Skip to main content

Climate Change: Impact on Infectious Diseases

  • Chapter
  • First Online:
Infections and the Rheumatic Diseases

Abstract

Climate change is the effect of global warming and carbon dioxide rise on weather conditions (surface temperature fluctuations, sea levels, heat waves, drought, storms, and hurricanes). Collectively these effects are predicted to both positively and negatively influence the geographic range and incidence of a variety of infectious diseases. Particularly affected are those infections which have seasonal incidence or depend on vectors present in soil or water. It is likely that rheumatologists will see increased infectious disease over the coming century and new infections in populations or geographic regions where they have not been seen before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houghton J, Ding Y, Griggs M, et al. Climate change 2001: the scientific basis. New York: Cambridge University Press; 2001. p. 881.

    Google Scholar 

  2. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors. IPCC, 2018: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty . In Press.

    Google Scholar 

  3. Fourth National Climate Assessment, Volumes I and II. US Global Change Research Program. 2018. https://www.globalchange.gov/browse/reports.

  4. Matthie F, Bickler G, Cardenosa MN, et al. Heat-Health action plans. Guidance. Copenhagen, World Health Organization Regional Office for Europe. 2008.

    Google Scholar 

  5. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Allegy RB, Kiehl JT. Paleoclimactic evidence for future ice-sheet instability and rapid sea-level rise. Science. 2006;311:1747–50.

    Article  CAS  Google Scholar 

  6. Bausch DG, Schwarz L. Outbreak of Ebola virus disease in Guinea: where ecology meets economy. PLoS Negl Trop Dis. 2014;8(7):e3056. https://doi.org/10.1371/journal.pntd.0003056.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gorris ME, Cat LA, Zender CS, Treseder KK, Randerson JT. Coccidioidomycosis dynamics in relation to climate in the southwestern United States. GeoHealth. 2018;2:6–24. https://doi.org/10.1002/2017GH000095.

    Article  Google Scholar 

  8. Litvintseva AP, Marsden-Haug N, Hurst S, Hill H, Gade L, Driebe EM, Ralston C, Roe C, Barker BM, Goldoft M, Keim P, Wohrle R, Thompson GR 3rd, Engelthaler DM, Brandt ME, Chiller T. Valley fever: finding new places for an old disease: Coccidioides inimitis found in Washington State soil associated with recent human infection. Clin Infect Dis. 2015;60(1):e1-3. https://doi.org/10.1093/cid/ciu681. Epub 2014 Aug 27.

    Article  CAS  PubMed  Google Scholar 

  9. Maiga AW, Deppen S, Scaffidi B, Baddley J, Aldrich MC, Dittus RS, et al. Mapping Histoplasma capsulatum exposure, United States. Emerg Infect Dis. 2018;24(10):1835–9. https://doi.org/10.3201/eid2410.180032.

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Health organization. World Malaria Report 2017. http://www.who.int/iris/handle/10665/259492.

  11. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW. Climate change and the resurgence of malaria in the East African Highlands. Nature. 2002;415:905–9.

    Article  CAS  Google Scholar 

  12. Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2009;118:620–6.

    Article  Google Scholar 

  13. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colon-Gonzalez FJ, Stnlund H, Martens P, Lloyd SJ. Impact of climate change on global malaria distribution. PNAS. 2014;111:3286–91.

    Article  CAS  Google Scholar 

  14. Rogers DJ, Randolph SE. The global spread of malaria in a future warmer world. Science. 2000;289:1763–6.

    Article  CAS  Google Scholar 

  15. Towers S, Chowell G, Hameed R, Jastrebski M, Khan M, Meeks J, Mubayi A, Harris G. Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters. PLoS Curr. 2013;5.

    Google Scholar 

  16. Solomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Nat Acad Sci. 2009;106:1704–9.

    Article  CAS  Google Scholar 

  17. Viboud C, Pakdman K, Boelle PY, Wilson ML, Myers MF, Valleron AJ, Flahault A. Association of influenza epidemics with global climate variability. Eur J Epidemiol. 2004;19:1055–99.

    Article  Google Scholar 

  18. Greer A, Ng V, Fisman D. Climate change and infectious diseases in North America: the road ahead. CMAJ. 2008;178:715–22.

    PubMed  PubMed Central  Google Scholar 

  19. Donaldson GC. Climate change and the end of the respiratory syncytial virus season. Clin Infect Dis. 2006;42:677–9.

    Article  Google Scholar 

  20. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AF, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013;496:504–407.

    Article  CAS  Google Scholar 

  21. Jetten T, Fodcks D. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg. 1997;57:285–97.

    Article  CAS  Google Scholar 

  22. Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360:830–4.

    Article  Google Scholar 

  23. WHO Ebola Response Team, Agua-Agum J, Ariyarajah A, et al. West African Ebola epidemic after one year--slowing but not yet under control. N Engl J Med. 2014;372(6):584–7.

    Article  Google Scholar 

  24. Omoleke SA, Mohammed I, Saidu Y. Ebola viral disease in West Africa: a threat to global health, economy and political stability. J Public Health Africa. 2016;7(1):534.

    Article  Google Scholar 

  25. Paul SH, Horton DE, Moetasim A, Rastogi D, Kramer LD, Diffenbaugh NS, Kilpatrick AM. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts 2017. Proc Biol Sci. 284 https://doi.org/10.1098/rspb.2016.2078.

    Article  Google Scholar 

  26. Lindgren E, Talleklint I, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108:119–23.

    Article  CAS  Google Scholar 

  27. Paz S, Semenza JC. El Nino and climate change-contributing factors in the dispersal of Zika virus in the Americas? Lancet. 2016;387:745.

    Article  Google Scholar 

  28. Bogoch II, Brady OJ, Kraemer MU. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387:335–6.

    Article  Google Scholar 

  29. Dowell SF, Whitney CG, Wright C, Rose CE Jr, Schuchat A. Seasonal patterns of invasive pneumococcal disease. Emerg Infect Dis. 2003;9:574–9.

    Article  Google Scholar 

  30. Paynter S, Ware RS, Weinstein P, Williams G, Sly PD. Childhood pneumonia: a neglected, climate sensitive disease? Lancet. 2010;376:1804–5.

    Article  Google Scholar 

  31. Solomon S, Qin D, Manning M, et al., editors. Regional climate projections. In: Climate change 2007: the physical science basis. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter11.pdf.

  32. Lopez AM, You YA, Kim YE, Sah B, Maskery B, Clemens J. The gobal burden of cholera. Bull World Health Org. 2012;90:209–218A.

    Article  Google Scholar 

  33. Colwell RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274:2025–31.

    Article  CAS  Google Scholar 

  34. Craig RK. Cholera and climate change: pursuing public health adaptation strategies in the face of scientific debate (February 2, 2018). Houston Journal of Health Law and Policy, Forthcoming; University of Utah College of Law Research Paper No. 247. Available at SSRN: https://ssrn.com/abstract=3117106.

  35. Epstein PR. Climate change and human health. N Engl J Med. 2005;353:1433–6.

    Article  CAS  Google Scholar 

  36. Dumic I, Severnini E. Ticking time bomb: the impact of climate change on the incidence of Lyme Disease. Can J Infect Dis Med Microbiol. 2018;2018:5719081.

    Article  Google Scholar 

  37. Brownstein JS, Holford TR, Fish D. Effect of climate change on Lyme disease risk in North America. EcoHealth. 2005;2:38–46.

    Article  Google Scholar 

  38. Lau CL, Smythe LD, Craig SB, Weinstein P. Climate change, flooding, urbanization and leptospirosis: fueling the fire. Trans R Soc Trop Med Hyg. 2010;104(10):631–8.

    Article  Google Scholar 

  39. Falkinham JO. Environmental sources of Nontuberculous Mycobacteria. Clin Chest Med. 2015;36:35–41.

    Article  Google Scholar 

  40. Park KY, Kim HJ, Ahn HS, Yim SY, Jun JB. Association between acute gouty arthritis and meteorological factors: an ecological study using a systematic review and meta-analysis. Semin Arthritis Rheum. 2017;47(3):369–75.

    Article  Google Scholar 

  41. Savage EM, McCormick D, McDonald S, et al. Does rheumatoid arthritis disease activity correlate with weather conditions? Rheumatol Int. 2015;35:887.

    Article  CAS  Google Scholar 

  42. Ferreira ML, Zhang Y, Metcalf B, Makovey J, Bennell KL, March L, Hunter DJ. The influence of weather on the risk of pain exacerbation in patients with knee osteoarthritis – a case-crossover study. Osteoarthr Cartil. 2016;24(12):2042–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judd Shellito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shellito, J. (2019). Climate Change: Impact on Infectious Diseases. In: Espinoza, L. (eds) Infections and the Rheumatic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-23311-2_40

Download citation

Publish with us

Policies and ethics