Skip to main content

Food Supplements and Hormonal Products to Improve Assisted Reproductive Technology Outcomes in Patients with Diminished Ovarian Reserve

  • Chapter
  • First Online:
  • 600 Accesses

Abstract

Poor ovarian response is one of the major problems that decreases the cumulative pregnancy rate per initiated cycle in assisted reproductive technology due to lower number of oocytes retrieved. To target this problem, clinicians have been trying several different strategies including modifications in gonadotropin-releasing hormone analogs, increasing gonadotropin doses and utilization of adjuvant therapies such as growth hormone, dehydroepiandrosterone, coenzyme Q10, transdermal testosterone, and others. Herein, we will focus on the effects of potential dietary supplements and hormonal products to improve assisted reproductive technology outcomes in women with diminished ovarian reserve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferraretti AP, La Marca A, Fauser BC, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26:1616–24.

    Article  CAS  PubMed  Google Scholar 

  2. Tapanainen J, Martikainen H, Voutilainen R, et al. Effect of growth hormone administration on human ovarian function and steroidogenic gene expression in granulosa-luteal cells. Fertil Steril. 1992;58:726–32.

    Article  CAS  PubMed  Google Scholar 

  3. Norman R, Alvino H, Hart R, et al. A randomised double blind placebo controlled study of recombinant human growth hormone (h-GH) on live birth rates in women who are poor responders. Hum Reprod. 2016;31:i37.

    Google Scholar 

  4. Keane KN, Yovich JL, Hamidi A, et al. Single-centre retrospective analysis of growth hormone supplementation in IVF patients classified as poor-prognosis. BMJ Open. 2017;7:e018107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jeve YB, Bhandari HM. Effective treatment protocol for poor ovarian response: a systematic review and meta-analysis. J Hum Reprod Sci. 2016;9:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li XL, Wang L, Lv F, et al. The influence of different growth hormone addition protocols to poor ovarian responders on clinical outcomes in controlled ovary stimulation cycles: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96:e6443.

    Article  CAS  Google Scholar 

  7. Li J, Yuan H, Chen Y, et al. A meta-analysis of dehydroepiandrosterone supplementation among women with diminished ovarian reserve undergoing in vitro fertilization or intracytoplasmic sperm injection. Int J Gynaecol Obstet. 2015;131:240–5.

    Article  CAS  PubMed  Google Scholar 

  8. Dorrington JH, Moon YS, Armstrong DT. Estradiol-17beta biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology. 1975;97:1328–31.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Niu W, Wang Y, et al. Dehydroepiandrosterone treatment in women with poor ovarian response undergoing IVF or ICSI: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33:981–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Artini PG, Simi G, Ruggiero M, et al. DHEA supplementation improves follicular microenviroment in poor responder patients. Gynecol Endocrinol. 2012;28:669–73.

    Article  PubMed  Google Scholar 

  11. Schwarze JE, Canales J, Crosby J, et al. DHEA use to improve likelihood of IVF/ICSI success in patients with diminished ovarian reserve: a systematic review and meta-analysis. JBRA Assist Reprod. 2018;22:369–74.

    PubMed  PubMed Central  Google Scholar 

  12. Chern CU, Tsui KH, Vitale SG, et al. Dehydroepiandrosterone (DHEA) supplementation improves in vitro fertilization outcomes of poor ovarian responders, especially in women with low serum concentration of DHEA-S: a retrospective cohort study. Reprod Biol Endocrinol. 2018;16:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Turki HA. Dehydroepiandrosterone supplementation in women undergoing assisted reproductive technology with poor ovarian response. A prospective case-control study. J Int Med Res. 2018;46:143–9.

    Article  CAS  PubMed  Google Scholar 

  14. Weil S, Vendola K, Zhou J, et al. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84:2951–6.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Comadran M, Duran M, Sola I, et al. Effects of transdermal testosterone in poor responders undergoing IVF: systematic review and meta-analysis. Reprod Biomed Online. 2012;25:450–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bosdou JK, Venetis CA, Dafopoulos K, et al. Transdermal testosterone pretreatment in poor responders undergoing ICSI: a randomized clinical trial. Hum Reprod. 2016;31:977–85.

    Article  CAS  PubMed  Google Scholar 

  17. Guang HJ, Li F, Shi J. Letrozole for patients with polycystic ovary syndrome: a retrospective study. Medicine (Baltimore). 2018;97:e13038.

    Article  Google Scholar 

  18. Turan V, Bedoschi G, Emirdar V, et al. Ovarian stimulation in patients with cancer: impact of letrozole and BRCA mutations on fertility preservation cycle outcomes. Reprod Sci. 2018;25:26–32.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Velasco JA, Moreno L, Pacheco A, et al. The aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil Steril. 2005;84:82–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yarali H, Esinler I, Polat M, et al. Antagonist/letrozole protocol in poor ovarian responders for intracytoplasmic sperm injection: a comparative study with the microdose flare-up protocol. Fertil Steril. 2009;92:231–5.

    Article  CAS  PubMed  Google Scholar 

  21. Bastu E, Buyru F, Ozsurmeli M, et al. A randomized, single-blind, prospective trial comparing three different gonadotropin doses with or without addition of letrozole during ovulation stimulation in patients with poor ovarian response. Eur J Obstet Gynecol Reprod Biol. 2016;203:30–4.

    Article  CAS  PubMed  Google Scholar 

  22. De Placido G, Alviggi C, Perino A, et al. Recombinant human LH supplementation versus recombinant human FSH (rFSH) step-up protocol during controlled ovarian stimulation in normogonadotrophic women with initial inadequate ovarian response to rFSH. A multicentre, prospective, randomized controlled trial. Hum Reprod. 2005;20:390–6.

    Article  PubMed  Google Scholar 

  23. De Placido G, Mollo A, Alviggi C, et al. Rescue of IVF cycles by HMG in pituitary down-regulated normogonadotrophic young women characterized by a poor initial response to recombinant FSH. Hum Reprod. 2001;16:1875–9.

    Article  PubMed  Google Scholar 

  24. Ferraretti AP, Gianaroli L, Magli MC, et al. Exogenous luteinizing hormone in controlled ovarian hyperstimulation for assisted reproduction techniques. Fertil Steril. 2004;82:1521–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bosch E, Labarta E, Crespo J, et al. Impact of luteinizing hormone administration on gonadotropin-releasing hormone antagonist cycles: an age-adjusted analysis. Fertil Steril. 2011;95:1031–6.

    Article  CAS  PubMed  Google Scholar 

  26. Alviggi C, Conforti A, Esteves SC, et al. Recombinant luteinizing hormone supplementation in assisted reproductive technology: a systematic review. Fertil Steril. 2018;109:644–64.

    Article  CAS  PubMed  Google Scholar 

  27. Tomas-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005;39:99–104.

    Article  CAS  PubMed  Google Scholar 

  28. Jahromi BN, Sadeghi S, Alipour S, et al. Effect of melatonin on the outcome of assisted reproductive technique cycles in women with diminished ovarian reserve: a double-blinded randomized clinical trial. Iran J Med Sci. 2017;42:73–8.

    PubMed  PubMed Central  Google Scholar 

  29. Zheng M, Tong J, Li WP, et al. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures. Gynecol Endocrinol. 2018;34:446–50.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka T, Huang X, Halicka HD, et al. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A. 2007;71:648–61.

    Article  PubMed  Google Scholar 

  31. Akarsu S, Gode F, Isik AZ, et al. The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques. J Assist Reprod Genet. 2017;34:599–605.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Turi A, Giannubilo SR, Bruge F, et al. Coenzyme Q10 content in follicular fluid and its relationship with oocyte fertilization and embryo grading. Arch Gynecol Obstet. 2012;285:1173–6.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Nisenblat V, Lu C, et al. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parikh G, Varadinova M, Suwandhi P, et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res. 2010;42:754–7.

    Article  CAS  PubMed  Google Scholar 

  35. Drakopoulos P, van de Vijver A, Schutyser V, et al. The effect of serum vitamin D levels on ovarian reserve markers: a prospective cross-sectional study. Hum Reprod. 2017;32:208–14.

    CAS  PubMed  Google Scholar 

  36. Merhi ZO, Seifer DB, Weedon J, et al. Circulating vitamin D correlates with serum antimullerian hormone levels in late-reproductive-aged women: Women’s Interagency HIV Study. Fertil Steril. 2012;98:228–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Practice Committee of the American Society for Reproductive M. Obesity and reproduction: a committee opinion. Fertil Steril. 2015;104:1116–26.

    Article  Google Scholar 

  38. Gaskins AJ, Rich-Edwards JW, Missmer SA, et al. Association of fecundity with changes in adult female weight. Obstet Gynecol. 2015;126:850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dechaud H, Anahory T, Reyftmann L, et al. Obesity does not adversely affect results in patients who are undergoing in vitro fertilization and embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2006;127:88–93.

    Article  PubMed  Google Scholar 

  40. Legge A, Bouzayen R, Hamilton L, et al. The impact of maternal body mass index on in vitro fertilization outcomes. J Obstet Gynaecol Can. 2014;36:613–9.

    Article  PubMed  Google Scholar 

  41. Comstock IA, Kim S, Behr B, et al. Increased body mass index negatively impacts blastocyst formation rate in normal responders undergoing in vitro fertilization. J Assist Reprod Genet. 2015;32:1299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kudesia R, Wu H, Hunter Cohn K, et al. The effect of female body mass index on in vitro fertilization cycle outcomes: a multi-center analysis. J Assist Reprod Genet. 2018;35:2013–23.

    Article  PubMed  Google Scholar 

  43. Rittenberg V, Seshadri S, Sunkara SK, et al. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online. 2011;23:421–39.

    Article  PubMed  Google Scholar 

  44. Einarsson S, Bergh C, Friberg B, et al. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod. 2017;32:1621–30.

    Article  PubMed  Google Scholar 

  45. Gaskins AJ, Chiu YH, Williams PL, et al. Maternal whole grain intake and outcomes of in vitro fertilization. Fertil Steril. 2016;105:1503–10.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nassan FL, Chiu YH, Vanegas JC, et al. Intake of protein-rich foods in relation to outcomes of infertility treatment with assisted reproductive technologies. Am J Clin Nutr. 2018;108:1104–12.

    Article  PubMed  Google Scholar 

  47. Souter I, Chiu YH, Batsis M, et al. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. BJOG. 2017;124:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiu YH, Karmon AE, Gaskins AJ, et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod. 2018;33:156–65.

    Article  CAS  PubMed  Google Scholar 

  49. Gaskins AJ, Chiu YH, Williams PL, et al. Association between serum folate and vitamin B-12 and outcomes of assisted reproductive technologies. Am J Clin Nutr. 2015;102:943–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurkan Bozdag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turan, V., Bozan, M., Bozdag, G. (2020). Food Supplements and Hormonal Products to Improve Assisted Reproductive Technology Outcomes in Patients with Diminished Ovarian Reserve. In: Bukulmez, O. (eds) Diminished Ovarian Reserve and Assisted Reproductive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-23235-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23235-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23234-4

  • Online ISBN: 978-3-030-23235-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics