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Chapter 11
Can We Explain Students’ Failure 
in Learning Multiplication?

Maria del Carmen Chamorro

11.1 � Problem Presentation

Volumes have been written about teaching multiplication, and no didactic manual is 
without at least one chapter dedicated to this issue. Precisely for this reason, it is 
paradoxical that the teaching of multiplication, to which much time is dedicated, 
continues to be so deficient, and the results of students’ learning of it is so mediocre. 
This issue is not trivial if one considers that it is knowledge that should be acquired 
in compulsory elementary education and that is aimed at giving future citizens the 
necessary general education to deal with common problems in everyday life.

The problems students encounter, at least in Spain, are of four kinds.
First, to give up on memorizing results, long considered an outdated and aberrant 

pedagogical method that has resulted in poor mastery of the multiplication table, 
which makes students take a long time to carry out multiplication of, for example, 
three digits by two digits, making the activity tedious, as well as leading to many 
errors in the results. This circumstance seems to exceed the limits of a given coun-
try. As such, at a conference held in Santiago, Chile, in February 2003, Guy 
Brousseau stated that:

In recent times, French teachers made students (and thus their parents) responsible for 
learning the multiplication table, given that they considered learning it to be too repetitive 
and non-technical. When teachers today assume this responsibility again, they do so, using 
the same methods as parents (simple repetition). Emptied of content and of mathematical 
supports, this learning loses part of its interest and efficacy.1

1 Conference presentation by G. Brousseau in Santiago, Chile, in February 2003.
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Research on brain function has shown that memorization through oral recitation 
has a high cost, as well as not being mathematically pertinent:

Starting school supposes a radical change in mental arithmetic. One moves from an intui-
tive knowledge of numerical quantities, in which counting dominates, to arithmetic learned 
by memory. This great change, not coincidentally, is concurrent with the first difficulties in 
mathematics. Often, progressing in mathematics implies storing in memory great quantities 
of numerical information, a task that our brains are not prepared for. Children adapt to this 
as well as they can, but, as we will see, they often lose all intuitive understanding of arith-
metic operations (Dehaene, 2003).

Dehaene (1997) postulates that to master elemental arithmetic, our brains use at 
least two formats to represent numbers: a symbolic format, based on our language 
faculties, which is used for manipulating symbols and numerical algorithms; and a 
kind of language-independent representation that is located in brain circuits associ-
ated with visual and spatial processing, which is used for approximate calculation 
of numerical quantities. Elemental arithmetic capacities are obtained as the result of 
the dynamic integration of these two kinds of representations.

Second, the multiplication algorithm universally taught and used socially—the 
Fibonacci algorithm—is not precisely the most adequate and it presents innumera-
ble inconveniences: the necessity of retaining in memory the amount carried while 
a result from the multiplication table is being found; placement of the partial results 
obtained by multiplying the multiplicand by each digit of the multiplier, in a way 
that is difficult for students to understand and is often unjustified; errors in place-
ment when there are intermediate zeros in the multiplicand or multiplier; lack of 
control, when an error is produced, in finding its origin; etc.

Third, the understanding of the meaning of multiplication is not worked on 
enough, which leads to not identifying situations that can be solved with a multipli-
cative calculation. So, we find ourselves with schoolchildren who can apply the 
multiplication algorithm but are unable to resolve a simple multiplication problem, 
and ask their teachers the classic questions “Is it with addition?” “Is it with multi-
plication?” etc.

Finally, it must be said that we have practically never seen schoolchildren taught, 
simultaneously with the operative techniques, control mechanisms that allow them 
to evaluate, with the teachers’ sanction, if the result obtained when carrying out 
multiplication has an aspect of verisimilitude or, on the contrary, is clearly incorrect 
or even ludicrous. The reigning didactic contract indicates that the responsibility of 
the student ends when he or she provides a number as a result of the multiplication, 
without ever including, as part of the student’s work, deciding whether or not it is 
correct, which is a competency only of the teacher.

Classical learning of multiplication is based on mechanization; this mechaniza-
tion reaches both the multiplicative repertoire and the learning of the algorithm—an 
algorithm given to the student ready-made, without an express concern for the stu-
dent discovering the usefulness and pertinence of the intervening mechanisms, 
which necessarily leads to lack of motivation and interest. The wide array of alterna-
tive algorithms (lattice multiplication or gelosia multiplication, Egyptian multipli-
cation, Russian multiplication, etc.) are not contemplated to give the student the 
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choice of the algorithm that is most understandable or best suited to the numbers in 
question.2

It is evident that these four problems, the causes of which we analyze below, are 
interrelated and reinforce each other, and that one cannot be competent in calcula-
tion when conceptual understanding is not guaranteed and the calculation methods 
utilized are not understood.

11.2 � Multiplication of Natural Numbers in the Curriculum

Operations with natural numbers have made up part of the elementary education 
curriculum in all countries of the world since long ago, and, as such, the contents are 
fixed and not up for discussion, although the same does not occur with the issue of 
how they should be taught.

The National Council of Teachers of Mathematics (NCTM, 2003) indicates in its 
curricular standards—as goals from the third grade to the fifth grade, in the part 
regarding understanding of the meaning of operations—the following:

•	 Understand diverse meanings of multiplication and division.
•	 Understand the effects of multiplying and dividing natural numbers.
•	 Identify and utilize the relations among operations (division as the inverse opera-

tion of multiplication, for example) to solve problems.
•	 Understand and utilize properties of the operations, for example, the distributive 

property of multiplication with respect to addition.
•	 With regard to fluency and estimation of calculations, it indicates:
•	 Develop fluency in the basic combinations of multiplication and division and 

utilize them to mentally carry out calculations related to them, for example, mul-
tiplying 30 times 50.

•	 Develop fluency in the four basic operations with natural numbers.
•	 Develop and utilize strategies for estimating the results of calculations with natu-

ral numbers and judge the reasonableness of these results.
•	 Choose and use appropriate methods and tools (mental calculation, estimation, 

calculators, pencil and paper) to calculate with natural numbers, according to the 
context and nature of the calculation in question.

These indications would be accepted today in almost all countries, although it 
does not follow from this—and this is what is curious—that the methodology 
applied in classrooms leads in all cases to achieving these goals.

