Skip to main content

Fertilization: Conventional IVF Versus ICSI

  • Chapter
  • First Online:
Book cover Diminished Ovarian Reserve and Assisted Reproductive Technologies

Abstract

Intracytoplasmic sperm injection (ICSI) was developed in humans in the early 1990s as a mechanism to overcome complete fertilization failure due to severe male factor infertility. ICSI can be used with motile, nonmotile, ejaculated, or surgically retrieved testicular sperm to produce a viable embryo resulting in live birth. As the safety and efficacy of ICSI were demonstrated, its use became more widespread. ICSI has been applied to other infertility-related issues such as unexplained infertility, use with frozen gametes, serodiscordant couples, and patients with diminished ovarian reserve and/or advanced reproductive age, in addition to male factor infertility. While, in general, ICSI use may not show a major disadvantage over conventional insemination, the insemination method should be a carefully considered option based on individual patient needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online. 2005;10(2):247–88.

    Article  PubMed  Google Scholar 

  2. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;312(8085):366.

    Article  Google Scholar 

  3. Lopata A, et al. Pregnancy following intrauterine implantation of an embryo obtained by in vitro fertilization of a preovulatory egg. Fertil Steril. 1980;33(2):117–20.

    Article  CAS  PubMed  Google Scholar 

  4. Jones HW, et al. Three years of in vitro fertilization at Norfolk. Fertil Steril. 1984;42(6):826–34.

    Article  PubMed  Google Scholar 

  5. O’Neill CL, et al. Development of ICSI. Reproduction. 2018;156(1):F51–8.

    Article  PubMed  Google Scholar 

  6. Kiessling AA, et al. Fertilization in trypsin–treated oocytes. Ann N Y Acad Sci. 1988;541(1):614–20.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon JW, et al. Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil Steril. 1988;50(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen J, et al. Treatment of male infertility by in vitro fertilization: factors affecting fertilization and pregnancy. Acta Eur Fertil. 1984;15(6):455–65.

    CAS  PubMed  Google Scholar 

  9. Fishel S, et al. Twin birth after subzonal insemination. Lancet. 1990;335(8691):722–3.

    Article  CAS  PubMed  Google Scholar 

  10. Palermo G, et al. Induction of acrosome reaction in human spermatozoa used for subzonal insemination. Hum Reprod. 1992;7(2):248–54.

    Article  CAS  PubMed  Google Scholar 

  11. Palermo G, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  Google Scholar 

  12. Palermo GD, et al. Development and implementation of intracytoplasmic sperm injection (ICSI). Reprod Fertil Dev. 1995;7(2):211–7; discussion 217–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nagy ZP, et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod. 1995;10(12):3171–7.

    Article  CAS  PubMed  Google Scholar 

  14. Simopoulou M, et al. Making ICSI safer and more effective: a review of the human oocyte and ICSI practice. In Vivo. 2016;30(4):387–400.

    PubMed  Google Scholar 

  15. Palermo GD, et al. Fertilization and pregnancy outcome with intracytoplasmic sperm injection for azoospermic men. Hum Reprod. 1999;14(3):741–8.

    Article  CAS  PubMed  Google Scholar 

  16. Schlegel PN. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum Reprod. 1999;14(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  17. Schlegel PN. Debate: is ICSI a genetic time bomb? No: ICSI is safe and effective. J Androl. 1999;20(1):18–22.

    CAS  PubMed  Google Scholar 

  18. Boulet SL, et al. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection trends and outcomes of intracytoplasmic sperm injection trends and outcomes of intracytoplasmic sperm injection. JAMA. 2015;313(3):255–63.

    Article  PubMed  Google Scholar 

  19. Orief Y, Dafopoulos K, Al-Hassani S. Should ICSI be used in non-male factor infertility? Reprod Biomed Online. 2004;9(3):348–56.

    Article  PubMed  Google Scholar 

  20. Feldman B, et al. Pre-implantation genetic diagnosis—should we use ICSI for all? J Assist Reprod Genet. 2017;34(9):1179–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tannus S, et al. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum Reprod. 2017;32(1):119–24.

    PubMed  Google Scholar 

  22. Coates A, et al. Use of suboptimal sperm increases the risk of aneuploidy of the sex chromosomes in preimplantation blastocyst embryos. Fertil Steril. 2015;104(4):866–72.

    Article  PubMed  Google Scholar 

  23. Palmerola KL, et al. Minimizing mosaicism: assessing the impact of fertilization method on rate of mosaicism after next-generation sequencing (NGS) preimplantation genetic testing for aneuploidy (PGT-A). J Assist Reprod Genet. 2019;36(1):153–7.

    Article  PubMed  Google Scholar 

  24. Byrd W, et al. Intrauterine insemination with frozen donor sperm: a prospective randomized trial comparing three different sperm preparation techniques. Fertil Steril. 1994;62(4):850–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ford WC, Mathur RS, Hull MG. Intrauterine insemination: is it an effective treatment for male factor infertility? Baillieres Clin Obstet Gynaecol. 1997;11(4):691–710.

    Article  CAS  PubMed  Google Scholar 

  26. Kazem R, et al. Cryopreservation of human oocytes and fertilization by two techniques: in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod. 1995;10(10):2650–4.

    Article  CAS  PubMed  Google Scholar 

  27. Gook DA, et al. Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum Reprod. 1995;10(10):2637–41.

    Article  CAS  PubMed  Google Scholar 

  28. Li XH, et al. Cryopreserved oocytes of infertile couples undergoing assisted reproductive technology could be an important source of oocyte donation: a clinical report of successful pregnancies. Hum Reprod. 2005;20(12):3390–4.

    Article  PubMed  Google Scholar 

  29. Ethics Committee of American Society for Reproductive Medicine. Human immunodeficiency virus (HIV) and infertility treatment: a committee opinion. Fertil Steril. 2015;104(1):e1–8.

    Article  Google Scholar 

  30. Shenfield F, et al. Taskforce 8: ethics of medically assisted fertility treatment for HIV positive men and women. Hum Reprod. 2004;19(11):2454–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zamora MJ, et al. Semen residual viral load and reproductive outcomes in HIV-infected men undergoing ICSI after extended semen preparation. Reprod Biomed Online. 2016;32(6):584–90.

    Article  PubMed  Google Scholar 

  32. Adamson GD, et al. International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil Steril. 2018;110(6):1067–80.

    Article  PubMed  Google Scholar 

  33. Aboulghar MA, et al. Intracytoplasmic sperm injection and conventional in vitro fertilization for sibling oocytes in cases of unexplained infertility and borderline semen. J Assist Reprod Genet. 1996;13(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  34. Fishel S, et al. Should ICSI be the treatment of choice for all cases of in-vitro conception? Hum Reprod. 2000;15(6):1278–83.

    Article  CAS  PubMed  Google Scholar 

  35. Nyboe Andersen A, Carlsen E, Loft A. Trends in the use of intracytoplasmatic sperm injection marked variability between countries. Hum Reprod Update. 2008;14(6):593–604.

    Article  PubMed  Google Scholar 

  36. Pickering SJ, et al. Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod. 1988;3(8):978–89.

    Article  CAS  PubMed  Google Scholar 

  37. Battaglia DE, Klein NA, Soules MR. Changes in centrosomal domains during meiotic maturation in the human oocyte. Mol Hum Reprod. 1996;2(11):845–51.

    Article  CAS  PubMed  Google Scholar 

  38. Wang W-H, et al. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril. 2001;75(2):348–53.

    Article  CAS  PubMed  Google Scholar 

  39. De Santis L, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11(1):36–42.

    Article  PubMed  Google Scholar 

  40. Korkmaz C, et al. Effects of maternal ageing on ICSI outcomes and embryo development in relation to oocytes morphological characteristics of birefringent structures. Zygote. 2015;23(4):550–5.

    Article  PubMed  Google Scholar 

  41. Palermo GD, et al. Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection. Hum Reprod. 1996;11(1):172–6.

    Article  CAS  PubMed  Google Scholar 

  42. Krause I, et al. Characterization of the injection funnel during intracytoplasmic sperm injection reflects cytoplasmic maturity of the oocyte. Fertil Steril. 2016;106(5):1101–6.

    Article  PubMed  Google Scholar 

  43. Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.

    Article  PubMed  Google Scholar 

  44. Ming L, et al. