Skip to main content

Magnetic Vestibular Stimulation

  • Chapter
  • First Online:

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Strong static magnetic fields such as those in MRI machines can induce vertigo and nystagmus. The mechanism is a Lorentz force, generated in the inner ear fluids of the labyrinth by the interaction between normal ionic currents entering into labyrinthine hair cells and the strong static magnetic field of the MRI machine. The Lorentz force is constant and displaces the cupulae of the semicircular canals to a deviated position, simulating a response to a constant acceleration of the head with its consequent sustained nystagmus. The Lorentz effect scales with the strength of the magnetic field, but is not harmful, except for inducing transient dizziness and nausea. Magnetic vestibular stimulation (MVS) has implications for studies of vestibular physiology and adaptation, the interpretation of functional MRI studies, and human safety when undergoing diagnostic imaging studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antunes, A., Glover, P. M., Li, Y., Mian, O. S., & Day, B. L. (2012). Magnetic field effects on the vestibular system: Calculation of the pressure on the cupula due to ionic current-induced Lorentz force. Physics in Medicine and Biology, 57(14), 4477–4487.

    Article  CAS  Google Scholar 

  • Boegle, R., Stephan, T., Ertl, M., Glasauer, S., & Dieterich, M. (2016). Magnetic vestibular stimulation modulates default mode network fluctuations. NeuroImage, 127(February), 409–421.

    Article  Google Scholar 

  • Boegle, R., Ertl, M., Stephan, T., & Dieterich, M. (2017). Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases. Journal of Neurology, 264(5), 999–1001.

    Article  Google Scholar 

  • de Vocht, F., van Drooge, H., Engels, H., & Kromhout, H. (2006). Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. Journal of Magnetic Resonance Imaging: JMRI, 23(2), 197–204.

    Article  Google Scholar 

  • Glover, P. M., Cavin, I., Qian, W., Bowtell, R., & Gowland, P. A. (2007). Magnetic-field-induced Vertigo: A theoretical and experimental investigation. Bioelectromagnetics, 28(5), 349–361.

    Article  CAS  Google Scholar 

  • Gopen, Q., Lopez, I., Ishiyama, G., Baloh, R. W., & Ishiyama, A. (2003). Unbiased stereologic type I and type II hair cell counts in human utricular macula. The Laryngoscope, 113(7), 1132–1138.

    Article  Google Scholar 

  • Heilmaier, C., Theysohn, J. M., Maderwald, S., Kraff, O., Ladd, M. E., & Ladd, S. C. (2011). A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics, 32(8). Wiley Online Library), 610–619.

    Article  Google Scholar 

  • Houpt, T. A., Pittman, D. W., Barranco, J. M., Brooks, E. H., & Smith, J. C. (2003). Behavioral effects of high-strength static magnetic fields on rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(4), 1498–1505.

    Article  CAS  Google Scholar 

  • Houpt, T. A., Cassell, J. A., Riccardi, C., DenBleyker, M. D., Hood, A., & Smith, J. C. (2007). Rats avoid high magnetic fields: Dependence on an intact vestibular system. Physiology & Behavior, 92(4), 741–747.

    Article  CAS  Google Scholar 

  • Jareonsettasin, P., Otero-Millan, J., Ward, B. K., Roberts, D. C., Schubert, M. C., & Zee, D. S. (2016). Multiple time courses of vestibular set-point adaptation revealed by sustained magnetic field stimulation of the labyrinth. Current Biology: CB, 26(10), 1359–1366.

    Article  CAS  Google Scholar 

  • John Leigh, R., & Zee, D. S. (2015). The neurology of eye movements. 5th edition, New York, NY: Oxford University Press.

    Google Scholar 

  • Kangarlu, A., Burgess, R. E., Zhu, H., Nakayama, T., Hamlin, R. L., Abduljalil, A. M., & Robitaille, P. M. (1999). Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magnetic Resonance Imaging, 17(10), 1407–1416.

    Article  CAS  Google Scholar 

  • Kimura, R. S. (1969). Distribution, structure, and function of dark cells in the vestibular labyrinth. The Annals of Otology, Rhinology, and Laryngology, 78(3), 542–561.

    Article  CAS  Google Scholar 

  • Kirschvink, J. L., Kobayashi-Kirschvink, A., & Woodford, B. J. (1992). Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7683–7687.

    Article  CAS  Google Scholar 

  • Lopez, I., Ishiyama, G., Tang, Y., Tokita, J., Baloh, R. W., & Ishiyama, A. (2005). Regional estimates of hair cells and supporting cells in the human crista ampullaris. Journal of Neuroscience Research, 82(3), 421–431.

    Article  CAS  Google Scholar 

  • Lowenstein, B., Otto, Y., & Sand, A. (1936) The activity of the horizontal semi-circular canal of the dogfish Scyllium Canicula. http://jeb.biologists.org/content/jexbio/13/4/416.full.pdf.

  • Marcelli, V., Esposito, F., Aragri, A., Furia, T., Riccardi, P., Tosetti, M., Biagi, L., Marciano, E., & Di Salle, F. (2009). Spatio-temporal pattern of vestibular information processing after brief caloric stimulation. European Journal of Radiology, 70(2), 312–316.

    Article  Google Scholar 

  • Mian, O. S., Li, Y., Antunes, A., Glover, P. M., & Day, B. L. (2013). On the Vertigo due to static magnetic fields. PLoS One, 8(10), e78748.

    Article  CAS  Google Scholar 

  • Mian, O. S., Glover, P. M., & Day, B. L. (2015). Reconciling magnetically induced vertigo and nystagmus. Frontiers in Neurology, 6(September), 201.

    PubMed  PubMed Central  Google Scholar 

  • Mian, O. S., Li, Y., Antunes, A., Glover, P. M., & Day, B. L. (2016). Effect of head pitch and roll orientations on magnetically induced vertigo. The Journal of Physiology, 594(4), 1051–1067.

    Article  CAS  Google Scholar 

  • Nordmann, G. C., Hochstoeger, T., & Keays, D. A. (2017). Magnetoreception-a sense without a receptor. PLoS Biology, 15(10), e2003234.

    Article  Google Scholar 

  • Oman, C. M., & Young, L. R. (1972). The physiological range of pressure difference and cupula deflections in the human semicircular canal. Theoretical considerations. Acta Oto-Laryngologica, 74(5), 324–331.

    Article  CAS  Google Scholar 

  • Otero-Millan, J., Zee, D. S., Schubert, M. C., Roberts, D. C., & Ward, B. K. (2017). Three-dimensional eye movement recordings during magnetic vestibular stimulation. Journal of Neurology, March. https://doi.org/10.1007/s00415-017-8420-4.

  • Roberts, D. C., Marcelli, V., Gillen, J. S., Carey, J. P., Santina, C. C. D., & Zee, D. S. (2011). MRI magnetic field stimulates rotational sensors of the brain. Current Biology: CB, 21(19), 1635–1640.

    Article  CAS  Google Scholar 

  • Robin Baker, R. (1985). Magnetoreception by man and other primates. In Magnetite biomineralization and magnetoreception in organisms (Topics in geobiology) (pp. 537–561). Boston: Springer.

    Chapter  Google Scholar 

  • Rosazza, C., & Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 32(5), 773–785.

    Article  Google Scholar 

  • Schaap, K., Christopher-de Vries, Y., Mason, C. K., de Vocht, F., Portengen, L., & Kromhout, H. (2014). Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5-7 tesla MRI scanners is associated with reporting of transient symptoms. Occupational and Environmental Medicine, 71(6), 423–429.

    Article  Google Scholar 

  • Schenck, J. F., Dumoulin, C. L., Redington, R. W., Kressel, H. Y., Elliott, R. T., & McDougall, I. L. (1992). Human exposure to 4.0-tesla magnetic fields in a whole-body scanner. Medical Physics, 19(4), 1089–1098.

    Article  CAS  Google Scholar 

  • Thormann, M., Amthauer, H., Adolf, D., Wollrab, A., Ricke, J., & Speck, O. (2013). Efficacy of diphenhydramine in the prevention of vertigo and nausea at 7T MRI. European Journal of Radiology, 82(5). Elsevier), 768–772.

    Article  Google Scholar 

  • Ward, B., & Zee, D. (2016). Dizziness and vertigo during MRI. The New England Journal of Medicine, 375(21), e44.

    Article  Google Scholar 

  • Ward, B. K., Roberts, D. C., Santina, C. C. D., Carey, J. P., & Zee, D. S. (2014). Magnetic vestibular stimulation in subjects with unilateral labyrinthine disorders. Frontiers in Neurology, 5(March), 28.

    PubMed  PubMed Central  Google Scholar 

  • Ward, B. K., Zee, D. S., Solomon, D., Gallia, G. L., & Reh, D. D. (2015). CSF leak: A complication from vomiting after magnetic vestibular stimulation. Neurology, 85(6), 551–552.

    Article  Google Scholar 

  • Wu, L.-Q., & Dickman, J. D. (2011). Magnetoreception in an avian brain in part mediated by inner ear Lagena. Current Biology: CB, 21(5), 418–423.

    Article  CAS  Google Scholar 

  • Wu, L.-Q., & Dickman, J. D. (2012). Neural correlates of a magnetic sense. Science, 336(6084), 1054–1057.

    Article  CAS  Google Scholar 

  • Zee, D. S., Jareonsettasin, P., & Leigh, R. J. (2017). Ocular stability and set-point adaptation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1718). https://doi.org/10.1098/rstb.2016.0199.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan K. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ward, B.K. (2019). Magnetic Vestibular Stimulation. In: Shaikh, A., Ghasia, F. (eds) Advances in Translational Neuroscience of Eye Movement Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-31407-1_5

Download citation

Publish with us

Policies and ethics