2 This fact is so notorious that during the initial education of future elementary teachers, the teach-
ing students are amazed when they are told that there are other ways to multiply and confess that 
they have always thought that there is only one way to do it: the traditional way that they learned 
in school. Also, they tend to be unable to justify the placement of the partial results and need to be 
convinced that the multiplication of the digits of the multiplier must always be done in the order 
units, tens, hundreds . . .
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Entering a bit more into a vision of the future of what teaching calculation can 
lead to, the results of the Kahane Commission, created by the French Ministry of 
Education to reflect on mathematics teaching, have been published. One of the 
chapters in this nearly 300-page study by Kahane (2002) is dedicated to teaching 
calculation, and some of its recommendations that we consider most insightful are 
the following:

•	 Mental calculation can play an important role in linking calculation and reason-
ing, and exact calculation and approximate calculation in elementary school.3 If 
we want to achieve this role, it should not be the result of routine and memoriza-
tion but should be associated with diverse calculations strategies.

•	 For mental or written calculation to be effective, it must be supported by a mini-
mum memorized repertoire.

•	 Working on thinking calculation4 is essential for developing mathematical prop-
erties and concepts.

•	 The importance given to calculation algorithms is in decline, as exact numerical 
calculation done today with a pencil and paper is very limited, so it does not 
seem reasonable for the school to dedicate so much time to it, nor to demand a 
high level of competency from students in this area. Having available a reliable 
algorithm for simple cases seems sufficient.

•	 Greater interaction between calculation with a calculator and calculation with a 
pencil and paper, as a function of the goals of each situation, is desirable.

The reductionist image of calculation as a mechanical, automatable, and unintel-
ligent activity must be fought against, as well as the idea that learning it is a purely 
repetitive process. Calculation should be thoughtful, beginning with initial educa-
tion, and related to reasoning and proof.

The Spanish curriculum is regulated by Royal Decree 1513/2006, which estab-
lishes educational minimums in primary education5 and defines mathematical com-
petency regarding number algorithms as follows:

Mathematical competency implies the ability to follow certain processes of thinking . . . and 
apply some calculation algorithms.

Later, in block 1, dedicated to numbers and operations, it gives the following 
methodological indications:

3 In the work previously cited, Dehaene explains how the human brain is gifted with continuous 
and approximate representation. When our brains are presented with a number in a symbolic form 
such as “8” they immediately make an effort to convert it into a continuous quantity, and do so 
automatically and unconsciously. In this way, our brains allow us to find meaning in the symbol 
“8” as a quantity contained between 7 and 9, closer to 10 than to 2.
4 Thinking calculation is not the same as mental calculation; it is halfway between mental and writ-
ten calculation. Intermediate steps can be written, but procedures more similar to mental calcula-
tion than written calculation tend to be used.
5 It can be obtained online at http://www.educacion.es/educacion/que-estudiar/educacion-primaria/
contenidos.html.
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Numbers should be used in different contexts, with the knowledge that understanding of the 
processes developed and the meaning of the results is a prior and priority context compared 
to skill in calculation. Of principal interest is the ability to calculate with different proce-
dures and the decision in each case regarding which is the most adequate.

In each of the cycles, the corresponding contents are detailed:

First cycle (first and second grade):

•	 Utilization of multiplication in familiar situations to calculate the number of times
•	 Oral expression of the operations and the calculation
•	 Construction of the multiplication tables for 2, 5, and 10, based on the number of 

times, repeated sum, arrangement in grids . . .
•	 Development of personal strategies for mental calculation . . . for calculating dou-

bles and halves of quantities
•	 Approximate calculation; estimation and rounding of the result of a calculation to 

the nearest ten, choosing among various solutions and evaluating reasonable answers
Second cycle (third and fourth grade):
•	 Utilization of multiplication as an abbreviated sum, in rectangular arrangements, 

and combinatorics problems in familiar situations
•	 Additive and multiplicative decomposition of numbers; construction and memoriza-

tion of the multiplication tables
•	 Utilization of standard algorithms for adding, subtracting, multiplying, and dividing 

in problem-solving contexts
•	 Utilization of personal strategies for mental calculation
•	 Estimation of the result of an operation on two numbers, evaluating whether or not 

the answer is reasonable

We can conclude that the Spanish curriculum follows the fundamental recom-
mendations of the NCTM, although we appreciate that certain issues that we con-
sider vital to the understanding of the meaning of the operation are not given the 
weight they deserve (understanding diverse meanings of multiplication, understand-
ing the effects of multiplying and dividing natural numbers, identifying and utiliz-
ing relationships among operations—division as the inverse operation of 
multiplication, for example—to solve problems). Also, few indications are given 
regarding how to construct multiplication tables or how to arrive at the calculation 
algorithm, nor are the advantages of teaching one algorithm or another analyzed.

As strengths of this curriculum, we recognize the references to the need for 
working on mental calculation and estimation, as well as the use of the calculator. 
While it is accepted that students create personal calculation procedures, these seem 
to be limited to the domain of mental calculation and not applicable to written 
calculation.

If we compare this to the Chilean curriculum, it can be appreciated principally 
that the latter is more detailed and explicit, providing more indications regarding 
what to do and how to do it. We consider the strong points of the Chilean curriculum 
to be the proportionality approach to multiplication and its simultaneous treatment 
with division. We also find the learning order of the multiplication tables reasonable 
(2, 5, and 10 first, as the first thing children learn is to count by twos, by fives, and 
by tens). We share practically all the indications in the teaching guide that we have 
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been able to read,6 which give very precise indications of how to proceed in the 
classroom to reach the definitive algorithm, and, as such, we believe that if teachers 
follow these indications rigorously, it will lead to the success of the students. We can 
summarize by saying that it is a good curriculum, and, as such, the causes of scho-
lastic failure must be looked for in other areas—for example, in how teachers apply 
this curriculum or in the training they have for its concrete interpretation.

Our knowledge of the Japanese curriculum is limited to what is described by 
Isoda and Olfos (2009), and we have been amazed to see the degree of detail and 
meticulousness in the Japanese government’s mathematics teachers’ teaching guide 
in the development of content related to multiplication. We appreciate, as a distinc-
tive feature of the Japanese curriculum, the importance granted to the manipulation 
of material, often considered “not very mathematical” in other cultures (e.g., in 
Spain), as well as to graphic representations (in particular, to numerical patterns) 
and how much time is dedicated to ensuring student comprehension of the meaning 
of an expression, without ignoring the acquisition of calculation procedures. We 
regard the disciplined participation of students in the development of the lesson as 
definitive for achieving the stated results, but we consider it difficult to extrapolate 
to Latin societies, where, unfortunately, the intrinsic motivation of mathematics 
itself is not usually enough to stimulate the desire to learn.

11.3 � Contributions to Didactics

Recent research in the didactics of mathematics gives emphasis to considering mul-
tiplicative calculation, and arithmetic in general, as a means for comfortably and 
effectively resolving problems that present themselves in students’ daily lives, giv-
ing more importance to the meaning of operations than to the speed reached in using 
calculation algorithms. Currently, a universally accepted methodological principle 
is that more time and attention should be dedicated to dealing with situations that 
give meaning to multiplication, with less time dedicated to memorization and rep-
etition of the corresponding standard algorithm, as numerical competency cannot 
exist if it is not based on conceptual competency (Fig. 11.1).

In Gerard Vergnaud’s words:

Mathematical competency can be defined with relatively variable criteria:

	(a)	 Someone who knows how to deal with situations and solve problems is more competent than 
those who do not;

	(b)	 Someone who solves problems in the most efficient, most reliable, fastest, most general, or 
conceptually most elaborate way is more competent;

	(c)	 Someone who has a variety of alternative means for solving problems of a certain category and 
can choose the appropriate method as a function of the values of certain parameters of the situ-
ation is more competent (Vergnaud, 2001).

6 We have been able to access only what is described in the book by Isoda and Olfos (2009), and 
not the original documents.
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Fig. 11.1  Students discuss 
in pairs in the math lab

If we apply the previous case to multiplication, the result is that we should aspire 
for students to be able to distinguish in the case or when they encounter a situation 
that demands a multiplicative calculation, to know which is most appropriate (as a 
function of the numbers that appear), a) and to use a calculator, b) to use an algo-
rithm that requires a pencil and paper, or c) to use thinking or mental calculation. 
From this, it is easily deduced that standard learning of multiplication—which dedi-
cates many hours to learning the traditional algorithm and does not provide or teach 
alternative, personal calculation methods, ignores the existence of mental calcula-
tion, and dissociates problem solving and calculation—cannot educate schoolchil-
dren with the necessary numerical competency.

11.3.1 � What Does the Theory of Conceptual Fields Teach Us?

One of Vergnaud’s most important contributions in his theory of conceptual fields 
(Vergnaud, 1990) has been to effectively show how some concepts relate to others 
and the necessity of considering the different contexts in which a concept appears. 
In the case at hand, it refers to not dissociating (as habitually happens) work with 
multiplication, division, and proportionality, as the situations that demand their use 
form part of the same conceptual field.

Gerard Vergnaud (1981), as early as his first texts, made manifest the necessity 
of carrying out an exhaustive study of the different types of situations in which 
multiplicative calculation participates, and which, as such, give meaning to the 
operation, leading to his well-known classification of multiplicative problems as 
isomorphism of measures, product of measures, and single measure space. This 
classification not only informs us about the level of difficulty of each of these 
types—which on its own helps us to explain many students’ errors and difficulties 
and the different rates of success and failure in one type or another—but also shows 
us the different contexts in which the necessity of multiplying appears. It is necessary 
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for the teacher to be familiar with these contexts in order to be able to provide stu-
dents with all the variety of situations that give meaning to the concept of multipli-
cation, as it must not be forgotten that recognition of situations that can be dealt 
with using multiplication is much more important than having an effective multipli-
cation algorithm. Making students face this variety of situations will obligate them, 
in the best of cases, to adapt, modify, and generalize problem-solving procedures, 
and to abandon them and construct new ones in other cases. What we call learning 
is nothing other than an individual’s capacity to decontextualize a concept or proce-
dure and then recontextualize it again, and in doing so make necessary adaptations 
or changes.

Working and systematically observing the different problem-solving procedures 
for a multiplicative situation (“approximative” in Piaget’s language, or “working on 
schema” in Vergnaud’s7) helps students to discover operative invariants and is useful 
for the teacher not only to be able to determine with greater precision the levels of 
skill reached by the students, but also to follow a logical teaching progression 
adapted to the students’ competencies, as:

The cognitive function of a subject or of a group of subjects in situation is based on the 
repertoire of previously formed schemata available to each of the subjects considered 
individually.

As a consequence of this, there is unanimous agreement in didactics regarding 
the necessity of making students face, from the very beginning, situations of a mul-
tiplicative character, without needing to wait for students to have available algo-
rithms or advanced procedures for numerical resolution. Thus, emerging techniques 
like drawing the situation and then counting will lead to the iterated sum of equal 
summands, which is useful for giving meaning to the calculations, so that students 
always know what they are calculating in order to respond to a concrete question. 
This is the technique that is developed in many situations observed and studied by 
Isoda and Olfos (pastries in a box with various layers, and knowing how many there 
are in each layer; pastries in various boxes, and knowing how many there are in each 
box; pastries that fit in a box, and knowing the size of the pastries; balls in various 
containers, and knowing how many fit in each container; pencils in stacked boxes of 
pencils; etc.).

7 Vergnaud defines the concept of a schema as “the invariant organization of behavior for a given 
class of situations.” Subjects’ knowledge in action should be investigated in a schema—that is, the 
cognitive elements that allow for a subject’s action to be operative. The expressions “knowledge in 
action” and “theorem in action” designate knowledge contained in a schema, which can also be 
designated by the more global expression “operative invariants.”
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11.3.2 � Developing Didactic Progressions for Teaching 
Multiplicative Calculation

Students should experience in class something that is intrinsic to mathematics: the 
need to debate the truth or falsity of an affirmation, the search for more effective 
solutions for solving a problem, and practicing debate as a means to answering 
these questions. The first edition of the book by Isoda and Olfos (2009) for teaching 
multiplication expertly shows something that many do not consider, but that has 
enormous importance in learning mathematics: that mathematical knowledge is 
built collectively in the little society of the class, which is why student motivation 
is needed.

Guy Brousseau, considered the father of the modern didactics of mathematics, 
says this on the topic (Brousseau, 1995):

As a social practice, proof is the legitimate method of convincing an interlocutor: the inter-
locutor should be respected, using nothing except his or her repertoire (logical, mathemati-
cal, scientific . . .) and the information he or she currently has available, and other means of 
pressure—rhetorical (formal ability), psychological (such as seduction, authority, or com-
passion) or material (threats, violence, etc.)—should be avoided.

In mathematics, knowing how to prove an affirmation, justify a result, etc., is part of 
one’s own learning of the material, but the practice of proof is constructed here very differ-
ently than how it tends to occur socially. There is a series of psychological barriers to 
overcome, as the person who is correct is not always the most powerful or the most socially 
valued, but rather the one who can prove their arguments to be valid, so our self-esteem is 
often compromised. The truth in mathematics is not associated with power, which conflicts 
with social habits. Even the teacher is obligated to demonstrate that what he or she says is 
true. Authority is not enough. Nor are things true based on voting, nor can we support our 
friends’ answers based on loyalty if these answers are not correct. The instrument of this 
initiation is learning proofs, not only as official knowledge, but also as a way of practicing 
proofs (and of limiting them to their domain of relevance). It forms part of the individual 
and particularly of the rational individual, just as much as the most essential social relations 
do. Democracy cannot exist without a social organization that integrates the role of knowl-
edge in decision making and without shared and correct management of knowledge, truth, 
and proof. In primary school, this fundamental civic formation is not formulated, but it first 
happens in mathematics (see Fig. 11.2).

Fig. 11.2  Researchers 
take notes from pairs’ 
discussions
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For debate to arise naturally in class, and not as an imposition by the teacher, a 
problem should be proposed that makes sense to the students and allows them to use 
personal or group strategies that can be compared and validated. The situations have 
to be designed so that the knowledge the students possess at that moment allows them, 
if not to solve the problem completely, at least to understand the solution and an out-
line of the solution (a base strategy). We should consider that whatever is being 
learned, students always possess prior knowledge, which is often partial or incorrect, 
and one of the teacher’s tasks is precisely to begin with this prior knowledge and make 
compatible something that is very important in calculation: the use of these personal 
procedures and the acquisition of faster and more effective universal algorithms.

If the students’ knowledge were sufficient to resolve the situation, we would be in 
a situation of application of prior knowledge, not a learning situation. As such, the 
students’ base strategies must be shown to be insufficient or not very effective, and 
the students should progress to be able to successfully solve the problem proposed in 
the situation (modification of schema, generalization, or construction of new schema).

As we have seen in the text from Isoda and Olfos, numerical learning requires 
considerable periods of time, and, as such, a family of interconnected situations 
must be designed—that is, didactic engineering (see Chamorro, 1999, 2003, 2004).

One of the first examples of didactic engineering—developed at COREM (Centre 
d’Observation por la Recherche en Enseignement des Mathématiques de Bordeaux) 
in 1985 and, as such, under the supervision of Guy Brousseau himself—is about 
multiplication and is clearly based on his theory of situations. Despite the 25 years 
that have passed, and everything that has happened in didactics in that time, some of 
its guiding principles remain relevant today:

Part I
Introducing multiplication through the need for rapidly counting the number of ele-
ments in a collection structured, or susceptible to being structured, in equal parts. 
The multiplicative structure a × b appears as a comfortable and effective way of 
designating the total number of elements in this collection, a manipulable collection 
at first, and later a represented collection. The need for using writing is connected to 
a situation of communication between teams: sending a message with a written 
multiplicative expression allows the receiver to form the corresponding collection 
(3 sessions).

Designation as a product of a collection arranged in the form of a table, using the 
number of elements per row and per column (1 session) (see Fig. 11.3 and 11.4).

Designation of products in the form a × b (4 sessions).

Part II
Comparison of numbers (near 250) written in the form a × b (1 session).

First calculation methods for a  ×  b based on a multiplicative repertoire (3 
sessions).

For example (see Fig. 11.5), find the value of 7 × 15 using the following reper-
toire: 4 × 6 = 24, 3 × 6 = 18 . . . 4 × 6 = 28, 7 × 7 = 49 . . .

	 2 7 14× = 	
	 15 	
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Fig. 11.3  Collections 
arranged in the form of a 
table

Fig. 11.4  Products as 
tables of rows and columns

Fig. 11.5  Distributive property applied to arrays

Part III: Abandoning Graph Paper
First sessions (2 or 3). Find the total number of squares in a grid, for example 
24 × 18 (see Fig. 11.6), using only blank paper and a multiplicative repertoire.

Second group of sessions (3 or 4). Progressive elaboration of a complete solution 
based on parts, using fundamentally the dimension 10 (see Fig. 11.7).

24 18 11 7 11 8 11 3 13 7 13 11× = × + × + × + × + ×

Last group of sessions (3 or 4). Search for the results of products provided by the 
teacher, without using graph paper, which can only be used for checking results.
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Fig. 11.6  Task visual information

Fig. 11.7  Representation 
of a solution

Part IV: Fine Tuning an Algorithm (Lattice Multiplication)

•	 Organization and observation of the product of one-digit numbers (tables) (1 
session).

•	 Rule of zeros: calculate in 1-step products like 20 × 30, 7 × 80, general rule (4 to 
7 sessions).

•	 Organization and arrangement of calculations, connected through additive 
decomposition of the factors (tens and units) and the distributive property.

•	 Reduction of the decomposition (3 to 6 sessions).
•	 Institutionalization of the algorithm, preferably lattice multiplication (1 session).

In parallel, mental calculation and solving multiplication problems are worked on.8

Part V

•	 Counting a collection (4 sessions): squares in a grid (43 × 32, 46 × 32, 56 × 37, 
234 × 526 . . .) posted on the board, using blank paper or graph paper.

8 The problem statements are of the following type: “A train has 9 cars, each with 18 seats and 4 
wheels. How many children can sit in the train?” or “A construction worker wants to put tiles in a 
bathroom. The tiles come in boxes of 10. The worker places 5 rows of 6 tiles each. How many tiles 
has the worker placed?”
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We could say that the ERMEL group (Equipe de Recherche des Mathématiques 
de l’Enseignement Elementaire)9 continues the paths introduced by the Bordeaux 
IREM (Institut de Recherche pour l’Enseignement des Mathématiques), which, at 
the same time, was heavily influenced by research carried out by Guy Brousseau.

In the guidelines in ERMEL’s latest edition, some principles to be followed in 
teaching multiplication can be observed:

•	 Reinforce what has been learned about decimal numeration.
•	 Introduce multiplication through iteration situations in which collections formed 

of subcollections of the same number of elements participate, or situations whose 
resolution requires a repetition of actions that imply adding or subtracting repeat-
edly the same quantity.

•	 Build the meaning of multiplication through the set of problems that belong to 
the multiplicative conceptual field.

•	 Give preference to multiplicative problems of the direct proportionality type in 
which the student can use known procedures that should evolve and adapt to new 
situations.

•	 Abandon graph paper, despite its advantages (easy geometric observation of the 
commutative property, easy management of the decomposition of products, mul-
tiplicative writing of a × b as a designation of a number and not as a calculation, 
etc.) due to the long and difficult process that must be followed to reach the 
Fibonacci algorithm if all the steps are followed.

•	 Do not separate multiplicative problems from the associated division problems.
•	 Construction of multiplication tables based on a series of multiples: discovery of 

the rule of zeros (using commutativity, iterated summation, or multiplicative 
decomposition of the numbers).

•	 Construction of the multiplication technique by the students.
•	 Insist on processes that allow for solving products through mental calculation 

(successive doubling, using multiples of 10, decomposing a number, etc.).
•	 Encourage the use of processes that can solve products through mental arithme-

tic (successive duplications, the use of multiples of 10, decomposition of num-
bers, etc.).

•	 Construction of the operatory multiplication technique through summing of mul-
tiples of the multiplicate of the type ×10, ×20, etc.

The above treatment is achieved over 2 years (in the third and fourth years) by 
presenting several different situations that must be resolved using multiplication pro-
cedures, as well as games aimed at the acquisition and memorization of sets or the use 
and discovery of mental arithmetic techniques (dominoes, battle games, bingo, etc.).

9 Since 1977, this group has been publishing various manuals aimed at preschool teachers, elemen-
tary teachers, and teacher trainers—manuals that have collected practically all the research results 
in didactics of mathematics at the elementary level, and that, as such, constitute an obligatory ref-
erence (see https://forums-enseignants-du-primaire.com/topic/78945-ermel/). Through the various 
successive editions, one can appreciate the evolution that has occurred in the teaching of different 
mathematical concepts.
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In our opinion, although the models and underlying multiplication structures are 
mathematically clear, there are unresolved questions in all known didactic 
approaches to multiplication, implying the need for in-depth study, analyzing the 
proposals given by the teacher in this regard. For example, if the teacher begins with 
situations that demand repeated addition, how can we justify that a × b is equal to 
b × a when one of the factors is measurement with dimensions? To find the process 
of calculating 4 bags of flour that cost €2 a bag, the correct answer is to do 
2 + 2 + 2 + 2, since calculating 4 + 4 would be absurd and make no sense, even 
though 4 + 4 = 2 + 2 + 2+ 2. Nevertheless, something that can easily be seen, even 
without wanting to see it, is that the number of objects arranged in 2 rows of 4 is the 
same as when they are arranged in 4 rows of 2.

Despite this, this difficulty is mainly seen in solving problems in which it is nec-
essary to maintain the meaning of the operations being carried out, keeping the 
connection with what is represented by the problem data. Thus, in the calculation of 
a multiplication (2 × 4 = 4 × 2),10 the pupil must search for the best way to solve the 
problem, meaning that the commutative property is greatly helpful.

Perhaps the only possible solution is always to propose the answer to a problem 
using the form that makes the most sense, clearly separating it from the calculation 
stage of actual multiplication, though it is then necessary to recontextualize the 
result obtained in order to ensure it makes sense.

11.4 � Informal Arithmetic Methods

For many years, several researchers have questioned the importance of the common 
practice of teaching arithmetic algorithms, relative to the lack of consideration of 
informal arithmetic procedures used by pupils in daily life, often in parallel with the 
usual algorithms from school. The result is that in the eyes of the pupils, the school 
has a different way of doing things from daily life, and they are unable to realize that 
they are dealing with procedures that aim to find solutions to the same problem.

Resnick and Ford (1990) use data obtained by Lankford to conclude the 
following:

	1.	 The thought patterns/arithmetic strategies pupils develop when studying basic 
mathematics are highly individual, and they often do not follow orthodox models 
from textbooks or the classroom.

	2.	 Differences can be seen in . . . the arithmetic strategies of pupils that are success-
ful and those that are not.

10 The operation written as “2 × 4” is not read the same in all cultures. In Japan it would mean 
“2 + 2 + 2 + 2” whereas in Spain it is read as “2 times 4” and would therefore be written as “4 + 4.” 
We understand that although one of the two forms is more advantageous to the construction of 
tables, cultural tradition is far stronger, and it would be wrong for a school to go against social/
mental norms.

M. del Carmen Chamorro



279

Fig. 11.8  Grouping in five groups of five. (Reproduced from Tsubota, 2007)

	3.	 Indications can be found for teaching that support arithmetic ability based on 
pattern observation . . . by pupils who do incorrect calculations.

It can also be said that the use of informal arithmetic procedures is mostly among 
the pupils, and not all those who use them make mistakes.

For example, for counting the quantity of spots (see Fig. 11.8) some children will 
see the five spots of a die in five locations on the tile, while others will move the 
spots from the four corners into a new location, turning the tile into a 5 × 5 square.

Many of the informal multiplication methods used by pupils are based on a com-
mon pattern: counting (2 by 2, 3 by 3, etc.). It is therefore important to include this 
type of exercise in mental arithmetic work. We tend to think that this method, which 
can appear simple and primitive, is only used by first-year pupils, but the reality is 
that it remains in use by pupils in later years. Lankford found that of 176 seventh-
year pupils, 63 (36%) used counting when doing multiplication. It is precisely the 
use of the counting algorithm that causes pupils to have difficulty in dealing with 
and retaining multiplication results in memory work, while also making them take 
longer in finding the results.

