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Abstract. We present the first stable release of our tool Q3B for decid-
ing satisfiability of quantified bit-vector formulas. Unlike other state-of-
the-art solvers for this problem, Q3B is based on translation of a formula
to a bdd that represents models of the formula. The tool also employs
advanced formula simplifications and approximations by effective bit-
width reduction and by abstraction of bit-vector operations. The paper
focuses on the architecture and implementation aspects of the tool, and
provides a brief experimental comparison with its competitors.

1 Introduction

Advances in solving formula satisfiability modulo theories (smt) achieved during
the last few decades enabled significant progress and practical applications in the
area of automated analysis, testing, and verification of various systems. In the
case of software and hardware systems, the most relevant theory is the theory
of fixed-sized bit-vectors, as these systems work with inputs expressed as bit-
vectors (i.e., sequences of bits) and perform bitwise and arithmetic operations
on bit-vectors. The quantifier-free fragment of this theory is supported by many
general-purpose smt solvers, such as CVC4 [1], MathSAT [7], Yices [10], or Z3 [9]
and also by several dedicated solvers, such as Boolector [21] or STP [12]. How-
ever, there are some use-cases where quantifier-free formulas are not natural or
expressive enough. For example, formulas containing quantifiers arise naturally
when expressing loop invariants, ranking functions, loop summaries, or when
checking equivalence of two symbolically described sets of states [8,13,17,18,24].
In the following, we focus on smt solvers for quantified bit-vector formulas. In
particular, this paper describes the state-of-the-art smt solver Q3B including its
implementation and the inner workings.

Solving of quantified bit-vector formulas was first supported by Z3 in 2013 [25]
and for a limited set of exists/forall formulas with only a single quantifier alter-
nation by Yices in 2015 [11]. Both of these solvers decide quantified formulas by
quantifier instantiation, in which universally quantified variables in the Skolem-
ized formula are repeatedly instantiated by ground terms until the resulting
quantifier-free formula is unsatisfiable or a model of the original formula is found.
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In 2016, we proposed a different approach for solving quantified bit-vector for-
mulas: by using binary decision diagrams (bdds) and approximations [14]. For
evaluation of this approach, we implemented an experimental smt solver called
Q3B, which outperformed both Z3 and Yices. Next solver that was able to solve
quantified bit-vector formulas was Boolector in 2017, using also an approach
based on quantifier instantiation [22]. Unlike Z3, in which the universally quan-
tified variables are instantiated only by constants or subterms of the original
formula, Boolector uses a counterexample-guided synthesis approach, in which a
suitable ground term for instantiation is synthesized based on the defined gram-
mar. Thanks to this, Boolector was able to outperform Q3B and Z3 on certain
classes of formulas. More recently, in 2018, support of quantified bit-vector for-
mulas has also been implemented into CVC4 [20]. The approach of CVC4 is
also based on quantifier instantiation, but instead of synthesizing terms given by
the grammar as Boolector, CVC4 uses predetermined rules based on invertibility
conditions, which directly give terms that can prune many spurious models with-
out using potentially expensive counterexample-guided synthesis. The authors
of CVC4 have shown that this approach outperforms Z3, CVC4, and the original
Q3B. However, Q3B has been substantially improved since the original exper-
imental version. In 2017, we extended it with simplifications of quantified bit-
vector formulas using unconstrained variables [15]. Further, in 2018, we added
the experimental implementation of abstractions of bit-vector operations [16].
With these techniques, Q3B is able to decide more formulas than Z3, Boolector,
and CVC4. Besides the theoretical improvements, Q3B was also improved in
terms of stability, ease of use, technical parts of the implementation, and com-
pliance with the smt-lib standard. This tool paper presents the result of these
improvements: Q3B 1.0, the first stable version of Q3B.

