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Chapter 3
Problematics for Conceptualization 
of Multiplication

Masami Isoda and Raimundo Olfos

This chapter addresses the problematics for the conceptualization of multiplication in 
school mathematics and fundamental difficulties, which include semantics for defin-
ing multiplication meaningfully, syntax in relation to languages, and difficulties that 
originate from historical transitions. The chapter discusses the contradictions or incon-
sistencies in the various meanings of multiplication in school mathematics situations. 
Many of these problems of multiplication are originated from European languages. 
This discussion of these problematics provides some answers to the questions posed in 
Chap. 2 and provides bases for the necessity to consider the Japanese approach 
described in Chaps. 4, 5, 6, and 7 of this book. The terminology of multiplication dis-
cussed here is related to mathematical usages of multiplication in relation to situations 
and models. Educational terminology used for multiplication to explain the curricu-
lum and task sequences for designing lessons are discussed in Chap. 4 of this book.

3.1  Definitions of Multiplication and Their Meanings 
in Situations in School Mathematics

Mathematics curricula look well designed and consistent for learned adults; 
 however, they usually have a number of inconsistencies for learners. Given this 
essential nature of mathematics curricula, the learning sequence used for mathemat-
ics, such as the curriculum and task sequence, can be explained by reorganization of 

M. Isoda () 
CRICED, University of Tsukuba, Tsukuba, Ibaraki, Japan
e-mail: isoda@criced.tsukuba.ac.jp 

R. Olfos 
Mathematics Institute, Pontifical Catholic University of Valparaíso Science Faculty, 
Valparaíso, V - Valparaiso, Chile
e-mail: raimundo.olfos@pucv.cl

© The Author(s) 2021
M. Isoda, R. Olfos (eds.), Teaching Multiplication with Lesson Study, 
https://doi.org/10.1007/978-3-030-28561-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28561-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-28561-6_2
https://doi.org/10.1007/978-3-030-28561-6_4
https://doi.org/10.1007/978-3-030-28561-6_5
https://doi.org/10.1007/978-3-030-28561-6_6
https://doi.org/10.1007/978-3-030-28561-6_7
https://doi.org/10.1007/978-3-030-28561-6_4
mailto:isoda@criced.tsukuba.ac.jp
mailto:raimundo.olfos@pucv.cl
https://doi.org/10.1007/978-3-030-28561-6_3#DOI


38

mathematics, such as mathematization (Freudenthal, 1973; see Chap. 1 of this book 
and Isoda, 2018). Here, several inconsistencies in the definitions and meanings of 
multiplication are confirmed.

Multiplication as an operation can be explained in several ways, depending on 
the context (see Freudenthal (1983)). Here, some definitions and meanings which 
can be seen in curriculum documents, textbooks, and research articles will be illus-
trated in relation to problematics. These definitions and meanings will provide some 
answers to the questions posed in Chap. 2 and the necessary didactic questions for 
considering the Japanese challenges to established teaching sequences for develop-
ing the concept of multiplication in later chapters.

3.1.1  The Concept of Multiplication in Pure Mathematics 
in Relation to School Mathematics

In the formal context of pure mathematics, multiplication is defined by axioms such 
as the field theory of numbers.1 Multiplication is defined as a binary operation and 
is distinguished from addition. In relation to abstract algebra, upper secondary 
school mathematics usually focuses on these two operations: division should be 
represented by multiplication of the dividend and the reciprocal (multiplicative 
inverse) of the divisor, and subtraction should be represented by addition of the 
minuend and the opposite (additive inverse) of the subtrahend. Multiplication and 
addition allow the rule of commutativity as a field axiom, such as 2 × 3 = 3 × 2 and 
2 + 3 = 3 + 2. On the other hand, subtraction and division change their values if the 
order of numbers changes: 2 ÷ 3 ≠ 3 ÷ 2, and 3 − 2 ≠ 2 − 3. It provides one of the 
necessity in school mathematics to reorganize the four arithmetic operations at the 
elementary school level into the two major operations at the university level. In rela-
tion to Set theory, multiplication can be seen as Cartesian products. The value of 
multiplication can be seen as a cardinal number of the set of ordered pairs.

In elementary school, students learn all four arithmetic operations on their basis 
of life under their languages.2 Depending on the learning trajectories under their 
own curriculum, students encounter contradictions (inconsistencies), which pro-
duce several gaps between arithmetic and the two operations in field theory.3

1 The axioms for numbers are not only limited to the field theory. There are theories for the number 
system based on the algebraic extensions from the axiom of Peano. Further extension to real num-
bers is done by the Dedekind cut and hyperreal numbers (Tall, 2013). Complex numbers do not 
maintain the axiom of order. The R-module in relation to vector space can be another perspective 
for the number system. Vergnaud (1983) also discussed the “multiplicative structure” in relation to 
modern mathematics. This chapter is written from the Japanese and Chilean authors’ perspective 
of the bases for the Japanese approach, which was established up to 1960s and is illustrated in Part 
I of this book.
2 The matter of language will be discussed in Sect. 3.2.
3 A simple example of miscalculation is 2
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In formal algebra, natural numbers are introduced with Peano’s axiom and the 
number systems are extended through progressive introduction of the four opera-
tions, magnitude4 relations (the equivalence relation (=)), and order relations 
(greater or less than (> or <)) (see Michell and Ernst (1996)).5 In elementary school, 
the equivalence of numbers can also be confirmed in every operation: 1 + 4 = 2 + 3 
= 3 + 2 = 4 + 1, 2 − 1 = 3 − 2 = 4 − 3 = . . . , 2 × 3 = 3 × 2, 2 ÷ 1 = 4 ÷ 2 = 6 ÷ 3 = 
.  .  . On natural number, the commutativity of multiplication also illustrates the 
equivalence of products. Within the natural numbers, the equivalence of values in 
addition and multiplication are finite but that in subtraction and division are infinite.

In school mathematics, the concept of multiplication is developed through reor-
ganization of the process for multiplication (see Chap. 1, Fig. 1.1).6 In elementary 
school, multiplication is usually introduced as repeated addition. Within a few 
years, children have to distinguish both addition and multiplication as independent 
operations. The elementary school curriculum usually treats the relationships 
between multiplication and division, and between addition and subtraction, as 
inverse operations, such as division of fractions is multiplication of reciprocal num-
bers. Teachers need to help students reorganize the four operations into two opera-
tions when the numbers are extended to positive and negative numbers. The rules of 
commutativity, associativity, and distributivity are usually introduced at the earlier 
stage of elementary school in preparation for future reorganizations.

For introducing multiplication of whole numbers, it can be defined as repeated 
addition, which is useful for getting the products of the multiplication table. In 
developing the multiplication table, the pattern “the product increases by the multi-
plier” for each row is used and, mathematically, it will be explained by the distribu-
tive law. For students, the row of 1—such as 1 × 1, 1 × 2, and 1 × 3—is not easy to 
explain by repetition because the row of 1 is the same as counting and not adding. 
Thus, we use the permanence of form (see Table 1.1 in Chap. 1). There is no count-
ing - objects for the row of 0, thus the row of 0 is normally never discussed. Extension 
of the multiplication table from 9 by 9 to 10 by 10, or more, is easier for students if 
we use the pattern (permanence of form) supported by the distributive law. If the 
multiplication table is established at once, it will provide an alternative way to get 
the value of multiplication as the product.7

As mentioned in Chap. 1, Fig. 1.1, extending the numbers to multidigit multiplica-
tion is done by the column method which is a mixture of the unit (multiplier) in the 

4 Here, the magnitude is used for the size of the number such as larger or less in mathematics without 
indicating a concrete unit quantity on concrete situation such as just “3,” not “3 marbles,” which is 
called a denominate number (a number with “marbles” as the denomination for the unit of quantity).
5 English translation of Otto Holder’s German text (1901), Journal of Mathematical Psychology 40, 
235–252 (1996).
6 Tall (2013, 2019) sketched the process of reorganization on his terminology of three words of 
mathematics.
7 In Japan, in the process of extension, the permanence of form has been enhanced in relation to 
mathematical thinking (see Chap. 1, Table 1.1) since 1956. It is used in the same way as the histori-
cal meaning of the extension of numbers, such as that described by George Peacock (for example, 
see Eves, 1997, p. 111).
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multiplication table and addition in the base ten place value system. Extension to deci-
mals and fractions causes overgeneralization of the definition of multiplication as 
repeated addition because addition of natural numbers always increases; however, it 
does not work with decimals and fractions. This is the problematic (which means 
“inconsistency” in elementary school mathematics, see Chap. 1) because multiplica-
tion of decimals (and fractions) does not always increase as repeated addition does on 
whole numbers. To overcome this, we need to follow the idea of the base ten system 

to find an alternative decimal unit such as 0.1 and 
1

10
 to see it as a unit fraction, 

and the vertical form multiplication algorithm (the column method) using the mul-
tiplication table. In this process, for instance, if 9 × 8 = 72, then 90 × 8 = 720; asso-
ciativity and commutativity can be used, such as 90 × 8 = 9 × 10 × 8 = 9 × 8 × 10 = 
(9 × 8) × 10 = 720. The distributive law is also necessary to introduce the multiplica-
tion algorithm (the column method), which will be explained in Chaps. 4 and 5.

