Skip to main content

The Gut and Type 2 Diabetes Mellitus

  • Chapter
  • First Online:
Gastric Bypass

Abstract

Diabetes is a chronic progressive disease that leads to end-organ damage with significant morbidity and mortality, which the goal of current therapy is to delay it. It has long been recognized that certain gastrointestinal operations have a profound ameliorative effect on type 2 diabetes mellitus (T2DM) with many patients achieving complete and durable remission. The rapid time course and disproportional degree of T2DM improvement after Roux-en-Y gastric bypass (RNYGB) compared with equivalent weight loss from other interventions suggest a weight-independent effect on glucose homeostasis. The gastrointestinal tract has a crucial role in regulating energy balance and glucose homeostasis through the actions of specialized intestinal mucosal enteroendocrine cells that exert actions on peripheral target organs including the liver and endocrine pancreas. Understanding interactions between the gastrointestinal tract, brain, and end organs involved and glucose homeostasis will hopefully lead to not only better metabolic operations but also to pharmacological solutions for complete and durable resolution of severe obesity and its attendant comorbidities including T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koopman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.

    Article  Google Scholar 

  2. Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes Metab. 2003;29(4 Pt 2):6S9–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.

    Article  CAS  PubMed  Google Scholar 

  4. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    CAS  PubMed  Google Scholar 

  5. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;355:1577–85.

    Article  CAS  Google Scholar 

  6. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikramuddin S, Komer J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309:2240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Courcoulas AP, Goodpaster BH, Eagleton JK, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149:707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Halperin F, Ding SA, Simonson DC, et al. Roux-en-Y gastric bypass or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149:716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Quyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101:50–6.

    Article  PubMed  Google Scholar 

  11. Wentworth JM, Playfair J, Laurie C, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomized controlled trial. Lancet Diabetes Endocrinol. 2014;2:545–52.

    Article  PubMed  Google Scholar 

  12. Parikh M, Chung M, Sheth S, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260:617–22.

    Article  PubMed  Google Scholar 

  13. Schauer PR, Bhatt DL, Kirwan JP, et al. STAMPEDE investigators. Bariatric surgery versus intensive medical therapy for diabetes 3-year outcomes. N Engl J Med. 2014;370:2002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric –metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomized controlled trial. Lancet. 2015;386:964–73.

    Article  PubMed  Google Scholar 

  15. Ikramuddin S, Billington CJ, Lee WJ, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study); 2-year outcomes of a 5-year, randomized, controlled trial. Lancet Diabetes Endocrinol. 2015;3:413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding SA, Simonson DC, Wewalka M, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100:2545–56.

    Article  CAS  Google Scholar 

  17. Cummings DE, Arterburn DE, Westbrook EO, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomized controlled trial. Diabetologia. 2016;59:945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Courcoulas AP, Belle SH, Neiberg RH, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150:931–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomized controlled trials. BMJ. 2013;347:f5934.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Friedman NM, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100:201–4.

    CAS  PubMed  Google Scholar 

  21. Bittner R, Bittner B, Beger HG. Homeostasis of glucose and gastric resection. The influence of the food passage through the duodenum. Z Gastroenterol. 1981;19:698–707.

    CAS  PubMed  Google Scholar 

  22. Forgacs S, Halmos T. Improvement of glucose tolerance in diabetics following gastrectomy. Z Gastroenterol. 1973;11:293–6.

    CAS  PubMed  Google Scholar 

  23. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  CAS  PubMed  Google Scholar 

  24. Pories WJ, Swanson MS, MacDonald DG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–84.

    PubMed  PubMed Central  Google Scholar 

  26. Sjostrom L, Lindroos AK, Peltonen M, Swedish Obese Subjects Study Scientific Group, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  27. Carlisson LM, Peltonen M, Ahlin S, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367:695–704.

    Article  CAS  Google Scholar 

  28. Sjoholm K, Pajunen P, Jaconson P, et al. Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish obese subjects (SOS) study. Diabetologia. 2015;58:1448–53.

    Article  PubMed  Google Scholar 

  29. Rubino F, Marescaux J. Effect of duodenal- jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thaler JP, Cummings DE. Mini review: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    Article  CAS  PubMed  Google Scholar 

  31. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and body- weight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–64.

    Article  CAS  PubMed  Google Scholar 

  32. Salehi M, Woods SC, D’Alessio DA. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity (Silver Spring). 2015;23:2046–52.

    Article  CAS  Google Scholar 

  33. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55:1890–901.