We briefly summarize the smt solving approach of Q3B. As in most of mod-
ern smt solvers, the input formula is first simplified using satisfiability-preserving
transformations that may reduce the size and complexity of the formula. The sim-
plified formula is then converted to abinary decision diagram (bdd) that represents
all assignments satisfying the formula, i.e., the models of the formula. If the bdd
represents at least one model, we say that the bdd is satisfiable and it implies satis-
fiability of the formula. If the bdd represents the empty set of models, we say that
it is unsatisfiable and so is the formula. Unfortunately, there are formulas for which
the corresponding bdd (or some of the intermediate bdds that appear during its
computation) is necessarily exponential in the number of bits in the formula. For
example, this is the case for formulas that contain multiplication of two bit-vector
variables [5]. To be able to deal with such formulas, Q3B computes in parallel also
bdds underapproximating and overapproximating the original set of models, i.e.,
bdds representing subsets and supersets of the original set of models, respectively.
The approximating bdds may be much smaller in size than the precise bdd, espe-
cially if the approximation is very rough. Still, they can be used to decide satisfi-
ability of the original formula. If an overapproximating bdd is unsatisfiable, the
original formula is also unsatisfiable. If the overapproximating bdd is satisfiable,
we take one of its models, i.e., an assignment to the top-level existential variables of
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the formula, and check whether it is a model of the original formula. If the answer is
positive, the original formula is satisfiable. In the other case, we build a more pre-
cise overapproximating bdd. Underapproximating bdds are utilized analogously.
The only difference is that for unsatisfiable underapproximating bdd, we check the
validity of a countermodel, i.e., an assignment to the top-level universal variables
that makes the formula unsatisfiable. The approach is depicted in Fig. 1.
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Fig. 1. High-level overview of the smt solving approach used by Q3B. The three shaded
areas are executed in parallel and the first result is returned.

Q3B currently supports two ways of computing the approximating bdds from
the input formula. First of these are variable bit-width approximations in which the
effective bit-width of some variables is reduced. In other words, some of the vari-
ables are represented by fewer bits and the rest of the bits is set to zero bits, one
bits, or the signbit of the reducedvariable.This approachwas originally usedby the
smt solvers uclid [6] and Boolector [21]. Q3B extends this approach to quantified
formulas: if bit-widths of only existentially quantified variables are reduced, the
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resulting bdd is underapproximating; if bit-widths of only universally quantified
variables are reduced, the resulting bdd is overapproximating. The second way to
obtain an approximation is bit-vector operation abstraction [16], during which the
individual bit-vector operations may not compute all bits of the result, but produce
some do-not-know bits if the resulting bdds would exceed a given number of nodes.
An underapproximating bdd then represents assignments that satisfy the formula
for all possible values of these do-not-know bits. Analogously, an overapproximat-
ing bdd represents all assignments that satisfy the formula for some value of the
do-not-know bits. Q3B also supports a combination of these two methods, in which
both the effective bit-with of variables is reduced and the limit on the size of bdds
is imposed. During an approximation refinement, either the effective bit-width or
the size limit is increased, based on the detected cause of the imprecision.
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Fig. 2. Architecture of Q3B. Components in the shaded box are parts of Q3B, the
other components are external.

2 Architecture

This section describes the internal architecture of Q3B. The overall structure
including internal and external components and the interactions between them
is depicted in Fig. 2. We explain the purpose of the internal components:

SMT-LIB Interpreter (implemented in SMTLIBInterpreter.cpp) reads the
input file in the smt-lib format [3], which is the standard input format for
smt solvers. The interpreter executes all the commands from the file. In
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particular, it maintains the assertion stack and the options set by the user,
calls solver when check-sat command is issued, and queries Solver if the
user requires the model with the command get-model.

Formula Simplifier (implemented in FormulaSimplifier.cpp) provides inter-
face for all applied formula simplifications, in particular miniscoping, conver-
sion to negation normal form, pure literal elimination, equality propagation,
constructive equality resolution (cer) [14], destructive equality resolution
(der) [25], simple theory-related rewriting, and simplifications using uncon-
strained variables. Most of these simplifications are implemented directly in
this component; only cer, der, and majority of the theory-related rewritings
are performed by calling Z3 api and simplifications using unconstrained vari-
ables are implemented in a separate component of Q3B. The simplifier also
converts top-level existential variables to uninterpreted constants, so their
values are also included in a model. Some simplifications that could change
models of the formula are disabled if the user enables model generation, i.e.,
sets :produce-models to true.

Unconstrained Variable Simplifier (implemented in UnconstrainedVari-
ableSimplifier.cpp) provides simplifications of formulas that contain
unconstrained variables, i.e., variables that occur only once in the formula.
Besides previously published unconstrained variable simplifications [15],
which were present in the previous versions of Q3B, this component now
also provides new goal-directed simplifications of formulas with unconstrained
variables. In these simplifications, we aim to determine whether a subterm
containing an unconstrained variable should be minimized, maximized, sign
minimized, or sign maximized in order to satisfy the formula. If the subterm
should be minimized and contains an unconstrained variable, the term is
replaced by a simpler term that gives the minimal result that can be achieved
by any value of the unconstrained variable. Similarly for maximization, sign
minimization, and sign maximization.

