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Abstract. Automatic organ segmentation is a vital prerequisite of many
clinical application in radiology. The anatomical variability of organs in
the abdomen makes it difficult for many methods to obtain good segmen-
tations for all organs. In this paper, we present a particular ensemble of
convolutional neural networks, combining technologies that analyze the
images with either a local or a global perspective. In particular, we imple-
mented a cascade of models combining the advantages of using local and
global processing. We have evaluated our proposed system on CT scan of
30 subjects in a nested cross-validation framework, showing a significant
performance improvement if compared with state-of-the-art methods.
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1 Introduction

Accurate segmentation of abdominal organs is an important preliminary task in
many clinical applications, such as computer aided diagnosis systems, computer
assisted surgery systems, radiotherapy systems, etc. Manual segmentation is still
a standard practice in radiology that is performed slice-by-slice and organ-by-
organ. This makes manual segmentation time consuming and a possible source of
errors due to both the variability of human expertise and the inherent subjectiv-
ity of the expert. For this reason, there exist many semi-automated segmentation
tools, which however still require an interaction with an expert that can intro-
duce biases or unacceptable variability.

To overcome this problem various automated techniques were introduced.
Most of the approaches were based either on statistical shape models or on
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atlases. Statistical shape models work with an estimation of the distribution
of target shapes and have proven to be a successful approach [2,11]. Atlas-
based approaches try to segment the images based on registered atlases [4,8,10].
Recently, deep convolutional neural networks (CNNs) have proven to be very
effective in many tasks including segmentation, outperforming many state-of-
the-art traditional approaches.

In general, all deep learning methods work with two different approaches,
either they process the full image (in 3D or slice by slice) [1] or they work with a
patch based approach where multiple small patches (in 2D or 3D) are processed
separately and results are concatenated to reconstruct the segmentation at the
original size [10]. Both approaches enjoy pros and cons. The first approach,
thanks to its global processing, is good in locating the organs in the whole space
while being less precise on the edges of the segmented areas and on small objects.
The second approach instead works on local information, having no perception of
the overall objects location while being more able in the segmentation of smaller
structures and edges.

Our aim is therefore to create a pipeline of different models combining the
two above approaches in order to enjoy the advantages of both frameworks.
We propose, therefore, an approach based on the combination of three different
CNNs resulting in an improved segmentation where each single approach fails.

Organs segmentation is a difficult task because of the complex anatomical
variability of all organs. Due to this variability, machine learning approaches
would require datasets with a large number of examples, which is an uncom-
mon condition in medical imaging. For this reason, the most recent CNN based
approaches to medical imaging segmentation are limited to single specific organs
(usually liver). The proposed method, instead, has been tested on a task requir-
ing the segmentation of 13 different organs, controlling the overfitting through
a nested cross-validation

The paper is organized as follows. The proposed system is first explained
in Sect. 2, together with a description of the used dataset and the experimental
setup. In Sect. 3 results of the experiments will be given and discussed comparing
the proposed model with state-of-the-art solutions. Finally, some conclusion will
be drawn in Sect. 4.

2 Data and Methods

2.1 Abdomen Organ Segmentation Dataset

We used a publicly available dataset1 [5] which consist of 30 healthy sub-
jects. The data was hand-labeled with 13 classes corresponding to 13 different
abdomen organs with various sizes (Spleen, R. Kidney, L. Kidney, Gallbladder,
Esophagus, Liver, Stomach, Aorta, Inferior Vena Cava, Portal Vein and Splenic
Vein, Pancreas, R Adrenal Gland, L Adrenal Gland). The data is available in
Nifty volumes. We unified the axial spacing to 3 mm. For this purpose, inter-
polation algorithm was used to interpolate the CT and gold standards to unify

1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.
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the axial spacing. Gray value was truncated between −350 and 350 because of
the complex boundaries of different organs and size was re-sampled to 256×256
while maintaining the voxel spacing of 3 mm. Extra parts of the image with no
organ labels present were cropped for image pre-processing. The average number
of slices per subject was 140.

2.2 Proposed System

The proposed system consists of three models incorporated in a simple frame-
work. We connected the three models in such a way that first 2 models, exploiting
respectively the global and the local information, produce segmentations that
are used together with the input image by a third model. In an ensemble learn-
ing perspective, instead of using traditional approaches to combine the outcome
of multiple models (e.g. majority vote), we learn how to combine the outcome
using a further deep model, which exploits the predictions of the two previous
models together with the input data to generate a refined segmentation. This
model learns how to use the two previous segmentations according to how much
trustable they are on each sub-structure of the whole image. For this reason,
since the reliability of segmentations is based on the location of all substruc-
tures, the third model must be selected among those processing the full image
exploiting the global information. The flow diagram of the proposed architecture
can be seen in Fig. 1. In the pipeline the three models are referred as P1, P2 and
P3 respectively.

In other words, the first two models, exploiting respectively the global and
the local information, are used to generate the auxiliary information which is
then used by a third model to generate the final prediction. The models used
to generate the auxiliary information, are respectively the Fully Convolutional
Network (FCN) [9] and the 3D-UNet patch-based model [7]. The segmenta-
tion’s from these two models are concatenated together with the original input
forming a three-channels image, which is then used as input to a third model
FC-DenseNet103 [3] to generate the final segmentation.

FCN Model (P1). We used DLTK implementation [7] with residual block con-
sisting of ReLU activation function followed by 3D convolution layer to extract
the features. To handle the stride convolution, we added pooling to the input
before the addition in the residual unit. For all convolution layers, Kernel size is
3 × 3 with stride 1 and padding size 1. In the decoder stage, fully convolutional
layers were used to target the output probabilities. Features maps learned at
each layer were up sampled to the original size and then fed to the up-score unit
where the features from encoder are learned to produce the sparse feature map.
The kernel size used for up score unit was 13 and finally a soft-max layer was
used to produce the segmentation.
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Fig. 1. The entire processing pipeline composed by three CNNs. Input: 256× 256 gray
scale image; Segmentation 1: prediction from FCN model; Segmentation 2: prediction
from 3D U-Net Patch Base Model; RGB 3 Channel Image: combination of Segmentation
1, Segmentation 2 and input forming an RGB image; Final Segmentation : prediction
from FC-DenseNet103 with the three RGB channels in input.

3D-UNet Patch-Based Model (P2). We used the 3D U-Net patch-based
version publicly available2. Patch size of 64 is used. Max-pooling operations
were performed to reduce the spatial size and high level features were extracted
while the bottom block was providing information to the output of the encoder.
In the decoder stage two deconvolutional blocks were used to resume the spatial
size for the segmented output. In the last stage, convolution and soft-max layers
were used to reduce the number of feature maps and to get the probability maps
for target objects.

FC-DenseNet103 Model (P3). The input to the last model in the pipeline
was a three-channel image composed by P1 and P2 predictions and the original
input image. We used the FC-DenseNet103 provided in [3], feature maps are
extracted in dense block of transition down layer and use pre-activation layer,
where ReLU, convolution, max pooling and Batch normalization were performed
on the input slice of 256×256. Up-sampling was performed in transition up layer
where input was up sampled and concatenated with the skip connections and
finally segmentation was calculated using soft-max layer.

2.3 Experimental Setup

FCN model was trained for 20000 iterations with batch size of 8 with tensor-flow.
Training was done using Adam optimizer with learning rate of 0.0001. Similarly,
3D-UNet model was trained for 800000 iterations with patch size of 64. Again,
Adam Optimizer was used with a learning rate of 0.00001. The last prediction
model (FC-DenseNet103) using auxiliary data was trained for 20 epochs with
batch size of 8 and tensor-flow as backend. RMSPropOptimizer was used with a
learning rate of 0.0001. The proposed system was implemented on NVidia GTX
1080. FCN and FC-DenseNet103 took on average five hours for training while
3d-Unet took on average fifteen hours for training.
2 https://github.com/zEttOn86/3D-Unet.

https://github.com/zEttOn86/3D-Unet
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For the sake of comparisons we also trained and tested FC-DenseNet103
only using the input images to evaluate the performance improvement due to
the auxiliary information. All the mentioned models were evaluated performing
a training from scratch, using nested cross-validation with 24 subjects used for
training, 2 subjects used for validation and 4 subjects used for testing. For evalu-
ation purpose, we used Dice score to measure the intersection between resulting
segmentation and ground truth:

DSC =
2|X ∩ Y |
|X| + |Y | (1)

3 Results and Discussion

The average results (dice scores) for all models are shown in Table 1. The results
were determined for all models only using the input image (P1, P2, and P3)
and for FC-DenseNet103 also using the auxiliary information (P4). Moreover,
the table shows the dice score of four other state-of-the-art methods (IMI, CLS,
CNN-sw, FCN), which were top-ranked in the MICCAI challenge providing the
dataset [6].

Table 1. Result of varius CNNs. Dice score obtained with Eq. (1) is shown for all
models used in our pipeline (P1 is the FCN, P2 is the 3D Unet patch-based, and P3
is the FC-DenseNet103 when considered alone or P4 when considered in the pipeline
proposed by the paper. Results of state-of-the-art models (IMI, CLS, CNN-sw and
FCN) [6] determined on the same dataset are provided for comparison.

Class P1 P2 P3 P4 IMI CLS CNN-sw FCN

Spleen 0.856 0.817 0.913 0.953 0.919 0.911 0.930 0.936

R. Kidney 0.907 0.902 0.854 0.934 0.901 0.893 0.866 0.897

L. Kidney 0.890 0.897 0.813 0.941 0.914 0.901 0.911 0.911

Gallbladder 0.543 0.574 0.319 0.719 0.604 0.375 0.624 0.613

Esophagus 0.594 0.578 0.624 0.784 0.692 0.607 0.662 0.588

Liver 0.920 0.927 0.942 0.968 0.948 0.940 0.946 0.949

Stomach 0.757 0.779 0.739 0.942 0.805 0.704 0.775 0.764

Aorta 0.840 0.796 0.812 0.884 0.857 0.811 0.860 0.870

Inferior Vena Cava 0.782 0.757 0.661 0.870 0.828 0.760 0.776 0.758

Portal & Splenic Veins 0.674 0.624 0.498 0.752 0.754 0.649 0.567 0.715

Pancreas 0.606 0.613 0.431 0.832 0.740 0.643 0.602 0.646

R. Adrenal Gland 0.542 0.513 0.353 0.752 0.615 0.557 0.631 0.630

L. Adrenal Gland 0.471 0.462 0.146 0.702 0.623 0.582 0.583 0.631

From Table 1, it can be seen that the proposed cascade of CNNs (column
P4) performs much better than any other solution, including the state-of-the-art
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methods top-ranked in the challenge. It clearly indicates the positive effect of
auxiliary information provided as further input channels. The effect is reflected
by the difference between column P3 and P4 where the same model was used
respectively without and with auxiliary information. The results showed signif-
icant improvements for some organs, especially small ones like adrenal glands,
pancreas, veins, esophagus. This is due to the particular combination of mod-
els. Indeed, FCN (P1) and Unet (P2) work at different granularity. The first
model works mostly on the global information of the whole image, hence, it
better locates the specific organs, while the second model works with local infor-
mation, being more able to segment on smaller structures and edges. The FC-
DenseNet103 model while being a weaker model, thanks to the auxiliary infor-
mation, it can learn how to use the segmentations provided by the two previous
models, refining its own segmentation based on the input images. From an alter-
native perspective, the FC-DenseNet103 model learns how to cleverly combine
the results coming from the ensemble of two other models. In another way, it
can be considered an advanced voting approach integrated by the original input
as auxiliary information.

Fig. 2. Comparison of different models average dice used in proposed technique for all
class labels.

The bar chart in Fig. 2 is a graphical representation of the results in Table 1
showing the dice score for all elements in the proposed cascade. It can be seen
that the entire pipeline (P4), i.e., FC-DenseNet103 with auxiliary information is
dominating all classes while the same model (P3) without auxiliary information
has sometimes very poor performance. Thus, providing the auxiliary information
to the model proved to be beneficial. In order to have a clearer understanding
of the processing, the sample results depicted in Fig. 3 show that predictions
of P1 and P2 are sometimes affected by small mistakes worsening the perfor-
mance. However, the third model provided with auxiliary information is able to
identify and correct the mistakes producing more accurate predictions. Inter-
estingly, a collateral result is that the processing time of the third model with
auxiliary information is reduced as the model is able to learn easily and quickly
as compared to when it is not provided with auxiliary information.
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Fig. 3. Examples of Resulting Predictions for three different subjects with Ground
Truth

4 Conclusion

In this paper, we proposed an architecture built upon the combination of three
different models solving quite efficiently a segmentation task. The three models
are connected in such a way that first two models help the third one to produce
better segmentation. This is obtained providing the preliminary segmentation
from the first two models as auxiliary information to the third one. The relevant
component here is the difference in the approaches used by the first two models.
The first one segments the organs processing the whole window in one step. This
makes the model aware of the location of different organs, losing the precision on
small structures and edges. The second method on the contrary is patch-based,
hence, it works on local information, making it better when processing small
structures and edges.

Giving the outcome of these two models as auxiliary information to a third
model helps the system to preserve the positive aspects of all segmentations
while ignoring the negative traits. This can be observed from the results in
Sect. 3 where it is evident that adding the auxiliary information results in a
significant improvement of the segmentation accuracy.
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