2005) Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ionics 176:189–197. https://doi.org/10.1016/j.ssi.2004.05.021

    Article  CAS  Google Scholar 

  198. Dębski A, Gąsior W, Dębski R (2016) Thermodynamic properties of liquid Ga-Li alloys: experiment vs. modeling. J. Chem. Thermodyn 97:348–353. https://doi.org/10.1016/j.jct.2016.02.015

    Article  CAS  Google Scholar 

  199. Trong LD, Thao TT, Dinh NN (2015) Characterization of the Li-ionic conductivity of La(2/3-x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics 278:228–232. https://doi.org/10.1016/j.ssi.2015.05.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R. Murugan for kindly invitation to write this chapter.

The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High-Temperature Electrochemistry of Ural Branch of RAS, Yekaterinburg, Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Raskovalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raskovalov, A.A., Saetova, N.S. (2019). All-Solid-State Batteries Based on Glass-Ceramic Lithium Vanadate. In: Murugan, R., Weppner, W. (eds) Solid Electrolytes for Advanced Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31581-8_13

Download citation

Publish with us

Policies and ethics