Solver (implemented in Solver.cpp) is the central component of our tool. It calls
formula simplifier and then creates three threads for the precise solver, the
underapproximating solver, and the overapproximating solver. It also controls
the approximation refinement loops of the approximating solvers. Finally, it
returns the result of the fastest thread and stores the respective model, if the
result was sat.

Formula to BDD Transformer (implemented in the file ExprToBDDTrans-
former.cpp) performs the actual conversion of a formula to a bdd. Each
subterm of the input formula is converted to a vector of bdds (if the sub-
term’s sort is a bit-vector of width n then the constructed vector contains
n bdds, each bdd represents one bit of the subterm). Further, each subfor-
mula of the input formula is converted to a bdd. These conversions proceed by
a straightforward bottom-up recursion on the formula syntax tree. The trans-
former component calls an external library to compute the effect of logical
and bit-vector operations on bdds and vectors of bdds, respectively. Besides
the precise conversion, the transformer can also construct overapproximat-
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ing and underapproximating bdds. Precision of approximations depends on
parameters set by the solver component.

Cache (implemented as a part of ExprToBDDTransformer.cpp) maintains for
each converted subformula and subterm the corresponding bdd or a vector
of bdds, respectively. Each of the three solvers has its own cache. When an
approximating solver increases precision of the approximation, entries of its
cache that can be affected by the precision change are invalidated. All the
caches are internally implemented by hash-tables.

3 Implementation

Q3B is implemented in C++17, is open-source and available under MIT license
on GitHub: https://github.com/martinjonas/Q3B. The project development
process includes continuous integration and automatic regression tests.

Q3B relies on several external libraries and tools. For representation and
manipulation with bdds, Q3B uses the open-source library cudd 3.0 [23].
Since cudd does not support bit-vector operations, we use the library by Peter
Navrátil [19] that implements bit-vector operations on top of cudd. The algo-
rithms in this library are inspired by the ones in the bdd library BuDDy1 and
they provide a decent performance. Nevertheless, we have further improved its
performance by several modifications. In particular, we added a specific code for
handling expensive operations like bit-vector multiplication and division when
arguments contain constant bdds. This for example considerably speeds up mul-
tiplication whenever one argument contains many constant zero bits, which is a
frequent case when we use the variable bit-width approximation fixing some bits
to zero. Further, we have fixed few incorrectly implemented bit-vector operations
in the original library. Finally, we have extended the library with the support
for do-not-know bits in inputs of the bit-vector operations and we have imple-
mented abstract versions of arithmetic operations that can produce do-not-know
bits when the result exceeds a given number of bdd nodes.

For parsing the input formulas in smt-lib format, Q3B uses antlr parser
generated from the grammar2 for smt-lib 2.6 [2]. We have modified the gram-
mar to correctly handle bit-vector numerals and to support push and pop com-
mands without numerical argument. The parser allows Q3B to support all bit-
vector operations and almost all smt-lib commands except get-assertions,
get-assignment, get-proof, get-unsat-assumptions, get-unsat-core, and
all the commands that work with algebraic data-types. This is in sharp contrast
with the previous experimental versions of Q3B, which only collected all the
assertions from the input file and performed the satisfiability check regardless
of the rest of the commands and of the presence of the check-sat command.
The reason for this was that the older versions parsed the input file using the
Z3 C++ api, which can provide only the list of assertions, not the rest of the
smt-lib script. Thanks to the new parser, Q3B 1.0 can also provide the user
1 https://sourceforge.net/projects/buddy/.
2 https://github.com/julianthome/smtlibv2-grammar.

https://github.com/martinjonas/Q3B
https://sourceforge.net/projects/buddy/
https://github.com/julianthome/smtlibv2-grammar
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with a model of a satisfiable formula after calling get-model; this important
aspect of other smt solvers was completely missing in the previous versions.

On the other hand, C++ api of the solver Z3 is still used for internal repre-
sentation of parsed formulas. The Z3 C++ api is also used to perform manipu-
lations with formulas, such as substitution of values for variables, and some of
the formula simplifications. Note that these are the only uses of Z3 api in Q3B
during solving the formula; no actual smt- or sat-solving capabilities of Z3 are
used during the solving process.

Some classes of Q3B, in particular Solver, FormulaSimplifier, and
UnconstrainedVariableSimplifier, expose a public C++ api that can be
used by external tools for smt solving or just performing formula simplifications.
For example, Solver exposes method Solve(formula, approximationType),
which can be used to decide satisfiability by the precise solver, the underapproxi-
mating solver, or the overapproximating solver. Solver also exposes the method
SolveParallel(formula), which simplifies the input formula and runs all three
of these solvers in parallel and returns the first result as depicted in Fig. 1.

4 Experimental Evaluation

We have evaluated the performance of QB3 1.0 and compared it to the lat-
est versions of smt solvers Boolector (v3.0), CVC4 (v1.6), and Z3 (v4.8.4). All
tools were used with their default settings except for CVC4, where we used the
same settings as in the paper that introduces quantified bit-vector solving in
CVC4 [20], since they give better results than the default CVC4 settings. As
the benchmark set, we have used all 5751 quantified bit-vector formulas from
the smt-lib repository. The benchmarks are divided into 8 distinct families of
formulas. We have executed each solver on each benchmark with cpu time limit
20 min and ram limit of 8 GiB. All the experiments were performed in a Ubuntu
16.04 virtual machine within a computer equipped with Intel(R) Core(TM)
i7-8700 CPU @ 3.20 GHz cpu and 32 GiB of ram. For reliable benchmarking
we employed BenchExec [4], a tool that allocates specified resources for a pro-
gram execution and precisely measures their usage. All scripts used for running
benchmarks and processing their results, together with detailed descriptions and
some additional results not presented in the paper, are available online3.

Table 1 shows the numbers of benchmarks in each benchmark family solved
by the individual solvers. Q3B is able to solve the most benchmarks in
benchmark families 2017-Preiner-scholl-smt08, 2017-Preiner-tptp, 2017-Preiner-
UltimateAutomizer, 2018-Preiner-cav18, and wintersteiger, and it is competitive
in the remaining families. In total, Q3B also solves more formulas than each of
the other solvers: 116 more than Boolector, 83 more than CVC4, and 139 more
than Z3. Although the numbers of solved formulas for the solvers seem fairly
similar, the cross-comparison in Table 2 shows that the differences among the
individual solvers are actually larger. For each other solver, there are at least

3 https://github.com/martinjonas/q3b-artifact.

https://github.com/martinjonas/q3b-artifact
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Table 1. For each solver and benchmark family, the table shows the number of bench-
marks from the given family solved by the given solver. The column Total shows the
total number of benchmarks in the given family. The last line provides the total cpu
times for the benchmarks solved by all four solvers.

Family Total Boolector CVC4 Q3B Z3

2017-Preiner-keymaera 4035 4022 3998 4009 4031
2017-Preiner-psyco 194 193 190 182 194
2017-Preiner-scholl-smt08 374 312 248 319 272
2017-Preiner-tptp 73 69 73 73 73
2017-Preiner-UltimateAutomizer 153 152 151 153 153
20170501-Heizmann-UltimateAutomizer 131 30 128 124 32
2018-Preiner-cav18 600 553 565 565 553
wintersteiger 191 163 174 185 163

Total 5751 5494 5527 5610 5471

cpu time [s] 7794 5877 19853 4055

Table 2. For all pairs of the solvers, the table shows the number of benchmarks
that were solved by the solver in the corresponding row, but not by the solver in the
corresponding column. The column Uniquely solved shows the number of benchmarks
that were solved only by the given solver.

Boolector CVC4 Q3B Z3 Uniquely solved

Boolector 0 123 69 78 8
CVC4 156 0 60 171 6
Q3B 185 143 0 208 25
Z3 55 115 69 0 6

143 benchmarks that can be solved by Q3B but not by the other solver. We
think this shows the importance of developing an smt solver based on bdds and
approximations besides the solvers based on quantifier instantiation.

5 Conclusions and Future Work

We have described the architecture and inner workings of the first stable version
of the state-of-the-art smt solver Q3B. Experimental evaluation on all quanti-
fied bit-vector formulas from smt-lib repository shows that this solver slightly
outperforms other state-of-the-art solvers for such formulas.

As future work, we would like to drop the dependency on the Z3 api: namely
to implement our own representation of formulas and reimplement all the sim-
plifications currently outsourced to Z3 api directly in Q3B. We also plan to
extend some simplifications with an additional bookkeeping needed to construct
a model of the original formula. With these extensions, all simplifications could
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be used even if the user wants to get a model of the formula. We would also like
to implement production of unsatisfiable cores since they are also valuable for
software verification.
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