Skip to main content

Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution

  • Chapter
  • First Online:
Evolution, Origin of Life, Concepts and Methods

Abstract

In eukaryotes, the haploid DNA content (C-value) varies widely across lineages without an apparent correlation with the complexity of organisms. This incongruity has been called the C-value paradox and has been solved by demonstrating that not all DNA is constituted by genes but, on the contrary, most of it is made up of repetitive DNA. In vertebrates, the increasing number of sequenced genomes has shown that differences in genome size between lineages are ascribable to a variation in transposon content. These mobile elements, previously perceived as “junk DNA” or “selfish DNA,” are now recognized as the major players in shaping genomes. During vertebrate evolution, transposable elements have been repeatedly co-opted and exapted to generate regulatory sequences, coding exons, or entirely new genes that lead to evolutionary advantages for the host. Moreover, transposable elements are also responsible for substantial rearrangements such as insertions, deletions, inversions, and duplications potentially associated with, or following, speciation events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

7SL RNA:

eukaryotic small cytoplasmic RNA

Alu :

Arthrobacter luteus restriction endonuclease

CR1:

Chicken Repeat 1

en:

endonuclease

env:

envelope

ISL-1:

Insulin gene enhancer protein ISL-1

L1:

LINE1

L2:

LINE2

L3:

LINE3

LINE:

Long Interspersed Nuclear Elements

LTR:

Long Terminal Repeat

MITEs:

Miniature Inverted-repeated Transposable Elements

pg/N:

picograms/Nucleus

POMC:

ProopioMelanoCortin gene

RAG1 :

Recombination-ActivatinG Protein 1

RAG2 :

Recombination-ActivatinG Protein 2

RT:

Reverse Transcriptase

SatDNA:

Satellite DNA

SINE:

Short Interspersed Nuclear Elements

SINE-R:

Short Interspersed Nuclear Elements-R, where R indicates a sequence of Retroviral origin

SNPs:

Single Nucleotide Polymorphisms

SETMAR:

SET domain and Mariner transposase fusion gene

SVA:

SINE-VNTR-Alu

TEs:

Transposable Elements

TIR:

Terminal Inverted Repeat

UTRs:

UnTranslated Regions

VDJ:

Variable Diversity Joining

VNTR:

Variable Number of Tandem Repeats

References

  • Adams RH, Blackmon H, Reyes-Velasco J et al (2016) Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59:295–310

    Article  CAS  PubMed  Google Scholar 

  • Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (eds) Evolutionary genetics of fishes. Monographs in evolutionary biology. Springer, Boston, MA

    Google Scholar 

  • Amemiya CT, Alfoldi J, Lee AP et al (2013) The African coelacanth genome provides insight into tetrapod evolution. Nature 496:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio S, Chapman J, Stupka E et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N et al (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc R Soc Lond B Biol Sci 178:259–275

    Article  Google Scholar 

  • Biemont (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biscotti MA, Olmo E, Heslop-Harrison JS (2015a) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015b) Transcription of tandemly repetitive DNA: functional roles. Chromosome Res 23:463–477

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Gerdol M, Canapa A et al (2016) The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci Rep 6:21571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biscotti MA, Canapa A, Forconi M et al (2017) The small noncoding RNA processing machinery of two living fossil species, lungfish and coelacanth, gives new insights into the evolution of the argonaute protein family. Genome Biol Evol 9:438–453

    Article  CAS  PubMed Central  Google Scholar 

  • Biscotti MA, Barucca M, Canapa A (2018) New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS ONE 13(3):e0194502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaxter M (2010) Genetics. Revealing the dark matter of the genome. Science 330:1758–1759

    Article  CAS  PubMed  Google Scholar 

  • Bonnivard E, Catrice O, Ravaux J et al (2009) Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome 52:524–536

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Method Enzymol 29:363–405

    Article  CAS  Google Scholar 

  • Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43:756–765

    Article  PubMed  Google Scholar 

  • Canapa A, Barucca M, Biscotti MA et al (2015) Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res 147:217–239