3.1.2  Multiplicative Situations, Expression, and Translations

Formally, multiplication is a binary operation to get the product, just as addition is 
to get the sum. It is an expression in the world of mathematics without any concrete 
situation.8 On the other hand, in applying multiplication in life, several meanings 
depending on the situation should be learned, particularly with regard to translations 
(interpretation) between the situation and the multiplication expression throughout 
the school curriculum. These meanings are usually expressed with everyday lan-
guage to represent multiplication in situations and relations (mapping/arrow/corre-
spondence) as a translation between situations and multiplication (expressions). 
Everyday language is necessary to represent reasoning in elementary school; it also 
brings limitations, such as the row of 1 in the multiplication table, which has already 
been mentioned. Here, we would like to consider several meanings of multiplication 
in relation to situations.

3.1.2.1  Origin of Written Situations

Multiplicative situations can be found in the ancient Babylonian language, Sumerian 
(Muroi, 2017), represented as A a-rá B túm A. Here, túm means “carry” and implies 
repeated addition. It means “A, B times” (B × A), however, there were no expres-
sions to represent it as a binary operation. Kazuo Muroi translated the following 
inheritance text for explaining the Sumerian sense of the base 60 system:

There were 1,1,1,1 on base 60 system (= 219661 in base 10 system) rams and 13,13 on base 
60 system (= 793) shepherd boys. How many rams did each boy receive? Each boy received 
4,37 on base 60 system (= 277). There were 1,1,1,1 (= 219661) rams and 13 shepherd boys. 

8 Historically, the column method appeared much earlier than the expression.
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How many rams did each boy receive? Each boy received 4,41,37 (= 277 × 61 = 16897) There 
were 1,1,1 (= 3661) rams and 7 shepherd boys. How many rams did each boy receive? Each 
boy received 8,43 (= 523).

UET 5121 (from around the eighteen century BCE) was used in Muroi’s Japanese 
translation; see also Figulla and Martin (1953) and Friberg (2007).

For finding the answers, the Sumerians used various tables on tablets; however, 
they did not write down the process of calculation. According to Muroi, the division 
of a ÷ b is calculated as a × 1/b by using the reciprocal number table. For us, the 
quotation is a multiplicative situation; however, it is not the same as our multiplica-
tion as a binary operation. In division of the integers a÷b, a is not always divisible 
by b; it is a finite decimal or a recurring decimal. In the case of 1 ÷ 7, this produces 
a recurring decimal. In the base 60 system, the numbers 2, 3, and 5 as factors of 60 
are called a-rá-gub-ba, which means an ordinal factor. Seven in the base 60 system 
is the first number for which the reciprocal becomes a recurring decimal.9 This 
implies that the number sense for multiplication in the base 60 system is not the 
same as that in the base ten system. For example, in the binary system, multiplica-
tion becomes addition. In this book, we focus on multiplication in the base ten system.

3.1.2.2  In Situations of Geometry with Proportionality

In Euclid’s Elements, the idea of multiplication is discussed as “multiple/multiplic-
ity” in the ancient Greek language in relation to ratio and proportion (Chemla, 
Chorlay, & Rabouin, 2016; Saito, 2008). It is not the same as the current meaning 
of multiplication in school, which is represented by expressions with “×” as the 
symbol of operation. During the era of Euclid, there was no algebraic expression. 
For example, a current expression such as x2 + a would have no meaning for Euclid 
because it would imply the addition of (a segment) to (a square). In the context of 
the Euclidian Elements, the product can be measured with a plane (two- dimensional) 
unit by associating the unit as measurable with multiplicity. For Euclid, measurable 
means the existence of the greatest common divisor.

To create algebraic representation as a universal language (mathematics), 
Descartes redefined the four operations as constructions with segments although he 
used “∝” instead of the current “=”. Figure 3.1 was used for redefining multiplica-
tion in his book of geometry, published in 1637.

9 Muroi mentioned that this is an origin of a myth which distinguishes 7 from other decimals.

Fig. 3.1 Descartes (1637)
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In Fig. 3.1, BE:BC  =  BD:BA, then BE × BA  =  BC  ×  BD. If BA is a unit, 
BE = BC × BD. This is the definition of multiplication according to Descartes. This 
diagram was also used by Euclid. However, in the context of Euclid, BE × 
1 = BC × BD is acceptable because “an area = another area” but BE = BC × BD is 
not, because “a segment = an area” is inappropriate. Descartes established expres-
sions beyond the limitations of dimension.

Descartes reorganized geometry as a part of his universal mathematics with alge-
braic expressions. His motivation was to shift mathematics from distinguished sub-
jects such as geometry, arithmetic, astronomy, and music to algebra (universal 
mathematics). In his geometry, he needed to explain the appropriateness of using 
algebraic notation. In this context, the current meaning of multiplication, which is 
represented by expressions, becomes possible to use beyond Euclid.

We can extend Descartes’s procedure of geometric construction to multiplication 
of negative numbers “(−) × (−) = (+)” although the negative sign was not indepen-
dently discussed during his time, unlike today.

3.1.2.3  In Situations with Quantities and Definition by Measurement

In the context of quantities, multiplication is the operation used to get the total quan-
tity when the unit quantity and the number of units are known. This is the definition 
(explanation) in the Japanese curriculum documents, but it was not written in the 
textbook directory (Isoda, 2010). Here, we call it the definition of multiplication by 
measurement.10 This definition degenerates to a group of groups or a set of groups, 
which was mentioned in Chap. 2, if it is limited to the natural numbers. It is consis-
tent with Descartes’s definition when we adapt it to geometric construction. If we 
apply this definition to measurement with geometric construction, it is to measure the 
length when the length of the unit and the number of units are known. Here, the 
length of the unit and the number of units can be real numbers if we extend the seg-
ments to lines (according to Euclid, the line can be extendable). On the other hand, a 
set of groups is usually imagined as whole numbers by students. Definition by mea-
surement can be extended from natural numbers to real numbers. It does not contra-
dict repeated addition such as a set of groups and can be applied to real numbers.

The Japanese textbooks from the third to the sixth grades use proportional num-
ber lines11 (see Chap. 4 and Fig. 3.1) based on this definition (Isoda, Murata, & Yap, 
2015, Grade 2, p. 9; Isoda & Murata, 2011, Grade 2, p. 9). Even in the second-grade 
textbooks, an approach to that meaning is provided by sentences such as “number of 

10 “Get the total quantity when the unit quantity and the number of units are known” is not actually 
a measuring activity; however, it is well connected with the proportional number line, which will 
be explained fully in Chap. 4. Definition by measurement is named by Shizumi Shimizu 
(Curriculum Specialist in the MEXT, personal communication). The definition was known in the 
1960s at least (see Ito, 1968). Recently, Izak and Beckmann (2019) provided the same ideas for a 
world researchers.
11 The proportional number line for elementary school mathematics was systematized by Ito (1972). 
By using the textbooks (Hitotsumatsu et al., 2005), Murata (2008) illustrated the tape diagram as the 
model for Zone of Proximal Development.
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pieces of 3 cm tape and their lengths” (Isoda et al., 2015, Grade 2, p. 13; Isoda & 
Murata, 2011, Grade 2, p. 14). This definition is consistent with repeated addition 
when we limit the quantities to whole numbers or integers. If the measure and the 
value of the unit are natural numbers, the product can be seen as “repeated addition 
of the quantity corresponding to the unit” but when they are not, the definition 
applies to multiplication of decimals, fractions, and any measurement.12 Both of 
these meanings have been written in the guidebook for the Japanese curriculum 
since the 1960s and can also be seen in Freudenthal (1983). For the extension of 
multiplication, this definition by measurement can also be applied to fractions and 
decimals with proportionality by using proportional number lines in Japan, serving 
as a mediational means (model/representation) for definition by measurement before 
formal definition of the proportion. Theoretically, the proportional number line is 
consistent with the Descartes13 similarity in Fig. 3.1. Proportionality can be seen as 
the natural extension of multiplication in relation to definition by measurement.

Definition by measurement is not popular in the world. For example, in the 
Chilean curriculum (MINEDUC, 2013a, p. 152), repeated addition has been chosen 
as the definition. It looks like there is no inconsistency in interpreting the given 
example “In each of 6 boxes are 4 brushes, how many total brushes are there?” in 
the context of repeated addition rather than definition by measurement. However, 
the Chilean definition of repeated addition cannot be extended directly to decimals 
and fractions (see Chap. 5).

3.1.2.4  Contradictions between Repeated Addition and Situations 
with Quantities

In real-life situations, numbers usually appear with measurement units (quantities); 
these are called denominate numbers, such as “2 cups.”14 In this example, “2” is the 
number and “cups” is the denomination, with “a cup” as the unit of measurement to 
be counted. The “2” in “2 cups” can be seen as a mapping from the world of num-
bers in mathematics to the world of measurement in real life, setting the translation 
rule by seeing a cup as a counting unit. In this correspondence, the relationship of 
magnitude (greater than, less than, or equivalence to) is kept.

12 This works for real numbers. Multiplication of real numbers should be redefined for extension of 
real numbers to complex numbers.
13 If the intersecting lines in Fig. 3.1 become parallel lines, they are proportional number lines. First 
Japanese translation of Descartes’s Geometry was 1949 by Kouno.
14 In mathematics (not in real life), quantity as magnitude is defined with the axiom of the magnitude 
relationship (the equivalence relationship and order relationship) without any physical unit quantity. 
In this section, quantity means the physical quantity and the quantities produced from physical 
quantities referring to a measurement quantity in real life where numbers are usually denominated 
with a measurement unit. In English, a denominate number such as “3 apples” refers to the mea-
surement–quantity unit “apple,” whereas in some other languages—such as Thai, Japanese, and so 
on—the measurement–quantity unit does not correspond to the denomination well. For example, “3 
cups,” “3 apples,” “3 tomatoes,” etc., in English are all said as 3 ko (“3 pieces”) in Japanese; 3 ko is 
the denominate number. However, ko is not as clear as a measurement unit in English.
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The Japanese definition of multiplication is introduced by situations with denom-
inations by using measurement units such as the following: “If there are 3 apples for 
each dish (3 apples per dish) and 4 dishes, then the total number of apples is 12 
apples.” It is not the same as just saying “3 apples and 4 dishes.” In the case of a 
number with a denomination, the situation can be represented by a physical expres-
sion such as “(dishes) × (apples/dish) = (apples).” Here, “per dish part” is canceled 
out by the quantity “dish” in the multiplication, and what remains is the measure-
ment unit “apple.”

Multiplication is an operation in the world of numbers. However, with regard to 
interpretation in situations, it includes a metaphysical interpretation among physical 
quantities (measurement units) used in real life. As for the scaffolding used to sup-
port the interpretation and translation between a situation with physical measure-
ment units and the world of mathematics, mathematical sentences of quantities such 
as “(dishes) × (apples/dish) = (apples)” are used even though they are mathematical 
informal–physical representations, which are not formally allowed as mathematical 
expressions in the world of mathematics.

The interpretation of “physical expression” in the situation (see Kobayashi, 
1986) “(dishes) × (apples/dish) = (apples)” is inconsistent with the repeated addi-
tion of “(apples/dish)” in mathematics, which can be discussed as follows:

4 (dishes) × 3 (apples/dish) = 12 (apples)
≠ 3 (apples/dish) + 3 (apples/dish) + 3 (apples/dish) + 3 (apples/dish)15

≠ 12 (apples/dish), or ≠ (12 apples)/(4 dishes) =3 (apples/dish)
However, in mathematics textbooks, it will be as follows.

3 (apples) + 3 (apples) + 3 (apples) + 3 (apples) = 12 (apples)

4 (dishes)  

This inconsistency is related to embedding the ways of explanation in the quanti-
ties (several measurements) in the situation into the world of number operations 
without quantity. In general, the quantity for a denomination such as apples can be 
added because the quantity implies the measurement unit for counting, which is an 
apple. However, the measurement unit (quantity) produced by the rate of different 
units such as “apples/dish” cannot be added. To avoid such inconsistencies, when 
repeatedly adding (((3 + 3) +3) +3), we should see only the part of apples by disre-
garding the part of the “every (or per) dish” in each term and counting “4 dishes” 
repeatedly. Thus, we can say that repeated addition is the way to find the product by 
regarding 3 “apples” and 4 “dishes” instead of regarding 3 “apples/dishes” in the 
situation even if it is hiding the idea to see “3 apples” as one set for the dish. The 
translation between situations and multiplication is only possible using specific 
ways of reinterpretation of the measurement unit in situations, just like the one dis-
cussed above (see Chap. 5).

15 This sentence itself is inappropriate because the ratio of different units cannot be added.
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3.1.2.5  Using the Situation of Multiplication Only for the Attribute 
of the Object

In the 1950s, the Association of Mathematics Instruction (AMI), Japan, proposed to 
introduce the meaning of multiplication using the attribute of the object in relation 
to the binary operation with their theory of quantity (Kobayashi, 1986) and asserted 
that multiplication is not repeated addition (see Chap. 1). For example, two wheels 
are an attribute of a bicycle. In this situation, the row of 2 in the multiplication table 
is represented by the total number of wheels when the number of bicycles is given. 
The row of 3 is represented by the attribute of a tricycle. In this manner, AMI pro-
posed to choose the specific situation in relation to the attribute of a specific object 
which cannot be divided for each row by the attribute of the specific object for the 
introduction of the multiplication table. Even the row of 0, which is normally not in 
the multiplication table, is explained with the belly button of a frog because the frog 
does not have it.

In Chap. 5, we will revisit the treatment of the attribute of an object for multipli-
cation in the case of the Chilean approach with a discussion of making sense (or 
sense making) (McCallum, 2018).

3.1.2.6  In the Situation of Area, As for Extension to Decimals 
and Fractions

As it will be discussed in Chap. 4, for the extension of multiplication to decimals, 
conversion between measurement units such as 1.5 L and 15 dL is useful because it 
changes decimals into whole numbers, which can be seen as repeated addition, and 
the multiplication table can be applied. Area (diagram) is also used for the extension 
to decimals and fractions.

The area of a rectangle is defined by two perpendicular segments: a × b, “length 
(longer side) × width,” or “width × length.” Before defining the area by multiplica-
tion, school textbooks usually introduce the dot array or block array diagrams16 to 
explain multiplication (see Chap. 5). These array diagrams can be seen as a prepara-
tion to introduce the area (Mathematically, these can be seen as the idea for Cartesian 
Product: see 3.1.2.9). Conservation of the area of a rectangle in the dot array dia-
grams supports the commutative and distributive laws.

From the perspective of denominate numbers, the unit “1 cm2” means the same 
area of the square as “1 (cm) × 1 (cm).” The number of unit squares in a rectangle 
with length 3 (cm) and width 2 (cm) is 3 × 2 = 6. Then, the area formula of a rect-
angle is “length × width.” In the case of 2.5 (cm) × 1.2 (cm), it cannot be well rep-
resented by using the unit square “1 cm2”; however, if we change the unit square to 
1 mm2 it means 25 (mm) × 12 (mm).17 The area formula for a rectangle “length × 
width” supports the extension of multiplication from whole numbers to decimals 

16 The dot array diagram is also represented by parallel crosses.
17 Japanese usually uses “dL” and “L” for the model diagram of decimals to show concepts such as 

1

10
 

L because 1 mm is too small for the model.
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Fig. 3.2 Tree Diagram

and fractions through the permanence of form. In the case of 1.5 (cm) × 3 (mm) or 
3 (mm) × 1.5 (cm), it has no meaning if they are expressed with different measure-
ment units. Thus, we have to change them into 15 (mm) × 3 (mm) or 3 (mm) × 15 
(mm). Changing the measurement units into the same quantity is a strategy for the 
extension of multiplication to decimals.

3.1.2.7  In the Situation of Tree Diagrams

In probability, multiplication can be applied in situations that can be explained by 
the tree diagram. In the tree diagram in Fig. 3.2, first there are two cases, then three 
cases that develop into six branches. If we use the term “splitting” for tree diagrams, 
one splits into two and then splits into three. This is written as 2 × 3. Based on the 
multiplication theorem of the probability for equally likely cases, it is written as  
1

2
 × 

1

3
. In tree diagrams, the operations 2 × 3 and 3 × 2 correspond to different 

diagrams and thus, area diagram is more preferable diagram explaining the com-
mutativity of multiplication,

3.1.2.8  Seeing the Tree Diagram as an Operator

A multiplication on probability tree looks like an operator. In some situations, the 
symbol “×” shows processes such as “1 → (× 2) → 2” and then “2 → (× 3) → 6” in 

tree diagrams, and in situations of probability as “1 2
1

2
→ ÷( ) → ” and then 

“
1

2
3

1

6
→ ÷( ) → ” according to the multiplication theorem of probability in equally 

likely cases. Here, the process “→ (× 2) →” and “1 2
1

2
→ ÷( ) → ” for indicating 

functions can be seen as operators. It implies that the “× 3” part of “2 × 3” or “1 × 

2 × 3” and the “× 
1

3
” part of “

1

2

1

3
× ” or “1

1

2

1

3
× × ” for showing the situations can 

be seen as operators.
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In Indo-European languages, “× 2” should be written as “2×” and some prefer “2 ×” 
for showing the operator. Indeed, in f(g(x)), f(x) is the operator for g(x). However, 

“1 2
1

2
→ ÷( ) → ” cannot be written as “1 2

1

2
→ ÷( ) → .” In arithmetic, operators in 

“÷ 5” or “− 5” do not mean “5 ÷” or “5 −” because commutativity does not work for 
division and subtraction (except if it is an identity). For explaining the four arithmetic 
operations as operators, “× 2” is consistent usage with “÷ 2” in usage. Under the com-
partmentalization of knowledge, many Indo-European language users feel comfortable 
in using “2 ×” and “÷ 2” at the same time. However, preferring “× 2” is reasonable as 
long as it enhances the consistency of representations in the four  arithmetic operations 
as operators. It is a kind of unary operator in mathematics. Indeed, even though 
European Language, the unary operator “^” is written in the right hand such as 3^2 (3 
square). The matter of language will be discussed in the next section.

3.1.2.9  Activity of Elementary School and Cartesian Product

In Portugal’s curriculum (Ministério da Educação e Ciencia, Portugal, 2013, p. 9) as 
mentioned in Chap. 2, the situations of multiplication for repeated addition are distin-
guished from those for combinatorics: “Solve one-step or two-step problems involv-
ing additive, multiplicative situations and combinatorial.” The product of multiplication 
is also given by the counting activity in combinatorics: “Perform a given multiplica-
tion by fixing two disjoint sets and counting the number of pairs that can be formed 
with one element each by manipulating objects and by drawing.” If we draw a dia-
gram under this instruction, it should be a counting activity as shown in Fig. 3.3.

The combinatorial counting diagram in Fig. 3.3 can be seen as a part of tree dia-
gram (Fig. 3.2). In the case of Portugal, it is introduced as another definition. In 
many countries, multiplication using a tree diagram is discussed after elementary 
school as combinatorics. 

Watanabe (2003) explained Cartesian Product, A X B={(a,b): a∈A, b∈B}, as a 
meaning of multiplication. It can be seen from the perspective of probability tree 
because Fig. 3.3 can be seen from the perspective of ordered pares. On Cartesian 
Products, products by numbers of elements for A and B is a number of elements 
A X B. On set theory for Cartesian Products, commutativity and associativity do 
not work.

Fig. 3.3 Combinatorial 
counting
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3.1.2.10  In Situations of Splitting as for Partitive Division

Confrey (1988) first presented splitting as a “multiplicative interpretation of parti-
tive division” (p. 255) although repeated addition looks like a multiplicative inter-
pretation of quotative division. Then, Confrey (1994, p. 292) defined splitting as “an 
action of creating simultaneously multiple versions of the original, which is often 
represented by a tree diagram.” Confrey focused on the development of ratios and 
proportional reasoning, including scaling, similarity, and exponentiation. All of 
these involve the coordination of two or more quantities or dimensions, which may 
or may not consist of levels of units that are commensurable.

Harel and Confrey (1994) point out that the idea of disaggregating or splitting is 
a powerful tool for teaching multiplication, which favors the extension of 
 multiplication to decimals and fractions, providing a geometric, and not only an 
arithmetical, view of multiplication.

According to Steffe (2003, p. 240), the splitting operation is the simultaneous 
composition of partitioning and iterating, where partitioning and iterating are under-
stood as inverse operations. Steffe (2003) and Hackenberg (2007) provide defini-
tions focused on the unit (and coordination of a unit of units). Steffe’s splitting 
builds multiplication as repeated addition, based on counting, addition, and subtrac-
tion. The focus has been on the coordination of levels of units in students’ develop-
ment of fractions, assuming equal-sized groups.

According to Harel and Confrey (1994), the operation that determines the total 
number of elements arranged in groups of equal quantity is of multiplicative character.

Following Confrey, in Fig.  3.4, equipartitioning/splitting indicates cognitive 
behaviors that have the goal of producing equal-sized groups (from collections) or 
pieces (from continuous wholes) as “fair shares” for each of a set of individuals. 
Equipartitioning/splitting is not breaking, fracturing, fragmenting, or segmenting in 
which there is a creation of unequal parts. Equipartitioning/splitting is the founda-
tion of division and multiplication, as well as ratios, rates, and fractions (see Chap. 4).

Confrey maintains that the technique of splitting promotes early work with units 
that are not a singleton, diminishing the difficulty that children have in conceptual-
izing ratios and proportions and other areas of multiplicative structures. For Confrey, 
the appropriate conceptions regarding ratios and proportions are built not on the 
basis of multiplication as repeated addition but, rather, as a parallel numbering sys-
tem that can be developed on the basis of a splitting operation. Confrey postulates 
that the foundation of the parallel system is developed naturally by children, and 
that the nature of such a system could have a powerful effect on the comprehension 

Fig. 3.4 Splitting equally: representation of 2 × 3 using splitting from the second rectangle to the 
third one. As well as the probability tree in Figs. 3.2 and 3.3, the splitting is consistent with multi-
plication as the operator: 1 → (× 2) → 2, 2 → (× 3) → 6 . Here the unit for counting number 6 is a 
smallest part of the rectangle in the right
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Fig. 3.5 Splitting changes the units’ figures for products in the diagrams

Fig. 3.6 Extending multiplication

of multiplicative concepts. Children could build a multiplicative world parallel to, 
complementary to, and interdependent on the additive world.

Splitting links multiplication and division because it includes the meaning of 
equal distribution (partitive division); however, it is inconsistent with repeated addi-
tion. Fig. 3.5 can be read as 6 × 1 = 1 + 1 + 1 + 1 + 1 + 1 and 6 × 2 = 2 + 2 + 2 + 2 + 2 + 2 
and so on, but the basic units for counting the answers “6” and “12” are different. 
Splitting changes the unit of measurement before and after. In this context, the mul-
tiplicative world under the idea of splitting is consistent with equal division, parti-
tive division, but independent of the additive world, as has been discussed regarding 
the rate of different units.Given this inconsistency with repeated addition, splitting 
in multiplication is inconsistent with definition by measurement according to the 
Japanese. Because splitting changes the units before and after multiplication, in 
Fig. 3.4, the whole rectangle on the left is 1 before the multiplication but is divided 
into 6 equal pieces after the second.

