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Abstract. Elementary function calls are a common feature in numeri-
cal programs. While their implementations in mathematical libraries are
highly optimized, function evaluation is nonetheless very expensive com-
pared to plain arithmetic. Full accuracy is, however, not always needed.
Unlike arithmetic, where the performance difference between for example
single and double precision floating-point arithmetic is relatively small,
elementary function calls provide a much richer tradeoff space between
accuracy and efficiency. Navigating this space is challenging, as guar-
anteeing the accuracy and choosing correct parameters for good perfor-
mance of approximations is highly nontrivial. We present a fully auto-
mated approach and a tool which approximates elementary function calls
inside small programs while guaranteeing overall user given error bounds.
Our tool leverages existing techniques for roundoff error computation
and approximation of individual elementary function calls and provides
an automated methodology for the exploration of parameter space. Our
experiments show that significant efficiency improvements are possible
in exchange for reduced, but guaranteed, accuracy.

1 Introduction

Numerical programs face an inherent tradeoff between accuracy and efficiency.
Choosing a larger finite precision provides higher accuracy, but is generally more
costly in terms of memory and running time. Not all applications, however, need
a very high accuracy to work correctly. We would thus like to compute the results
with only as much accuracy as is needed, in order to save resources.

Navigating this tradeoff between accuracy and efficiency is challenging. First,
estimating the accuracy, i.e. bounding roundoff and approximation errors, is non-
trivial due to the complex nature of finite-precision arithmetic which inevitably
occurs in numerical programs. Second, the space of possible implementations is
usually prohibitively large and thus cannot be explored manually.

Today, users can choose between different automated tools for analyzing
accuracy of floating-point programs [7,8,11,14,18,20,26] as well as for choosing
between different precisions [5,6,10]. The latter tools perform mixed-precision
tuning, i.e. they assign different floating-point precisions to different operations,
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and can thus improve the performance w.r.t. a uniform precision implemen-
tation. The success of such an optimization is, however, limited to the case
when uniform precision is just barely not enough to satisfy a given accuracy
specification.

Another possible target for performance optimizations are elementary func-
tions (e.g. sin, exp). Users by default choose single- or double-precision 1ibm
library function implementations, which are fully specified in the C language
standard (ISO/IEC 9899:2011) and provide high accuracy. Such implementa-
tions are, however, expensive. When high accuracy is not needed, we can save
significant resources by replacing 1ibm calls by coarser approximations, opening
up a larger, and different tradeoff space than mixed-precision tuning. Unfortu-
nately, existing automated approaches [1,25] do not provide accuracy guarantees.

On the other hand, tools like Metalibm [3] approximate individual elementary
functions by polynomials with rigorous accuracy guarantees given by the user.
They, however, do not consider entire programs and leave the selection of its
parameters to the user, limiting its usability mostly to experts.

We present an approach and a tool which leverages the existing whole-program
error analysis of Daisy [8] and Metalibm’s elementary function approximation to
provide both sound whole-program guarantees as well as efficient C implementa-
tions for floating-point programs with elementary function calls. Given a target
error specification, our tool automatically distributes the error budget among uni-
form single or double precision arithmetic operations and elementary functions,
and selects a suitable polynomial degree for their approximation.

We have implemented our approach inside the tool Daisy and compare the
performance of generated programs against programs using libm on examples
from literature. The benchmarks spend on average 38% and up to 50% of time
for evaluation of the elementary functions. Our tool improves the overall perfor-
mance by on average 14% and up to 25% when approximating each elementary
function call individually, and on average 17% and up to 31% when approximat-
ing compound function calls. These improvements were achieved solely by opti-
mizing approximations to elementary functions and illustrate pertinence of our
approach. These performance improvements incur overall whole-program errors
which are only 2-3 magnitudes larger than double-precision implementations
using libm functions and are well below the errors of single-precision implemen-
tations. Our tool thus allows to effectively trade performance for larger, but
guaranteed, error bounds.

Contributions. In summary, in this paper we present: (1) the first approximation
technique for elementary functions with sound whole-program error guarantees,
(2) an experimental evaluation on benchmarks from literature, and (3) an imple-
mentation, which is available at https://github.com/malyzajko/daisy.

Related Work. Several static analysis tools bound roundoff errors of floating-
point computations [7,18,20,26], assuming libm implementations, or verify the
correctness of several functions in Intel’s 1ibm library [17]. Muller [21] provides
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a good overview of the approximation of elementary functions. Approaches for
improving the performance of numerical programs include mixed-precision tun-
ing [5,6,10,16,24], and autotuning, which performs low-level real-value semantics-
preserving transformations [23,27]. These leverage a different part of the trade-
off space than 1ibm approximation and are thus orthogonal. Herbie [22] and Sar-
dana [7] improve accuracy by rewriting the non-associative finite-precision arith-
metic, which is complementary to our approach. Approaches which approximate
entire numerical programs include MCMC search [25], enumerative program syn-
thesis [1] and neural approximations [13]. Accuracy is only checked on a small set
of sample inputs and is thus not guaranteed.

2  Owur Approach

We explain our approach using the following example [28] computing a forward
kinematics equation and written in Daisy’s real-valued specification language:

def forwardk2jY(thetal: Real, theta2: Real): Real = {
require(-3.14 <= thetal && thetal <= 3.14 && -3.14 <= theta2 && theta2 <= 3.14)
val 11: Real = 0.5; val 12: Real = 2.5
11 * sin(thetal) + 12 * sin(thetal + theta2)
} ensuring(res => res +/- le-11)

Although this program is relatively simple, it still presents an opportunity for
performance savings, especially when it is called often, e.g. during the motion of
a robotics arm. Assuming double-precision floating-point arithmetic and library
implementations for sine, Daisy’s static analysis determines the worst-case abso-
lute roundoff error of the result to be 3.44e-15. This is clearly a much smaller
error than what the user requested (1e-11) in the postcondition (ensuring clause).

The two elementary function calls to sin account for roughly 40.7% of the
overall running time. We can save some of this running time using polynomial
approximations, which our tool generates in less than 6 min. The new double pre-
cision C implementation is roughly 15.6% faster than one with 1ibm!' functions,
i.e. using around 40% of the available margin. This is a noteworthy performance
improvement, considering that we optimized uniquely the evaluation of elemen-
tary functions. The actual error of the approximate implementation is 1.56e-12,
i.e. roughly three orders of magnitude higher than the 1libm error. This error is
still much smaller than if we had used a uniform single precision implementation,
which incurs a total error of 1.85e-6.

We implement our approach inside the Daisy framework [8], combining
Daisy’s static dataflow analysis for bounding finite-precision roundoff errors,
Metalibm’s automated generation of efficient polynomial approximations, as
well as a novel error distribution algorithm. Our tool furthermore automatically
selects a suitable polynomial degree for approximations to elementary functions.

! There are various different implementations of 1ibm that depend on the operating
system and programming language. Here when referring to 1ibm we mean the GNU
libc implementation (https://www.gnu.org/software/libc/).
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Unlike previous work, our tool guarantees that the user-specified error is satis-
fied. It soundly distributes the overall error budget among arithmetic operations
and libm calls using Daisy’s static analysis. Metalibm uses the state-of-the art
minimax polynomial approximation algorithm [2] and Sollya [4] and Gappa [12]
to bound errors of their implementations. Given a function, a target relative
error bound and implementation parameters, Metalibm generates C code. Our
tool does not guarantee to find the most efficient implementation; the search
space of implementation and approximation choices is highly complex and dis-
crete, and it is thus infeasible to find the optimal parameters.

The input to our tool is a straight-line program? with standard arithmetic
operators (=, —, x, /) as well as the most commonly used elementary functions
(sin, cos, tan,log ,exp, \/) The user further specifies the domains of all inputs,
together with a target overall absolute error which must be satisfied. The output
is C code with arithmetic operations in uniform single or double precision, and
libm approximations in double precision (Metalibm’s only supported precision).

Algorithm. We will use ‘program’ for the entire expression, and ‘function’ for
individual elementary functions. Our approach works in the following steps.

Step 1 We re-use Daisy’s frontend which parses the input specification. We
add a pre-processing step, which decomposes the abstract syntax tree (AST) of
the program we want to approximate such that each elementary function call is
assigned to a fresh local variable. This transformation eases the later replacement
of the elementary functions with an approximation.

Step 2 We use Daisy’s roundoff error analysis on the entire program, assum-
ing a libm implementation of elementary functions. This analysis computes a
real-valued range and a worst-case absolute roundoff error bound for each subex-
pression in the AST, assuming uniform single or double precision as appropriate.
We use this information in the next step to distribute the error and to determine
the parameters for Metalibm for each function call.

Step 3 This is the core step, which calls Metalibm to generate a (piece-
wise) polynomial approximation for each elementary function which was assigned
to a local variable. Each call to Metalibm specifies the local target error for
each function call, the polynomial degree and the domain of the function call
arguments. To determine the argument domains, we use the range and error
information obtained in the previous step. Our tool tries different polynomial
degrees and selects the fastest implementation. We explain our error distribution
and polynomial selection further below.

Metalibm generates efficient double-precision C code including argument
reduction (if applicable), domain splitting, and polynomial approximation with
a guaranteed error below the specified target error (or returns an error). Met-
alibm furthermore supports approximations with lookup tables, whose size the
user can control manually via our tool frontend as well.

2 All existing approaches for analysing floating-point roundoff errors which handle
loops or conditional branches, reduce the reasoning about errors to straight-line code,
e.g. through loop invariants [9, 14] or loop unrolling [7], or path-wise analysis [7,9,15].
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Step 4 Our tool performs roundoff error analysis again, this time taking into
account the new approximations’ precise error bounds reported by Metalibm.
Finally, Daisy generates C code for the program itself, as well as all necessary
headers to link with the approximation generated by Metalibm.

Error Distribution. In order to call Metalibm, Daisy needs to determine the
target error for each 1ibm call. Recall that the user of our tool only specifies the
total error at the end of the program. Hence, distributing the total error budget
among arithmetic operations and (potentially several) elementary function calls
is a crucial step. Consider again our running example which has two elementary
function calls. Our tool distributes the error budget as follows:

[f(@) = F@)| < |f (@) = fu(@)] + | fr(2) = fal@)| + | fole) = F(2)]

where we denote by f the real-valued specification of the program; fl and fg have
one and two elementary function calls approximated, respectively, and arithmetic
is considered exact; and f is the final finite-precision implementation.

Daisy first determines the budget for the finite-precision roundoff error
(|f2(z) — f(&)|) and then distributes the remaining part among 1ibm calls. At
this point, Daisy cannot compute |fa(z) — f()| exactly, as the approximations
are not available yet. Instead, it assumes 1ibm-based approximations as baseline.

Then, Daisy distributes the remaining error budget either equally among
the elementary function calls, or by taking into account that the approximation
errors are propagated differently through the program. This error propagation
is estimated by computing the derivative w.r.t. to each elementary function call
(which gives an estimation of the conditional number). Daisy computes partial
derivatives symbolically and maximizes them over the specified input domain.

Finally, we obtain an error budget for each libm call, representing the total
error due to the elementary function call at the end of the program. For calling
Metalibm, however, we need the local error at the function call site. Due to error
propagation, these two errors can differ significantly, and may lead to overall
errors which exceed the error bound specified by the user. We estimate the error
propagation using a linear approximation based on derivatives, and use this
estimate to compute a local target error from the total error budget.

Since Metalibm usually generates approximations with slightly tighter error
bounds than asked for, our tool performs a second roundoff analysis (step 4),
where all errors (smaller or larger) are correctly taken into account.

Polynomial Degree Selection. The polynomial degree significantly and in a dis-
crete way influences the efficiency of approximations, so that optimal prediction
is infeasible. Hence, our tool performs a linear search, using the (coarse) esti-
mated running time reported by Metalibm (obtained with a few benchmarking
runs) to select the approximation with the smallest estimated running time. The
search stops either when the estimated running time is significantly higher than
the current best, or when Metalibm times out.

We do not automatically exploit other Metalibm’s parameters, such as min-
imum subdomain width for splitting, since they give fine-grained control that is
not suitable for general automatic implementations.
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3 Experimental Evaluation

We evaluate our approach in terms of accuracy and performance on bench-
marks from literature [9,19,28] which include elementary function calls, and
extend them with the examples rodriguesRotation® and ex2* and ex3_d, which
are problems from a graduate analysis textbook. While they are relatively short,
they represent important kernels usually employing several elementary function
calls*. We base target error bounds on roundoff errors of a 1ibm implementation:
middle and large errors, each of which is roughly three and four orders of mag-
nitudes larger than the libm-based bound, respectively. By default, we assume
double 64 bit precision.

Our tool provides an automatic generation of benchmarking code for each
input program. Each benchmarking executable runs the Daisy-generated code
on 107 random inputs from the input domain and measures performance in the
number of processor clock cycles. Of the measured number of cycles we discard
the highest 10%, as we have observed these to be outliers.

Ezperimental Results. By default, we approximate individual elementary func-
tion calls separately, use equal error distribution and allow table-based approxi-
mations with an 8-bit table index. For large errors we also measure performance
for: (i) default settings but with the derivative-based errors distribution; (ii)
default settings but without table usage; (iii) default settings but with com-
pound calls with depth 1 and depth co (approximation ‘as much as possible’).

Table 1 shows the performance improvements of approximated code w.r.t.
1ibm based implementations of our benchmarks. We compare against 1ibm only,
as no approximation or synthesis tool provides error guarantees. By removing
libm calls in initial programs we roughly estimate the elementary function over-
head (second column) and give an idea for the margin of improvement. Figure 1
illustrates the overall improvement that we obtain for each benchmark (the
height of the bars) and the relative distribution of the running time between
arithmetic (blue) and elementary functions (green), for large errors with default
settings but approximate compound calls with depth = oo.

Our tool generates code with significant performance improvements for most
functions and often reduces the time spent for the evaluation of elementary
functions by a factor of two. As expected, the improvements are overall better
for larger errors and vary on average from 10.7% to 13.8% for individual calls
depending on the settings, and reach 17.1% on average when approximating
compound calls as much as possible. However, increasing the program target
error (for equal error distributions Metalibm target error increases linearly with
it) does not necessarily lead to better performance, e.g. in case of axisRotationY
and rodriguesRotation. This is the result of discrete decisions concerning the
approximation degrees and the domain splittings inside Metalibm.

3 https://en.wikipedia.org/wiki/Rodrigues27_rotation_formula.

4 Experiments are performed on a Debian Linux 9 Desktop machine with a 3.3 GHz
Intel i5 processor and 16 GB of RAM. All code for benchmarking is compiled with
GNUs g++, version 6.3.0, with the -02 flag.


https://en.wikipedia.org/wiki/Rodrigues27_rotation_formula

180 E. Darulova and A. Volkova

Table 1. Performance improvements (in percent) of approximated code w.r.t. a pro-
gram with libm library function calls.

precision double single
elem. func.|middle large errors middle
benchmark overhead | equal |equal deriv no table depth 1 depth co| equal
sinxx10 20.8 76 | 77 7.7 7.7 7.6 7.7 4.7
xul 49.3 13.9 | 25.8 18.0 26.6 25.7 27.3 8.1
xu2 53.6 4.6 |124 13.0 126 12.5 26.0 -1.4
integratel8257 52.8 15.2 [ 194 15.1 -4.5 22.4 31.7 2.1
integStoutemyer 42.1 -1.0 | 65 14 0.4 4.8 21.9 6.4
axisRotationX 38.0 172 |17.3 181 174 17.6 17.3 -10.5
axisRotationY 37.9 17.6 | 12.8 21.5 129 12.8 12.8 -14.1
rodriguesRotation 28.9 149 | 11.6 13.6 13.8 13.8 13.9 -7.6
penduluml 24.4 -46 |-29 -43 -4.2 11.0 11.7 -9.7
pendulum? 50.3 9.6 (114 6.2 -0.8 20.2 20.5 -0.5
forwardk2jX 43.7 15.1 | 154 15.5 15.0 15.0 15.0 -10.2
forwardk2jY 40.7 10.7 | 15.6 15.6 15.6 15.6 15.6 7.4
ex2_1 34.6 12.8 | 12.8 12.3 123 12.3 12.1 8.4
ex2.2 34.9 5.9 |14.8 154 15.1 15.0 15.3 3.6
ex2.3 42.1 23.5 |24.5 24.5 24.1 24.8 24.3 3.9
ex2.4 31.8 11.9 | 12,5 12,5 126 14.3 14.3 7.9
ex2.5 40.6 22.5 |24.4 245 244 24.4 24.3 10.2
ex2.9 35.0 72 |71 74 7.2 7.0 9.4 -10.1
ex2_10 41.5 20.6 | 21.7 89 205 21.3 21.4 8.3
ex2_11 30.9 -6.8 [-23 49 -24 -4.8 -2.8 17.9
ex3.d 39.3 10.3 209 199 -1.1 19.9 20.3 4.9
average 38.7 10.9 |13.8 12,5 10.7 14.9 17.1 1.4

Somewhat surprisingly, we did not observe an advantage of using the
derivative-based error distribution over the equal one. We suspect that is due to
the nonlinear nature of Metalibm’s heuristics.

Table 1 further demonstrates that usage of tables generally improves the per-
formance. However, the influence of increasing the table size must be studied on a
case-by-case basis since large tables might lead to memory-bound computations.

We observe that it is generally beneficial to approximate ‘as much as possi-
ble’. Indeed, the power of Metalibm lies in generating (piece-wise) polynomial
approximations of compound expressions, whose behavior might be much sim-
pler to evaluate than its individual subexpressions.

Finally, we also considered an implementation where all data and arithmetic
operations are in single precision apart from the double-precision Metalibm-
generated code (whose output is accurate only to single precision). We observe
that slight performance improvements are possible, i.e. Metalibm can compete
even with single-precision libm-based code, but to achieve performance improve-
ments comparable to those of double-precision code, we need a single-precision
code generation from Metalibm.
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Fig. 1. Average performance and standard deviation. For each benchmark, the first
bar shows the running time of the libm-based implementation and the second one of
our implementation. Even relatively small overall time improvements are significant
w.r.t. the time portion we can optimize (in green). Our implementations also have

significantly smaller standard deviation (black bars). (Color figure online)

Analysis Time. Analysis time is highly dependent on the number of required
approximations of elementary functions: each approximation requires a separate
call to Metalibm whose running time in turn depends on the problem definition.
Daisy reduces the number of calls to Metalibm by common expression elimina-
tion which improves the analysis time. Currently, we set the timeout for each
Metalibm call to 3 min, which leads to an overall analysis time which is rea-
sonable. Overall, our tool takes between 15s and 20 min to approximate whole

programs, with the average running time being 4 min 40s per program

4 Conclusion

We presented a fully automated approach which improves the performance of
small numerical kernels at the expense of some accuracy by generating custom
approximations of elementary functions. Our tool is parametrized by a user-given
whole-program absolute error bound which is guaranteed to be satisfied by the
generated code. Experiments illustrate that the tool efficiently uses the available
margin for improvement and provides significant speedups for double-precision
implementations. This work provides a solid foundation for future research in the

areas of automatic approximations of single-precision and multivariate functions.
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