    Article  PubMed  Google Scholar 

  • Carducci F, Barucca M, Canapa A et al (2018) Rex retroelements and teleost genomes: an overview. Int J Mol Sci 19:11

    Article  CAS  Google Scholar 

  • Casola C, Hucks D, Freschotte C et al (2008) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA, de Konig AP, Hall KT et al (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA 110:20645–20650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castoe TA, Hall KT, Guibotsy Mboulas ML et al (2011) Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 3:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 43:247–278

    Google Scholar 

  • Chalopin D, Naville M, Plard F et al (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalopin D, Volff JN (2017) Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. J Exp Zool B Mol Dev Evol 328:629–637

    Article  CAS  PubMed  Google Scholar 

  • Chaves R, Ferreira D, Mendes-da-Silva et al (2017) FA-SAT is an old satellite DNA frozen in several bilateria genomes. Genome Biol Evol 9:3073–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuong EB, Rumi MAK, Soares MJ et al (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordaux R, Udit S, Batzer MA et al (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer JG, Yazawa R, Davidson WS et al (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genom 8:422

    Article  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Dufresne F, Jeffery N (2011) A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res 19:925–938

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    Google Scholar 

  • Forconi M, Chalopin D, Barucca M et al (2014) Transcriptional activity of transposable elements in coelacanth. J Exp Zool B Mol Dev Evol 322:379–389

    Article  CAS  PubMed  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes (Basel) 8(9)

    Article  PubMed Central  CAS  Google Scholar 

  • Girgis HZ (2015) Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinf 16:227

    Article  Google Scholar 

  • Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704

    Article  CAS  PubMed  Google Scholar 

  • Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory TR (2019) Animal genome size database. http://www.genomesize.com

  • Guizard S, Piégu B, Arensburger P et al (2016) Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genom 17(1):659

    Article  CAS  Google Scholar 

  • Henke C, Strissel PL, Schubert MT et al (2015) Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis. Retrovirology 12:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Horie K, Saito ES, Keng VW et al (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Hughes MK (1995) Small genomes for better fliers. Nature 377:391

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9:411–412

    Article  PubMed  Google Scholar 

  • Kapranov P, Laurent GS (2012) Genomic ‘dark matter’: implications for understanding human disease mechanisms, diagnostics, and cures. Front Genet 3:95

    PubMed  PubMed Central  Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramerov DA, Vassetzky NS (2011) Origin and evolution of SINEs in eukaryotic genomes. Heredity 107:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533

    Article  CAS  PubMed  Google Scholar 

  • Levitsky VG, Babenko VN, Vershinin AV (2013) The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning. J Biomol Struct Dyn 32:115–126

    Article  PubMed  CAS  Google Scholar 

  • López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn 7:1–28

    Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Matzke AJ (1998) Polyploidy and transposons. Trends Ecol Evol 13:241

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe CJ, Filée J, Germon I et al (2012) Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR60 and L2 LINE elements. Mol Biol Evol 29:3529–3539

    Article  CAS  PubMed  Google Scholar 

  • Mravinac B, Plohl M, Ugarković D (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550

    Article  CAS  PubMed  Google Scholar 

  • Naville M, Warren IA, Haftek-Terreau Z et al (2016) Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 22:312–323

    Article  CAS  PubMed  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  CAS  PubMed  Google Scholar 

  • Nowoshilow S, Schloissnig S, Fei JF et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1972) So much ‘junk’ DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York

    Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    CAS  PubMed  Google Scholar 

  • Organ CL, Shedlock AM, Meade A et al (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–184

    Article  CAS  PubMed  Google Scholar 

  • Organ CL, Canoville A, Reisz RR et al (2011) Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 24:372–380