Considering this consequence, Portugal can be seen as a unique country as it 
introduces both meanings of multiplication (group of groups and combinatorics), as 
mentioned in the introduction to the discussion in Chap. 2.

3.1.2.11  Another Usage: Splitting in Relation to the Distributive Law

The terminology of “splitting” is also used in relation to the distributive law (van 
den Van den Heuvel-Panhuizen, 2001) but it is outside Confrey’s claim in relation 
to partitive division. It is used in splitting, as in Fig. 3.6. Here, the knowledge of 
5 × 3 (5 threes) helps to give meaning to 6 × 3: “If 5 threes make 15, how many are 
6 threes?” For this expression, it is 5 × 3 + 3 and also can be seen as (5 + 1) × 3.

3 Problematics for Conceptualization of Multiplication
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Fig. 3.7 Splitting and 
distribution

Fig. 3.8 Row of 5 from rows of 2 and 3 using the distributive law

Table 3.1 Row of 2 and Row of 3 produce Row of 5

1 2 3 4 5 6 7 8 9
Row of 2 2 4 6 8 10 12 14 16 18
Row of 3 3 6 9 12 15 18 21 24 27
Row of 5 5 10 6 + 9 8 + 12

On another usage of the word ‘Splitting’, it is used to explain the distributive law 
such as “If 5 threes are 15 and 2 threes are 6, then 7 threes must be 15 + 6, which is 21.” 
5 × 3 + 2 × 3 = (5 + 2) × 3. The splitting on meaning of distribution is a key idea to 
extend the multiplication table and multiplication for multidigit numbers (Fig. 3.7).

In the multiplication table, (row of 3) + (row of 2) = (row of 5) if we adapt the 
distributive law (Table 3.1).

Here, splitting is used for inverse operation of distribution but not for equal divi-
sion. It keeps the unit for counting. It is consistent with the array diagram and area. 
Japanese textbooks such as those from Gakko Tosho (Hitotsumatsu et  al., 2005; 
Isoda, Murata & Yap, 2015; Isoda & Murata, 2011) use this idea to enable students to 
extend the multiplication table and adopt it by and for themselves (see Chaps. 6 and 
7). The activity for this meaning of splitting can be explained by the theorem in action 
for the distributive law (Vergnaud, 1990; see also Tall, 2013, pp. 183–188) (Fig. 3.8).

3.1.2.12  Limitations of Every Model for Multiplication

According to Freudenthal (1983), multiplication is used to find a number, called the 
product, that is to the multiplier what the multiplicand is to the unit, such as 6:3 = 2:1 
(6 is to 3 as 2 is to 1). It is related to proportionality and is consistent with definition 
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Fig. 3.9 Multiplication task variation (see Gakko Tosho textbooks—for example, Hitotsumatsu 
et al. (2005), Grade 2, Vol. 2, p. 12)

by measurement as used by the Japanese since the 1960s and Descartes’s diagram 
(Fig. 3.1). In natural numbers such as 3 × 2, the multiplier 3 shows the number of 
repetitions of 2 for preferring multiplication in additive situations.

Even though the dot models in Fig. 3.9 can be used, there are various ways to find 
the units. In the models for repeated addition, all the units for counting should be 
seen as the same. Seeing the models from this perspective is possible when we have 
the idea of multiplication. At the same time, every model has its own nature as a 
mediational means. For example, the area diagram (model) for multiplication can be 
used for the extension of multiplication to decimals and fractions and positive (and 
0) real quantities, and is appropriate to explain commutativity. However, it cannot 
be a model for multiplication of negative quantities. Descartes’s constructions and 
proportional number lines, which are consistent with definition by measurement, 
can be applied for negative numbers, but commutativity cannot be seen instantly. 
Confrey links multiplication and partitive division; however, this is inconsistent 
with repeated addition because the unit for measurement changes.

From the viewpoint of magnitude, magnitude relationships (equivalent relations 
and order relations) can be illustrated by using models such as Descartes’s construc-
tion, area diagrams, and dot diagrams18 when their units of measurement are clearly 
embedded in the models. However, splitting and tree diagrams change their units. 
As Miwa (1983) mentioned, models function as a joint between mathematics and 
the real world. Gravemeijer (2008) discussed the model of a situation and the model 
for a form. Tall (2013) explained the conceptual difference and the development of 
the three worlds of mathematics by the terminologies “embodiment,” “symbolism,” 
and “formalism” and also the cognitive obstacles in one’s development, which he 
termed “met-before.” Freudenthal (1973) also explained the process of reorganiza-
tion by mathematization. The Japanese use these inconsistencies as part of their 
curriculum content by explaining it as extension and integration for the opportunity 
to develop mathematical thinking (Chap. 1).

Depending on the context, the roles of the models are different. The number lines 
are bases for Cartesian coordinates to represent the changes in the graph of function 
and the figure defined by an equation. Descartes’s construction of multiplication in 
his geometry is the origin of the Cartesian coordinates. Depending on the context, 
the roles of models change in the world of mathematics.

18 Historically, Pythagorean schools used a dot diagram to represent properties of numbers.
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Every model for multiplication has limitations in its nature. Every model for a 
specific situation is usually used for scaffolding. However, the reasoning when 
using the models is not the same as the formal reasoning even though they support 
mathematical–conceptual reasoning itself. In the case of Japan, the terminologies 
“concrete objects,” “semi-concrete objects,” and “abstract objects” have been used 
to discuss the different functions of the models and situations, and extension and 
integration have been the principles of the teaching sequence, corresponding to 
reorganization for mathematization.

3.1.2.13  Conceptual Fields for Multiplication

Vergnaud (1990) studied the conceptual field for multiplicative structures and dis-
tinguished three types of problems: isomorphism of measures, product of measures, 
and single measure space. This categorization provides a framework to distinguish 
conceptual difference in relation to multiplicative situations in teaching.

A problem of the first type, isomorphism of measure, is “A bag has 7 sweets. 
How many sweets are there in 6 bags?” A scalar resolution to the problem is “If 
there are 7 sweets per bag, in 6 bags there will be 42 sweets (7 sweets/bag × 6 
bags).” A functional resolution is “If there are 6 bags, and in each bag, there are 7 
sweets, then there will be 42 sweets (6 bags × 7 sweets/bag).” In the functional reso-
lution, there is a movement from one measure (bags) to another (units of sweets). It 
is consistent with definition by measurement.

A problem of the second type, product of measures, is “We have 3 different shirts 
and 4 different skirts. How many combinations of shirts and skirts are possible?” 
This situation includes two fields of measurements that are composed without con-
stituting a proportional function that associates the two fields. It is consistent with 
combinatorics and the probability tree.

A problem of the third type, unique measure space, is “Andres has thrice (3 
times) the number of pencils that Jose has. How many pencils does Andres have if 
Jose has 4?” It is consistent with definition by measurement.

Vergnaud’s categorization for multiplicative situations can be also seen in our 
terminologies for meanings of multiplication in situations (see Figs. 4.20 and 4.21 
in Chap. 4).

This section has illustrated various meanings of multiplication; however, it has 
not discussed the curriculum design itself. As explained in Chap. 1, these terminolo-
gies distinguish the difference of content necessary for considering the curriculum 
and the task sequence. For example, the framework of the multiplicative structure 
must distinguish combinatorics and others, and combinatorics is consistent with 
splitting. Such discussions are bases to establish the sequence, but it does not explain 
well why only Portugal’s curriculum introduces combinatorics from the beginning. 
The terminologies promote to distinguish conjectural difference but do not explain 
the curriculum sequence itself. The principle of extension and integration, or reor-
ganization for mathematization, to develop mathematical thinking provide the 
sequence under the distinguished concepts (Chap. 1). The sequence will be dis-
cussed in Chap. 4 with further terminology.
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3.2  Problems with Multiplication that Originate 
from Languages

Vygotsky (1934/1986, 1934/1987) and Wertsch (1991) enhanced the roles of medi-
ational means to develop thinking. Under their perspective, children develop their 
mathematical thinking through mediational means used for communicating their 
language, such as speaking and writing, for making sense of what they learn.

Language enables us to verbalize numbers, such as “eleven, twelve, thirteen.” 
However, writing does not always correspond with our way of speaking. For exam-
ple, “twenty-five” is written as “25” under the base ten system and not as “205” (the 
way it is said). In English, as well as in other Indo-European languages, the way the 
four operations are spoken does not usually correspond to their algebraic expres-
sions: “Add B to A” is A (augend) + B (addend), read as “A plus B.” “Subtract B from 
A” is A (minuend) − B (subrahend), read as “A minus B.” “Divide 12 by 4” is “12 
(dividend) ÷ 4 (divisor)” but “multiplied 3 by 4” is “4 (multiplier) × 3 (multipli-
cand)”: “–r” or “–d,” which one is operato “–r”? Depending on Vygotskian claim, 
those inversions between grammatical structure and mathematical notation may set 
some limitations for learning mathematics in English, even though adults’ users of 
English do not perceive any difficulties and inconsistencies in their usage. In Japanese, 
the grammatical expressions and algebraic expressions correspond well and there is 
no such inverted correspondence between their daily expression and mathematical 
expressions. In multilingual countries, the differences are more complicated. For 
example, the official language of Indonesia is inverted like English. However, like 
Japanese, the Javanese language of the central island of Java in Indonesia has no such 
inversion. In Javanese, 2 × 3 means “2, 3 times” as well as Japanese.

In the case of English and Spanish, the “×” symbol in the multiplication expres-
sion, which is read as “by” and por (“by”), respectively, does not necessary refer to 
the order of numbers. In English, there is no order if we say “multiply A and B.”

However, if the expression is associated with the word “times” in English (or 
veces in Spanish) in real life—and, as such, the multiplier—the number of groups is 
placed to the left, as in Fig.  3.10. As for the language, there is a good ordinal 
correspondence.19

In Indo-European languages, when they introduce the multiplication table to be 
consistent with their languages, there is a syntactic contradiction between models A 
and B in Fig. 3.11 using “times.”

The row of 2 in the multiplication table is usually shown below:
2 × 1 = 2, 2 × 2 = 4, 2 × 3 = 6, 2 × 4 = 8, 2 × 5 = 10, 2 × 6 = 12, 2 × 7 = 14, 

2 × 8 = 16, 2 × 9 = 18.

19 As we discuss later, the daily usage of language and algebraic expression do not always corre-
spond. For example, in English (Latin), the limited words for multipliers (such as “single,” “dou-
ble,” “triple,” and “quadruple”) already include the meaning of “times” but are not applicable to the 
multiplication of any natural numbers. In real life, “double” in tea implies 2 cups of tea, with 1 cup 
as the unit. As in “half of something,” the “of” implies the multiplication symbol “×”. “Multiply 3 
by 2 to get 6” in daily usage is “3 multiplied by 2 equals 6” in an algebraic sentence. However, 
“multiply 5 and 2” enhances commutativity and does not consider the order of the multiplier and 
the multiplicand.
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Fig. 3.10 “×” as “times”

Fig. 3.11 What is repeated addition in a European language?
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The difference between the consecutive products is + 2, the same as the multi-
plier. This property is used to proceduralize the sequence of the row of 2.20 When we 
try to explain this constant difference with repeated addition, it will be understand-
able and reasonable for children to explain that “2 × 3 is 2 added 3 times, and 2 × 4 
is 2 added 4 times, thus the difference corresponds to 2 added once.” In model A, it 
should be written as 3 × 2 and 4 × 2. As long as we read the multiplication symbol 
“×” as “times,” the appropriate interpretation based on the repeated addition is “2 × 
3 [two times three] is 3 + 3, and 2 × 4 is 4 + 4, like model B. Every term increases 
by 1—that is, both 3s become 4s, and since there are two terms, the increase is 2.” 
Adding 2 in repeated addition and the interpretation of the two terms will be contra-
dictory for children as long as the definition of multiplication is repeated addition.

The reason for keeping the multiplier for the row number in the multiplication 
table—in this case, the multiplier for the row of 2—is based on multiplication in 
vertical form, which is called a multiplication algorithm in US English and the col-
umn method in UK English. For multiplying 43 × 2 in vertical form, the row of 2 is 
used for calculation from the lower line number 2 to the upper line number 43 (see 
Chap. 7). In multiplication in vertical form, multiplying from the lower number to 
the upper number is usually used not only in countries that speak Indo-European 
languages but also in countries that speak non-Indo-European languages, such 
as Japan.

In Fig.  3.11, the image of “increase by two in the row of 2” looks like 
model A. However, the row of 2 should be explained by model B. But model B can-
not clearly explain the constant difference in the consecutive products. To avoid this 
contradiction that students may meet, there are two well-known traditional 
approaches:21

• The first approach enhances commutativity for applying repeated addition in 
model B: 2 × 1 = 1 × 2 = 2, 2 × 2 = 2 × 2 = 2 + 2, and 2 × 3 = 3 × 2 = 2 + 2 + 2.

20 As explained briefly in Fig. 1.1 of Chap. 1, this procedure is known as an automatized algorithm. 
Proceduralization means to produce an algorithm with meanings. In the Japanese approach, “think-
ing about how to calculate” is an objective, as well as understanding and achieving proficiency. 
Thus, it is recommended that the procedure is produced by students on the basis of the meaning 
they already know (see Isoda & Olfos, 2009, pp. 127–144). The Japanese use the meaningful pat-
tern increase by the unit for memorizing the multiplication table. In Eastern culture, historically, 
the table should be memorized using the Chinese–Japanese abacus. In Western culture, memoriza-
tion in mathematics education is usually discouraged because the word “memorize” often implies 
“without understanding” and the table is used for reference. From the Eastern cultural perspective, 
Western images of memorization look like a stereotype discussion. In East Asia, historically, peo-
ple only used Chinese characters for academic subjects. Even if the word pronunciations were the 
same, they could reason by applying different characters to represent appropriate meaning. People 
were able to distinguish the meaning from the visible characters. The current simplified Chinese 
(pinyin) changed the tradition. Hangeul, and French-based Vietnamese alphabets become phono-
grams that have no intrinsic meaning for characters. However they still keep the tradition of mean-
ingful memorization.
21 Several approaches to vertical form will be discussed in Chap. 7.
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• The second approach prefers that in the row of 2 defined by model A, the 
 multiplicand is the constant, here 2, to be consistent with repeated addition, such 
as the  following: 1  ×  2  =  2, 2  ×  2  =  2  +  2  = 4, 3  ×  2  =  2  +  2  +  2  = 6, 
4 × 2 = 2 + 2 + 2 + 2 = 8, ..., 9 × 2 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 18.

Both approaches can be seen in countries that influenced from Indo-European 
languages and are considered to introduce the multiplication table reasonably. In 
the case of a number table without models and situations, the multiplication table 
is used to show the products of multiplication. In the multiplication table, if the 
multiplier is 2 and the multiplicand is 3, then the intersection, 6, is the product. In 
the multiplication algorithm in vertical form, mental calculation and mechanical 
writing of the products is necessary (see Chap. 7) and the first approach is pre-
ferred by many countries because it is well connected with the multiplication algo-
rithm. Indeed, the order in the multiplication table, such as the multiplier and 
multiplicand, and the row and column, are related to multiplication and division in 
vertical form (the column method, algorithm, and long division) and the represen-
tation of proportion, y = ax (see Chap. 4).

The reason why the second approach is not easily chosen is because it is incon-
sistent with the vertical form (column method), where multiplication is from the 
lower line to the upper line: If the row of 2 is “1 × 2 = 2, 2 × 2 = 4, 3 × 2 = 6, 4 × 2 
= 8, 5 × 2 = 10, 6 × 2 = 12, 7 × 2 = 14, 8 × 2 = 16, 9 × 2 = 18,” 43 × 2 in vertical 
form becomes upper line to lower line and making decision of applying row of 2 
from 2 × [  ] to [  ] × 2. And if so, the proportion changes to y = xa.

Against these two approaches, splitting has been proposed as an alternative 
approach in place of the traditional approaches. Indeed, Portugal considers both 
repeated addition and combinatorics (similar to the tree diagram) in introducing 
multiplication in the second grade. Due to the inconsistency between models A and 
B, it may be reasonable that Portugal introduces a number of cases from the second 
grade. It may be complicated for some of students if different situations cannot be 
seen as one operation for them. It will be supportive if students can use the idea of 
splitting to find the product, such as to split a rectangle horizontally into 2 and verti-
cally into 3 (see Fig. 3.4). In English and other European languages, only splitting 
and the tree diagram are not complete approaches, unlike the others, because they 
change the meaning of the unit and thus are not consistent with repeated addition. 
On the other hand, in the Japanese syntax, the notation under the Japanese grammar 
does not produce such inconsistences (see Fig. 3.12) (Isoda, Arcavi, & Mena, 2007, 
p. 281). If the Japanese notation 3 × 2, which is written 3 [×] 2 here, is translated 
into English, it means “3, two times.” In Fig. 3.12, “the difference in the row of 3 is 
the constant 3 (the constant property of the difference)” is explained consistently 
with repeated addition as follows: 3 [×] 1 = 3, 3 [×] 1 + 3 = 3 + 3 = 3 [×] 2, 3 [×] 
2 + 3 = (3 + 3) + 3 = 3 [×] 3, 3 [×] 3 + 3 = (3 + 3 + 3) + 3 = 3 [×] 4, and so on.

Thus, in Japanese notation, there is no contradiction between repeated addition 
and the property of constant difference between consecutive products.

In some Indo-European-language-speaking countries that are supported by the 
Japan International Cooperation Agency (JICA), the Japanese notation is preferred 
for overcoming contradictions. Because as the discussion on Section 3.1.2.8, and 
Fig. 3.10, from the perspective of division operator, multiplier will be seen as the 
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In Japanese, 3x2 means 3, 2 times.

Row of three (most countries)

3x1=3
3x2=3+3
3x3=3+3+3
3x4=3+3+3+3
3x5=3+3+3+3+3
3x6=

Accumulation of same numbers

3x1=3
(ooo)
3 x 2=3+3
(ooo) (ooo)
3 x 3=3+3+3
(ooo) (ooo) (ooo)

In English, 3x2 means 3 times 2.

Every term increases by 1

3x1=1+1+1
(o) (o) (o)
3 x 2=2+2+2
(oo)   (oo)   (oo)
3 x 3=3+3+3
(ooo) (ooo) (ooo)

Row of three (idea)

3x1=1+1+1
3x2=2+2+2
3x3=3+3+3
3x4=4+4+4
3x5=5+5+5
3x6=

Invariant of 
the number 
of terms

Invariant of the 
number for 
accumulation

C
ontradictionla

cit
a
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ffi
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In Japanese, m
ultiplication is accum

ulation,  
easier to rem

em
ber, no contradiction

In English, m
ultiplication is easier to rem

em
ber but it is a 

contradiction. C
om

m
utativity is necessary 

In English, there is no contradiction but it is not accum
ulation

Fig. 3.12 Meanings and approaches of 3 × 2 in English and Japanese for applicable to traditional 
multiplication table and vertical form (column method) which multiply from the each digit in the 
bottom to the each digit in the top  (see Chap. 7)

second number. For example, “‘divide a by b’ and then ‘multiplied by c’” might be 
fine to be written as a÷b×c. It will be strange if we have to write is as c×a÷b in any 
time because it is read as ‘c multiplied by a’ and then ‘divided by b’. In this approach, 
the terms “times” and veces create confusion in explaining and reading the multipli-
cation symbol “×”; it should be read as “multiplied by,” “by (por),” “of,” or “and” 
instead of “times (veces)”) because originally 3 [×] 2 meant “3, two times.” Here, 
we cannot read the symbol “×” as “times.” These syntactical changes are preferred 
by the curriculum departments in governments that have had deep discussions on 
historical tradition and current convenience. These countries use multi-languages 
on their histories and enhance the commutativity of multiplication.

The problem of inconsistency in English and Spanish originated from the differ-
ence between natural languages and mathematical notation.22 Several difficulties 
might appear because the natural language should be preferred in school mathemat-
ics at the begging for referring to situations with quantities in real life. In the world 
of mathematics without situations, such confusion never appears.23 Problematic 
appears in Indo-European languages but not in Japanese.

22 Fischbein, Deri, Sainati, and Sciolis (1985, p. 5), and Vergnaud (1990) also discussed the prob-
lematics of English but did not mention other languages. In this book, the roots of these contradic-
tions are discussed in Chaps. 6 and 7.
23 In informatics as a scientific language, mathematical notation itself can be changed. In program-
ming language, “=” usually means substitution. In metanotation in informatics, there are Polish 
notations, reverse Polish notations, and others such as normal mathematical notations.
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In theoretical arithmetic under normal mathematical notation, natural numbers 
are defined by the inductive definitions of Dedekind and Peano, and, in theory, the 
product is deduced inductively “M × (N + 1) = M × N + M” (Olfos, 2002). In this 
compete-inductive definition of multiplication, which is the same as the constant 
property in the table, the Japanese multiplication notation in Fig. 3.12 is consistent 
with the mathematical notation. The expression 3 × 4 refers to a group of three as 
the unit and 4 as the number of groups/units. Consequently, 3 × 5 = 3 × (4 + 1) = 3 
× 4 + 3, as the unit is added to the initial groups. On the other hand, as previously 
mentioned, the English usage of “times” corresponds to 3 × 5 = 5 + 5 + 5. To see the 
sequence increase by three in English notation as for the repeated addition of 3, it 
must be changed, like 3 × 5 = 5 + 5 + 5 = (4 + 1) + (4 + 1) + (4 + 1) = 3 × 4 + 3. 
It is an interpretation far from the inductive definition of multiplication.

The inconsistencies of expressions between natural language and mathematical 
notation in the Indo-European languages are problems not only for multiplication 
but also for the other three operations, as already mentioned. These inconsistencies 
produce difficulty for explanation of arithmetic in the said languages. As a con-
sequence, there are projects that prefer the Japanese notation system in Central 
America, Thailand, and other places. To maintain consistency between language 
and mathematics, Japanese textbooks have established a sequence for extension that 
can be seen as attractive in being understandable (see Chap. 4).

If you feel uncomfortable about discussion of the Japanese notation of multi-
plication and not your notation, this is because of your familiarity with your 
mother tongue. However, we should note that our acquired usage itself can be 
seen as the result of our achieved curricula. There are various approaches for solv-
ing the matters in Fig. 3.12. There are further reasons why the Japanese approach 
is selected by some countries24 as an alternative approach, like the idea of splitting 
in the US approach and combinatorics in Portugal. One reason is consistency of 
definitions with the extension of numbers and operations, and another reason is 
consistency with the multiplication table. Other reasons such as consistency of 
multiplication in vertical form and division and so on will be clearly illustrated in 
Chaps. 4, 5, 6, and 7 with explanations of the Japanese approach. The Japanese 
approach has rationality but it is one of the various existed approaches. The 
National Curriculum on Colombia introduce multiplication as ‘multiplier x (mul-
tiplied by) multiplicand’ at the lower grade and then,upper grades, treat ‘multi-
plier’ like an operator in relation to ‘divisor’ (see Section 3.1.2.8). Such an 
approach is normal for Latin America. On the next section, we would like to dis-
cuss the historical usages and influence to Chile.

24 In Latin America, the countries of Honduras, Guatemala, El Salvador, Nicaragua, the Dominican 
Republic, and Mexico prefer Japanese notation based on Japanese textbooks.
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3.3  European Languages and Their Historical Usages

Depending on historical origins such as languages and developments,25 there have 
been various textbooks in different periods and regions that placed the multiplicand 
on the right, while others placed it on the left. In the thirteenth century, Ibn al-Bannā 
(from Almohades (Morocco), which included a part of Spain) explained a procedure 
for multiplying in columns (grids) by placing the multiplicand at the top of the col-
umn and the multiplier to the left or to the right of the column; this was later known 
as “Napier’s bones” or “rods of Napier (1617). Ulloa (1706) indicated that the mul-
tiplier was placed below in the column algorithm. Before the predominance of mod-
ern mathematics, there were texts in Spain that presented the multiplier after the 
multiplicand, as the second number (Rey Pastor & Puig Adam, 1935). With the 
arrival of set theory, the  language changed, and inconsistencies appeared in mixing 
arithmetic language with algebraic language. Prima-Luce (1976) stated, “We call a 
‘product’ the cardinal of the Cartesian product. The second factor is called the mul-
tiplier. The first factor is called the multiplicand. 2 × 3 = 3 + 3 = 6.” (Prima-Luce, 
1976). There are two inconsistencies in the above description: maintaining names 
connected to the contexts together with formal language and exemplification with 
an inappropriate numerical representation.