Therefore, the idea of pupils memorizing multiplication tables lies in the aim of 
transitioning from the counting algorithm to recalling numerical facts from long-
term memory; i.e., numerical facts can be recalled from long-term memory almost 
immediately, thus freeing up resources in the working memory for immediate 
results and consequently decreasing the number of errors. This does not mean that 
the pupil will no longer make mistakes, as it is known that remembering a numerical 
result is more complex than recalling it from long-term memory, since numerical 
facts are strongly connected, even when they apply to different operations, and it is 
easy to activate an incorrect result such as “2 + 7 = 14” or “2 × 7 = 9.”

It is also known that the mistakes made by pupils are more systematic than ran-
dom. They respond to a certain logic, and this often originates from a lack of under-
standing of the procedures implied in algorithms, which are therefore applied 
incorrectly (see Fig. 11.9). It is precisely this logic that makes many errors persis-
tent, since the same incorrect procedure is repeatedly applied. It is therefore impor-
tant for teachers to take time to observe these errors and identify which procedures 
they come from. If this is not done, they will be unable to help their pupils overcome 
the errors.
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Fig. 11.9  Student’ work 
and mistake

If the aim of teaching arithmetic is the development of understanding, research 
must be done into the informal procedures that pupils use in daily life to ensure that 
the teacher can help the child make a connection between their formal mathematics 
learning in school and their everyday practices. Baroody (1988) recommends that 
any formal expression of the type 3 × 4 = 4 + 4 + 4 + 4 is always linked to real expe-
riences that have meaning for the pupil. The pupil can then establish connections 
with her/his own informal knowledge, and the formal symbolism of the mathemat-
ics avoids becoming something hollow.

This becomes all the more significant when considering some results of research 
into how the human brain functions. For example, when asking why the results of 
memorizing multiplication tables are so mediocre (a lot of time is spent on memo-
rization and repetition of the tables, with very poor results, as pupils get confused 
and forget many of the multiplications despite the number of hours spent on it), 
Dehaene provides some very interesting clues, such as the very structure of the 
multiplication tables themselves. Furthermore, to make the difficulty experienced 
by children when learning this for the first time more understandable to adults, he 
replaces the list of numbers 0, 1, 2, 3, . . . with a list of names and replaces the mul-
tiplication with a workplace, giving a table such as the following:

•	 Carl David works in Richards-Brown Street   		     (3 × 4 = 12)
•	 Carl William works in Brown-Richards Street   		     (3 × 7 = 21)
•	 William Pierce works in Carl-Pierce Street     		       (7 × 5 = 35)

It is obvious that memorizing the results above is a very difficult task. This is 
because our memory is not structured like that of a computer. It is associative11 and 
it weaves several different connections between very different pieces of informa-
tion; this is at the same its strength and weakness.

11 Since human memory is associative, it weaves innumerable connections between very different 
pieces of information that in turn are activated regardless of whether they proceed or not, which 
happens from a very early age. When learning multiplication tables, it is vitally important that 
numerical facts are not mixed with facts relating to other operations, giving the result of a sum or 
a difference instead of a product. However, the human memory has difficulty saving the results of 
different operations separately. As a result, it is easier to notice that “2 × 4 = 9” is wrong than that 
“2 × 3 = 5” is wrong.
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As Dehaene says, it is interesting to recall the behavior of a lion when we see a 
tiger, but it is disastrous to activate knowledge of 7 + 6 or 7 × 5 when we want to 
know 7 × 6. Interference and inappropriate association are the basis of the failure to 
memorize the multiplication tables.

The errors are not random, and incorrect answers are always numbers that are on 
the multiplication tables somewhere, often in the same line or column as the result 
the pupil is looking for. Considering that our brains use continuous and approxima-
tive representation, it is reasonable that when searching our long-term memory for 
the answer to 7 × 8, the results of 7 × 9 and 6 × 8 are also activated. The brain also 
has difficulty saving additions and multiplications separately. This explains why we 
are quicker to see that “2 + 4 = 8” is wrong and slower to spot whether “2 × 4 = 6” 
is wrong. Similarly, it is easier to see that “2 × 4 = 7” is wrong than to see that 
“2 × 4 = 6” is wrong. It is also known that the difficulty in recalling a numerical fact 
from long-term memory depends particularly on the number of associations that 
cause interference—so-called interfering associations (Bideau and Lehalle, 2002)—
which vary with the development of the individual and are activated when looking 
for an answer to a problem.

About 80% of errors arising when learning the multiplication tables are of the 
type described above, and the so-called distance effect can be seen (van Hout, 
Meljac, and Fischer, 2005). For example, the error “7 × 8 = 42” has a result from the 
adjoining table (7 × 6 = 42). Only 13% of errors are not related to inverted numbers, 
such as “8 × 7 = 54”; since 54 is 6 × 9, it is not in the 8 table or the 7 table. When 
multiplication and some other operation appear together in the same class or in the 
same problem, the errors that appear are consistent with swapping the operations 
(e.g., “8 × 7 = 15” or “4 + 2 = 8”), and this type of error can account for up to 30% 
of errors. Only 7% of errors are those of the type where the answer is not related to 
the numbers or the operations, for example: “5 × 9 = 26.”

Since it is known that the brain is associative, if the table has been built and 
learned by the pupils by establishing connections between the results—as shown in 
the guidelines of PROMETAM [Proyecto Mejoramiento en la Enseñanza Técnica 
en el Área de Matemática] (Secretaría de Educación, Honduras, 2007) and described 
in classes by Professor Tsubota (2007) or in the texts of ERMEL (1993, 1995)—
activating 7 × 5 can be helpful if we know that the next answer is found by adding 
another 7. This means that if we want to be more effective with less effort, we 
should adapt the way tables are taught to what is known about how the brain stores 
and recalls information in the long-term memory, favoring semantic learning of 
multiplication tables.12 However, pupils in primary education do not in general 
spontaneously seek out this type of method, meaning that it is necessary to encour-
age discovery of the properties of multiplication.

12 The term “semantic” assumes comprehension and serves to differentiate between rote learning 
(which is the most common type and is not based on comprehension or connections) and associa-
tions between products. Semantic learning of multiplication tables uses the associative character-
istic of memory, which is useful to find, for example, 6 × 9, using procedures such as (6 × 10) − 6, 
or (6 × 6) + (6 × 3).
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Of the multiplication tables, special mention must be made of the 1 and 0 tables, 
since they can be learned by the general rules: anything multiplied by 0 is 0, and 
anything multiplied by 1 is itself. It has been shown that access to numerical facts 
does not work in this case, such that results presented as n × 1 = n and m × 0 = 0 are 
recalled from memory through selective rules that can be lost or confused, meaning 
that errors affect all the answers in the table and not just certain numerical facts, as 
is the case with the other numbers.