    Article  CAS  PubMed  Google Scholar 

  • Pagán HJ, Macas J, Novák P et al (2012) Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 4:575–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasquesi GIM, Adams RH, Card DC et al (2018) Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 9:2774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies?-An avian perspective. Mol Ecol Resour 18(6):1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Petraccioli A, Odierna G, Capriglione T et al (2015) A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs. Mol Genet Genomics 290:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544

    Article  PubMed  Google Scholar 

  • Piacentini L, Fanti L, Specchia V et al (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123:345–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray DA, Pagan HJ, Thompson ML et al (2007) Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol 24:632–639

    Article  CAS  PubMed  Google Scholar 

  • Ribet D, Harper F, Esnault C et al (2008) The GLN family of murine endogenous retroviruses contains an element competent for infectious viral particle formation. J Virol 82:4413–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebollo R, Horard B, Hubert B et al (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7

    Article  CAS  PubMed  Google Scholar 

  • Santangelo AM, de Souza FSJ, Franchini LF et al (2007) Ancient exaptation of a CORE–SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Schatz DG, Swanson PC (2011) V(D)J recombination: mechanisms of initiation. Annu Rev Genet 45:167–202

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Sela N, Mersch B, Hotz-Wagenblatt A et al (2010) Characteristics of transposable element exonization within human and mouse. PLoS ONE 5:e10907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaffer HB, Minx P, Warren DE et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14:R28

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Kuraku S, Holt C et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Timoshevskaya N, Ye C et al (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50(2):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24:2241–2252

    Article  CAS  PubMed  Google Scholar 

  • Su W, Gu X, Peterson T (2019) TIR-learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol Plant 12:447–460

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lopez Arriaza JR, Mueller RL (2012) Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 4:1340–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun YB, Xiong ZJ, Xiang XY et al (2015) Whole–genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genome. Proc Natl Acad Sci USA 112:1257–1262

    Article  CAS  Google Scholar 

  • Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tempel S (2012) Using and understanding RepeatMasker. Methods Mol Biol 859:29–51

    Article  CAS  PubMed  Google Scholar 

  • Thomas CA Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  CAS  PubMed  Google Scholar 

  • Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365:104–110

    Article  CAS  PubMed  Google Scholar 

  • Van den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm Genome 6:521–525

    Article  CAS  PubMed  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL et al (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  CAS  Google Scholar 

  • Vendrely R, Vendrely C (1948) La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: techniques et premiers résultats. Experientia 4:434–436

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Lee AP, Ravi V et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernochet C, Redelsperger F, Harper F et al (2014) The captured retroviral envelope syncytin-A and syncytin-B genes are conserved in the Spalacidae together with hemotrichorial placentation. Biol Reprod 91:148

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (1995) Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49:1249–1259

    Article  PubMed  Google Scholar 

  • Vinogradov AE (1997) Nucleotypic effect in homeotherms: body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51:220–225

    Article  PubMed  Google Scholar 

  • Vinogradov AE (1998) Buffering: a possible passive-homeostasis role for redundant DNA. J Theor Biol 193:197–199

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant red list. Trends Genet 19:609–614

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2004) Testing genome complexity. Science 304:389–390

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Körting C, Froschauer A et al (2001) Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52:351–360

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Bouneau L, Ozouf-Costaz C et al (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674–678

    Article  CAS  PubMed  Google Scholar 

  • Voss SR, Putta S, Walker JA et al (2013) Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hox structure for non-mammalian tetrapod vertebrates? Hum Genomics 7:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle specific body plan. Nat Genet 45:701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren IA, Naville M, Chalopin D et al (2015) Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 23:505–531

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Robertson JS, Schulze SR et al (2005) The repetitive landscape of the chicken genome. Genome Res 15:126–136

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Biscotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biscotti, M.A., Carducci, F., Olmo, E., Canapa, A. (2019). Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution. In: Pontarotti, P. (eds) Evolution, Origin of Life, Concepts and Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-30363-1_12

Download citation

Publish with us

Policies and ethics