The representation of “two hundred” can be seen as “2 times 100.” Spanish 
grammar accepts this, saying dos manzanas for “two apples” although nouns usually 
come before adjectives in Spanish, as in manzana roja (“apple red” rather than “red 
apple”), which involves a kind of rupture. 2A is A + A in algebraic notation. However, 
in the first grade, students learn arithmetic operations starting with situations like 
“Add something to A” or “Take something away from A.” So, A + B and A − B ini-
tially are represented by situations that add B to A or take B away from A. A is the 
noun or the subject to be transformed, so A comes before  B. If we adopt this 
approach to A × B, it is possible for Spanish (Roman) to see “A” as the multiplicand, 
as in Japanese, because the action is done by B, the multiplier, as in the previous 
discussion of the operator. In reciting “2 times 3, 6,” “2 times 4, 8,” “2 times 5, 10” 
the number 2 can be seen as being multiplied by several numbers as the action. The 
sequence of results is 2, 2 + 2, 2 + 2 + 2, and so on. In this instance, it is like the 
probability tree that was discussed earlier in this chapter. In this manner, “2 times 3” 
implies “2, three times”; “three times” looks like part of the operator, and the first 
number 2 looks like the multiplicand in Japanese. In Spanish, A × B as “A times B” 
and “A multiplied by B” provide a polysemy, which affects the meaning of the 

25 European languages can be divided into Latin–Roman, Indian Europe (for example, German, 
English, and Nordic languages), and Slavic. Some languages such as Finnish and Hungarian are 
independent of these categories. Here, we are referring to Latin–Roman and Indian Europe, espe-
cially Spanish. Cajori (1928) explained that multiplication symbol “×” was introduced by Oughtred 
(1631, used Latin Edition, 1667). Oughtred used column multiplication for number and introduced 
“×” for his algebraic notation. He mentioned factor at introduction and discussed his column mul-
tiplication. He did not used symbol “×” for column multiplication. He discussed significance of 
multiplication for logistics and estimation of multiplicand and calculation of multiple on the col-
umn (p.8).  It implicates that multiplicand comes upper and multiplier comes lower on column. See 
(Chap. 7).
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expression for the multiplication table. Consequently, even students misinterpret the 
pattern 2 × 6 = 2 × 5 + 2 as (2 + 2 + 2 + 2 + 2) + 2. It is not necessary to say “it should 
be 6 + 6” if they can see it like this in this situation. This is a possible reason why 
Central American countries such as Honduras, Guatemala, Nicaragua, and 
El Salvador prefer the Japanese notation of multiplication in JICA projects.

Freudenthal (1983) highlights the fact that the language of mathematics differs 
greatly from everyday language used in different countries where it has developed, and 
adds that the divergence between a natural language and mathematical language can in 
fact create learning difficulties. He also points out that “4 + 3” is a strange way to write 
the task “add 3 to 4,” which mathematically indicates the sum of 4 and 3, and that 
everybody reads “four plus three” even though it does not agree with their language 
(English or German, and also Spanish or French). At the beginning of the twentieth 
century, “7 − 4” was read in German as vier von sieben (“4 from 7”). These antecedents 
are indications that in German and English, it would be natural to write the subtrahend 
and then the minuend, and by analogy the multiplier would precede the multiplicand.

With regard to Spanish, which originated in Castile, Vallejo (1841, p. 26) wrote, 
“The expression ‘5 − 3 = 2’ means that after removing 3 units from 5, 2 are left, and 
is read ‘five minus three equals (or is equal to) two.’ ”

Anglo-Saxon languages differ from Latin languages. Base twelve English mea-
surement systems and base eight Spanish playing cards are remnants that predate 
the Indo-Arabic decimal system, which penetrated Europe through southern Spain. 
The Arab invasion of Spain during the eighth century brought the decimal system 
with its operative algorithms and modalities of oral expression, which surely con-
flicted with the existing European languages.

Research around 30 years ago by Fischbein, Deri, Sainati, and Sciolis (1985, 
p. 5) and Vergnaud (1990) revealed that differences between the multiplier and the 
multiplicand are at the root of different complexities presented by multiplication 
problems (which we mention in Figs. 3.11 and 3.12) and influence the decision of 
anticipating the operation that needs to be made.

3.3.1  The Transition in Chile

Chile inherited the Spanish language in the nineteenth century, along with textbooks 
that place the multiplicand first, on the left. Later, with North American influence 
and the universality of the International Commission on Mathematical Instruction 
(ICMI), Chilean mathematics programs in 1968 (MINEDUC, 1968) introduced 
multidigit multiplication in the fifth grade and used the term “factor” together with 
algebraic terminology with the idea of the multiplier on the left.

The current Chilean mathematics programs (MINEDUC, 2013b, 2013c) main-
tain the introduction of multiplication with the term “factor” and do not use the 
terms “multiplicand” and “multiplier.” The current programs for the third and fourth 
grades identify the word “factor” as a key term, which is cited more than a dozen 
times in each program.

The mathematics program in the national curriculum for the second grade in 
Chile (MINEDUC, 2013a) presents multiplication as repeated addition, without 
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Fig. 3.13 Change the 
direction of multiplication 
from “left to right” to 
“right to left” for using the 
multiplication table

establishing associations between the factors and the meaning that each of them can 
take on. It does not establish connections between the number of groups and the 
term “times.” It does not identify “times” as a pattern associated with a multiplier 
and a multiplicand.

The idea that the multiplier goes on the left is observed in the examples, without 
the term being mentioned, coinciding with the approach of textbooks from 
Singapore. In the second grade, the program says, “Demonstrate understanding of 
multiplication. using concrete and pictorial representations; expressing multiplica-
tion as the addition of equal addends. to construct the multiplication tables for 2, 5, 
and 10.” The program for the third grade adds, “to construct the multiplication 
tables up to 10.” The program for the fourth grade says, “Demonstrate understand-
ing of multiplication of 3-digit numbers multiplied by 1-digit numbers” and the 
program for the fifth grade adds, “of 2-digit numbers multiplied by 2-digit numbers.”

The same Chilean mathematics program for the fourth grade (MINEDUC, 
2013c, p. 66) currently presents as an example the calculation “231 × 3,” beginning 
the calculation on the right, although the multiplication table is introduced with the 
multiplier on the left, as can be observed in the bottom part of Fig. 3.13.

In Chile, textbooks and even curriculum standards have adapted influences from 
other countries and the tendencies in mathematical education of each period. 
Simultaneously, old textbooks still circulate in the country. In some textbooks and in 
the language of some parents and tutors, the teaching of the multiplication table—and, 
to a greater degree, the use of the procedure for multiplying from right to left—persist 
with the multiplier on the right. Despite all of these, for adults (and even for primary 
mathematics teachers), “3 × 2” means “3 times 2” and “3 multiplied by 2” without 
distinction, as the order of the factors does not change the product.

3.4  Final Remarks

This chapter has addressed the problematics in the conceptualization of multiplica-
tion in school mathematics—including definition of multiplication by measure-
ment, various meanings of multiplication, and the problem of syntax in relation to 
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languages and grammar—and has discussed historical transitions and adaptations to 
a country such as Chile.

The discussions of those problematics provide some answers to the related ques-
tions posed in Chap. 2; however, this chapter has not mentioned the curriculum and 
the task sequence themselves, which are necessary to consider for designing les-
sons. The mathematical terminology in this chapter provides a basis for the neces-
sity to consider the Japanese approach in Chaps. 4, 5, 6, and 7. The terminology for 
the curriculum and the task sequence will be discussed in Chap. 4.
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