Some researchers, such as McCloskey and Macaruso (1994), posit that the cog-
nitive system related to numerical treatment is structured into modules and 
comprises:

•	 A comprehension system
•	 A production system
•	 An arithmetic system

The first two can in turn be divided into two subsystems, one related to Arabic 
numbers and the other to verbal names. The third has three components: knowledge 
of the operation symbols, the arithmetic procedures, and the numerical facts saved 
in long-term memory. According to this model (see Fig. 11.10), each operation has 
a network of different representations, which can easily explain the disassociation 
between operations in the minds of many schoolchildren.

Fig. 11.10  The McClosky model. (From McCloskey, 1992, p. 113)

M. del Carmen Chamorro



283

For Dehaene, each number is represented by an analogous code in the form of a 
number line, an audiovisual code, and a visual–Arabic code, and each of these codes 
is used for different tasks. Specifically, multiplications and some simple additions, 
learned routinely by memory by some pupils, are coded verbally, while the results 
of subtractions and divisions are learned and solved by the application of rules that 
involve semantic manipulation (e.g., 68 − 17 = 68 − 20 + 3 = 48 + 3 = 48 + 2 + 1 
= 51), and therefore the analogous representation of the quantities. This fact is neu-
rologically linked with tasks carried out by each of the two hemispheres of the 
brain; thus, arithmetical operations are only possible for the left hemisphere, while 
both hemispheres can recognize whether two numbers are identical and perform 
counting, though the latter is done more easily by the left hemisphere.

For the treatment of calculation difficulties, educators/teachers should insist on 
the presentation of situations (to provide activities for students) in the varieties of 
codes, use verbal, written and Arabic numerals interchangeable.

The Japanese method of teaching the multiplication tables, as is done in schools 
in many countries, also involves memorization through repetition—i.e., using ver-
bal memory to store phrases such as “three times four is twelve” easily in the mem-
ory. It should be noted that the verbal memory stores this phrase on the same level 
as the phrase “two thousand bees appeared on the honeycomb”—i.e., a sentence 
without any numerical meaning.

There are many studies, dating from 1967, that confirm Asian superiority in 
mathematics and, in particular, that of Japanese13 students. Some factors that explain 
this superiority are the following:

•	 Schoolwork is of a large quantity and high quality, with pupils dedicating consid-
erably more extracurricular time to schoolwork than South American students. In 
particular, as stated in the text cited above, they spend a lot of time not only on 
systematic work to learn arithmetic but also on solving situations that require the 
application of that arithmetic.

•	 The attitude of parents, being more demanding and ambitious with the progress 
of their children.

•	 The culture of competition within schools (the text by Isoda and Olfos (2009) 
describes this aspect very well), putting additional pressure on students to obtain 
good results in school.

•	 Motivation based on the idea that work and effort are important virtues that are 
absolutely necessary for success in later life. These aspects are clearly seen in the 
classroom studies described in the aforementioned text.

In addition to these factors, there is also the numerical language. The uniqueness 
of the Japanese14 language allows for much shorter sentences than those possible in 
Spanish, since they omit the word “times,” thus facilitating memorization.

13 In the text by Fischer (2002, pp. 215–237), several studies can be found on the implementation 
of these aspects, particularly in the USA.
14 See Isoda and Olfos (2009), p. 50.
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Fig. 11.11  Dominoes for 
connecting arrays with 
products

With regard to oral numeration, Asian systems of number words are fully regular, 
while oral numeration in Spanish is very irregular and uses the different powers of 
ten as its basis, with each one given a specific word: diez (“ten”), cien (“one hun-
dred”), mil (“one thousand”), diez mil (“ten thousand”), cien mil (“one hundred 
thousand”), un millón (“one million”), etc. Furthermore, a different word is needed 
to designate each of the numbers from zero to fifteen. The words once (“eleven”), 
doce (“twelve”), trece (“thirteen”), catorce (“fourteen”), and quince (“fifteen”) are 
plainly irregular, as are veinte (“twenty”), treinta (“thirty”), cuarenta (“forty”), cin-
cuenta (“fifty”), sesenta (“sixty”), setenta (“seventy”), ochenta (“eighty”), and 
noventa (“ninety”). Asian systems, on the other hand, are fully regular and the com-
position of a number is clearly apparent in its name; for example, the word for 
“eleven” transliterates as “ten one,” the word for “twenty-five” as “two tens and 
five,” etc. All of these make the names of the numbers easier to learn for Asian 
pupils in general and for the Japanese in particular. This oral construction of num-
bers also makes it easier to avoid many errors that commonly arise in arithmetic, by 
combining the cardinal meaning with the name of the number.

However, doing arithmetic in Spanish requires a pre-established connection 
between the written number and the number words used in oral numeration (since 
the multiplication tables are learned orally)—i.e., understanding the quantitative 
meaning of the written form, which is evidently more complex (see Fig. 11.11).

11.5 � Do We Have to Teach Algorithms?

It is evident that learning arithmetic algorithms is more costly in terms of classroom 
hours and the effort and failure of pupils, leading us to ask the question as to whether 
this effort is worthwhile in mathematics teaching.
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Before answering this question, we would like to examine one of the most sig-
nificant causes of pupils’ failure in arithmetic, which goes unnoticed by many 
teachers: the lack of understanding of decimal numbers.

The positional principle that governs decimal numbers15 is based on a consider-
able mathematical apparatus. It should not be forgotten that although all numbers 
involve an expression of a polynomial of 10 to different powers, their normal abbre-
viated written form, which removes the powers and leaves only the coefficients, 
works with a norm for reading and writing the numbers based on the value of the 
position—i.e., it is the position that allows us to interpret the value of the number.

Kamii conducted an experiment to determine children’s level of comprehension 
of the place value (Kamii, 1985). Basically, the test consisted of asking children to 
associate the number 16 with a number of corresponding tokens and then indicate 
how many tokens each of the numerals 1 and 6 represented in a drawing. The results 
were surprising: only 51% of the fourth-year pupils, 60% of the sixth-year pupils, 
and 78% of the eighth-year pupils drew ten tokens to represent the 1 in 16.

It is clear that, as such, a large percentage of pupils have difficulties understand-
ing place value, even in older age groups. The number of pupils who will fail in 
arithmetic, particularly in applying classical arithmetic algorithms, will also be very 
large, since they are almost all based on the properties of decimal numbers. The 
solution that many pupils find to this problem is rote learning without understanding 
the steps of the algorithm; thus, they lose control over what they are doing. For 
them, the path, the act of placing numbers in classical multiplication, going to one 
place if there is a zero in the multiplier, etc., are purely mechanical acts, lacking 
explanation; it is done like that merely because it is, and, as Baroody states:

Although children recall basic information learnt by memory, this does not guarantee intel-
ligent use of that information. Deep down, many of them learn arithmetic but do not learn 
mathematics. These problems are made worse when the exercises and repetitions lack any 
interest and meaning. All too often, mass teaching becomes an obstacle to meaningful 
learning, thought, and problem solving (Baroodi, 1988, p. 55).

We work to help students learn automated procedures mechanically as arithmeti-
cal algorithms (learning arithmetic), but they do not know how they are built and 
what they are for (learning mathematics). The pupils accumulate easily assessable 
knowledge, but they cannot use it in a meaningful way because it is not part of their 
interests or the solution to any problem. Adding to the difficulties that children have, 
for the reasons detailed above, when relating the name of a number to its cardinal 
meaning, the panorama facing teachers when teaching algorithms is not promising.

We should also ask ourselves about the usefulness of algorithms in daily life and 
their frequency of use. Many of us have never done a multiplication with a three-digit 
number after leaving school, and when it has been necessary, we have used a calcula-
tor or an estimate, depending on whether an exact answer was needed. This cannot be 
denied, but it is not sufficient to conclude that schools should adopt measures to pro-
mote other type of arithmetic, both mental and use of a calculator, instead of spending 
time on learning algorithms.

15 See Isoda and Olfos (2009), p. 50.
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In our opinion, using a written arithmetic algorithm to multiply numbers with 
three digits is a waste of time and takes a great deal of effort for most pupils. 
However, these same pupils can acquire knowledge of number theory solely through 
observation, which can be done simply by letting them use a calculator freely. This 
can be enhanced by discoveries guided by questions proposed by the teacher: magic 
squares, numbers whose squares are palindromes, numbers whose products do not 
change when the numbers are written backward (e.g., 36 × 84 = 63 × 48), random 
numbers, the pole of a number, etc.

For multiplication of two-digit numbers by two-digit numbers, we recall the use 
of the distributive property and the automation of simple results, mainly multiples 
of 10, later adding the results without the need for putting them in place, as is done 
with the Fibonacci method.

To calculate 36 × 28, we can do the following:

	

36 28 30 6 20 8 30 20 30 8 6 20 6 8

30 20 3 2 10 10 600

× = +( )× +( ) = × + × + × + ×
× = × × × =

330 8 3 8 10 24 10 240

6 20 6 2 10 12 10 120

6 8 48

600 240 1

× = × × = × =
× = × × = × =
× =

+ + 220 48 960 48 1008+ = + = 	

or use mental arithmetic strategies, depending on the level achieved by the pupils—
for example, using doubles which are often automated easily.

	

36 28 36 30 36 2 36 20 36 10 36 2

720 360 72 108

× = ×( ) − ×( ) = ×( ) + ×( ) − ×( ) =
+ − = 00 721008

36 28 40 28 4 28 28 2 2 10 28 2 2

56 2 10

−
× = ×( ) − ×( ) = × × ×( ) − × ×( ) =
× ×(( ) − ×( ) = − −56 2 1120 112 1008

	

Other nonconventional algorithms, such as Egyptian multiplication, are based on 
the process of doubling. In the case of the multiplication above, we have the following:

1

2

4

8

16

28

___

36

72

144

288

576

1008

____

1

2

4

8

16

32

36

____

28

56

112

224

448

896

1008

_____
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Fig. 11.13  Diagrammatic 
explanation of Russian 
multiplication

The Russian peasant algorithm. 

* Write each number at the head of a column.
* Double the number in the first column, and halve the 
number in the second column.
* If the number in the second column is odd, divide it by 
two and drop the remainder.
* If the number in the second column is even, cross out 
that entire row.
* Keep doubling, halving, and crossing out until the 
number in the second column is 1.
* Add up the remaining numbers in the first column. 
* The total is the product of your original numbers.

Fig. 11.12  Russian peasant multiplication algorithm

In the first case, we double 36, obtaining 4, 8, and 16 times 36 (in bold text), 
which can then be summed to find 28 times 36. On the right we can see that the 
result is the same if we double 28, obtaining 4 and 32 times 28, which are summed 
to give 36 times 28.

The diagram below is also useful, Fig. 11.13, as it can be followed mentally to 
find the product of two two-digit numbers (c.f. Fig. 11.12). For numbers with more 
than two digits, we believe that mental arithmetic is not appropriate; a calculator is.

If we apply the diagram above to 28 × 36, we have:

•	 Units: 8  ×  6  =  48; we write the “8” and carry the 4 to be added to the tens 
figure.

•	 Tens: 2 × 6 = 12, 3 × 8 = 24, 12 + 24 = 36, 36 + 4 = 40; we write the “0” and carry 
the 4 to be added to the hundreds.

•	 Hundreds: 2 × 3 = 6, 6 + 4 = 10; we write the “10”.

The result is 1008. The process can be done mentally, noting only the final result, 
but we can aid the process with a pencil and paper, writing down the intermediary 
steps, as described above.

In conclusion, we are left only to underline one of the ideas already described 
above: that arithmetic is not an end in itself but a means of solving problems quickly 
and effectively. Therefore, learning numerical facts or algorithms to the detriment of 
understanding and the meaning of the operation should be avoided at all costs. 
Attaining speed with arithmetic should not be an objective in school, and using 
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fingers or other objects should not be seen as embarrassing or something to be dis-
couraged in pupils. We can learn from the results of neuropsychology research, 
making us more understanding and tolerant of pupils’ mistakes, allowing us to adapt 
our teaching methods to how the brain actually works, as this is the root of many 
failures in learning arithmetic.
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