    Article  CAS  PubMed  Google Scholar 

  35. Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18:950–5.

    Article  CAS  PubMed  Google Scholar 

  36. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of ver- tical sleeve gastrectomy. Nature. 2014;509:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Saeidi N, Meoli L, Nestoridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341:406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311:2297–304.

    Article  PubMed  CAS  Google Scholar 

  40. Rubino S, Nathan DM, Eckel RH, Schauer PR, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39:861–77.

    Article  CAS  PubMed  Google Scholar 

  41. Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Adams TD, Davidson LE, Litwin SE, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308:1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Long- term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258:628–36.

    Article  PubMed  Google Scholar 

  45. Hsu CC, Almulaifi A, Chen JC, et al. Effect of bariatric surgery vs medical treatment on type 2 diabetes in patients with body mass index lower than 35: five-year outcomes. JAMA Surg. 2015;150:1117–24.

    Article  PubMed  Google Scholar 

  46. Sjostrom L, Gummesson A, Sjöström CD, Swedish Obese Subjects Study, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62.

    Article  PubMed  Google Scholar 

  47. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  48. Sjostrom L, Narbro K, Sjostrom CD, Swedish Obese Subjects Study, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  49. Adams TD, Gress RE, Smith SC, et al. Long- term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    Article  CAS  PubMed  Google Scholar 

  50. Arterburn DE, Olsen MK, Smith VA, et al. Association between bariatric surgery and long- term survival. JAMA. 2015;313:62–70.

    Article  CAS  PubMed  Google Scholar 

  51. Flum DR, Belle SH, King WC, Longitudinal Assessment of Bariatric Surgery (LABS) Consortium, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.

    Article  PubMed  Google Scholar 

  52. Birkmeyer NJ, Dimick JB, Share D, Michigan Bariatric Surgery Collaborative, et al. Hospital complication rates with bariatric surgery in Michigan. JAMA. 2010;304:435–42.

    Article  CAS  PubMed  Google Scholar 

  53. Altieri MS, Yang J, Telem DA, et al. Lap band outcomes from 19,221 patients across centers and over a decade within the state of New York. Surg Endosc. 2016;30:1725–32. https://doi.org/10.1007/s00464-015-4402-8.

    Article  PubMed  Google Scholar 

  54. Hutter MM, Schirmer BD, Jones DB, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410–20; discussion 420–422.

    Article  PubMed  Google Scholar 

  55. Nguyen NT, Slone JA, Nguyen XM, Hartman JS, Hoyt DB. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg. 2009;250:631–41.

    PubMed  Google Scholar 

  56. Isbell JM, Tamboli RA, Hansen EN, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33:1438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laferrere B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim EL, Hollingsworth KG, Aribasale B, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes is associated with decrease in pancreas and liver fat levels. Diabetologia. 2011;54:2506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33:533–40.

    Article  CAS  Google Scholar 

  60. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cummings DE, Overduin J, Shannon MH, et al. Hormonal mechanisms of weight loss and diabetes resolution after bariatric surgery. Surg Obes Relat Dis. 2005;1:358–68.

    Article  PubMed  Google Scholar 

  63. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth hormone– releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  64. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  CAS  PubMed  Google Scholar 

  65. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.

    Article  CAS  PubMed  Google Scholar 

  66. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ahren B, Holst JJ, Efendic S. Anti-diabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab. 2000;85:1043–8.

    CAS  PubMed  Google Scholar 

  69. Cummings DE, Shannon MH. Roles for ghrelin in the regulation of appetite and body weight. Arch Surg. 2003;138:389–96.

    Article  CAS  PubMed  Google Scholar 

  70. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    Article  CAS  PubMed  Google Scholar 

  71. Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time-and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.

    Article  CAS  PubMed  Google Scholar 

  72. Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6:153–69.

    Article  CAS  PubMed  Google Scholar 

  73. Dezaki K, et al. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes. 2004;53:3142–51.

    Article  CAS  PubMed  Google Scholar 

  74. Sun Y, Asnicar M, Saha PK, Chan L, Smith RG. Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 2006;3:379–86.

    Article  CAS  PubMed  Google Scholar 

  75. Theander-Carrillo C, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116:1983–93. https://doi.org/10.1172/JCI25811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab. 2001;86:5083–6.

    Article  CAS  PubMed  Google Scholar 

  77. Cummings DE, Weigle DS, Frayo RS, et al. Human plasma ghrelin levels after diet-induced weight loss and gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    Article  PubMed  Google Scholar 

  78. Kuntz E, Pinget M, Damge P. Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP. 2004;5:464–75.

    PubMed  Google Scholar 

  79. Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet beta-cells from pancreatic duct cells and an increase in functional beta-cell mass. J Clin Endocrinol Metab. 2005;90:3401–9.

    Article  CAS  PubMed  Google Scholar 

  80. Boushey RP, et al. Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene. Gastroenterology. 2003;125:1164–74.

    Article  CAS  PubMed  Google Scholar 

  81. Grong E, Graeslei H, Munkvold B, et al. Gastrin secretion after bariatric surgery-response to a protein-rich mixed meal following Roux-en-Y gastric bypass and sleeve gastrectomy: a pilot study in normoglycemic women. Obes Surg. 2016;26:1448–56.

    Article  PubMed  Google Scholar 

  82. Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab. 2000;85:3575–81.

    CAS  PubMed  Google Scholar 

  83. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide- 1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:829–35.

    Article  CAS  PubMed  Google Scholar 

  84. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117(1):24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161–71.

    Article  CAS  PubMed  Google Scholar 

  86. Kim SJ, et al. GIP stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1 and downregulation of bax expression. J Biol Chem. 2005;280:22297–307.

    Article  CAS  PubMed  Google Scholar 

  87. Gault VA, et al. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes. 2005;54:2436–46.

    Article  CAS  PubMed  Google Scholar 

  88. Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology. 2005;146:1745–51.

    Article  CAS  PubMed  Google Scholar 

  89. Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2. Surg Obes Relat Dis. 2007;3:195–7.

    Article  PubMed  Google Scholar 

  90. Ramos AC, Neto MPG, de Souza YM, et al. Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI <30 kg/m2. Obes Surg. 2009;19:307–12.

    Article  PubMed  Google Scholar 

  91. Tarnoff M, Sorli C, Rodriguez L, et al. Interim report of a prospective, randomized sham-controlled trial investigating a completely endoscopic duodenal-jejunal bypass sleeve for the treatment of type 2 diabetes. Diabetes. 2008;57:A32.

    Article  CAS  Google Scholar 

  92. Tarnoff M, Rodriguez L, Escalona A, et al. Open label, prospective, randomized controlled trial of an endoscopic duodenal-jejunal bypass sleeve versus low calorie diet for preoperative weight loss in bariatric surgery. Surg Endosc. 2009;23:650–6.

    Article  CAS  PubMed  Google Scholar 

  93. Sorli C, Rodriguez L, Reyes E, et al. Pilot clinical study of an endoscopic, removable duodenal- jejunal bypass liner for the treatment of type 2 diabetes. Diabetes Technol Ther. 2009;11(11):725–32.

    Article  PubMed  CAS  Google Scholar 

  94. Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TK. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008;452:1012–6.

    Article  CAS  PubMed  Google Scholar 

  95. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science. 2005;307:1909–14.

    Article  CAS  PubMed  Google Scholar 

  96. Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007;117:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–9.

    Article  CAS  PubMed  Google Scholar 

  98. Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007;129:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lam TK. Neuronal regulation of homeostasis by nutrient sensing. Nat Med. 2010;16:392–5.

    Article  CAS  PubMed  Google Scholar 

  100. Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259:R110–8.

    Article  CAS  PubMed  Google Scholar 

  101. Matzinger D, Degen L, Drewe J, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46:688–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009;10:99–109.

    Article  CAS  PubMed  Google Scholar 

  103. Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102:1654–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ogawa N, Yamaguchi H, Shimbara T, et al. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Neurosci Lett. 2008;433:38–42.

    Article  CAS  PubMed  Google Scholar 

  105. Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol. 2001;281:G907–15.

    Article  CAS  PubMed  Google Scholar 

  106. Randich A, Chandler PC, Mebane HC, et al. Jejunal administration of linoleic acid increases activity of neurons in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2004;286:R166–73.

    Article  CAS  PubMed  Google Scholar 

  107. Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, Pillot B, Fauveau V, Aubert R, Viollet B, Foretz M, Leclerc J, Duchampt A, Zitoun C, Thorens B, Magnan C, Mithieux G, Andreelli F. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8:201–11.

    Article  CAS  PubMed  Google Scholar 

  108. De Paula AL, Macedo AL, Prudente AS, et al. Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”)-pilot study of a new operation. Surg Obes Relat Dis. 2006;2:464–7.

    Article  PubMed  Google Scholar 

  109. Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288:E447–53.

    Article  CAS  PubMed  Google Scholar 

  110. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003;26:2929–40.

    Article  CAS  PubMed  Google Scholar 

  111. Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis. 2007;3(2):109–15.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Reimer RA, McBurney MI. Dietary fiber modulates intestinal proglucagon messenger ribo- nucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology. 1996;137:3948–56.

    Article  CAS  PubMed  Google Scholar 

  113. Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. JPEN J Parenter Enteral Nutr. 1996;20:357–62.

    Article  CAS  PubMed  Google Scholar 

  114. Tappenden KA, McBurney MI. Systemic short-chain fatty acids rapidly alter gastro- intestinal structure, function, and expression of early response genes. Dig Dis Sci. 1998;43:1526–36.

    Article  CAS  PubMed  Google Scholar 

  115. Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon- like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol. 2003;81:1005–12.

    Article  CAS  PubMed  Google Scholar 

  116. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon- like peptide I in humans. Diabetes. 1994;43:535–9.

    Article  CAS  PubMed  Google Scholar 

  117. Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–13.

    Article  CAS  PubMed  Google Scholar 

  118. Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9- 36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140:5356–63.

    Article  CAS  PubMed  Google Scholar 

  119. Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44:1126–31.

    Article  CAS  PubMed  Google Scholar 

  120. Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric- bypass surgery. N Engl J Med. 2005;353:249–54.

    Article  CAS  PubMed  Google Scholar 

  121. Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J, Hanto DW, Callery M, Arky R, Nose V, Bonner-Weir S, Goldfine AB. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia. 2005;48:2236–40.

    Article  CAS  PubMed  Google Scholar 

  122. Foster-Schubert KE. Hypoglycemia complicating bariatric surgery: incidence and mechanisms. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):129–33.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Collie NL, Zhu Z, Jordan S, Reeve JR. Oxyntomodulin stimulates intestinal glucose uptake in rats. Gastroenterology. 1997;112:1961–70.

    Article  CAS  PubMed  Google Scholar 

  124. Jarrousse C, Bataille D, Jeanrenaud B. A pure enteroglucagon, oxyntomodulin (glucagon 37), stimulates insulin release in perfused rat pancreas. Endocrinology. 1984;115:102–5.

    Article  CAS  PubMed  Google Scholar 

  125. Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729–36.

    Article  CAS  Google Scholar 

  126. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54:2390–5.

    Article  CAS  PubMed  Google Scholar 

  127. Cheeseman CI, Tsang R. The effect of gastric inhibitory polypeptide and glucagon like peptides on intestinal hexose transport. Am J Physiol Gastrointest Liver Physiol. 1996;271:G477–82.

    Article  CAS  Google Scholar 

  128. Jeppesen PB, Hartmann B, Thulesen J, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120:806–15.

    Article  CAS  PubMed  Google Scholar 

  129. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3:597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.

    Article  CAS  PubMed  Google Scholar 

  132. Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.

    Article  PubMed  CAS  Google Scholar 

  133. Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, Delgado S, Casamitjana R, Vidal J. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.

    Article  PubMed  CAS  Google Scholar 

  134. Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring). 2008;16:298–305.

    Article  CAS  Google Scholar 

  135. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.

    Article  CAS  PubMed  Google Scholar 

  136. Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf). 2008;69:173–9.

    Article  CAS  Google Scholar 

  137. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  CAS  PubMed  Google Scholar 

  138. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    Article  CAS  PubMed  Google Scholar 

  139. Koopmans HS, Sclafani A, Fichtner C, Aravich PF. The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr. 1982;35:284–93.

    Article  CAS  PubMed  Google Scholar 

  140. Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, Donini A. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.

    Article  PubMed  Google Scholar 

  141. Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, Gullà N, Donini A. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and -cell function in Gotokakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery. 2007;142:74–85.

    Article  PubMed  Google Scholar 

  142. DePaula AL, Macedo AL, Rassi N, et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc. 2008;22:706–16.

    Article  CAS  PubMed  Google Scholar 

  143. Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–7.

    Article  CAS  PubMed  Google Scholar 

  144. Ding L, Yang L, Wang Z, et al. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2015;5(2):135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  CAS  PubMed  Google Scholar 

  146. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  CAS  PubMed  Google Scholar 

  147. Wang H, Chen J, Holister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Boyce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyce, S. (2020). The Gut and Type 2 Diabetes Mellitus. In: Ettinger, J., et al. Gastric Bypass. Springer, Cham. https://doi.org/10.1007/978-3-030-28803-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28803-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28802-0

  • Online ISBN: 978-3-030-28803-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics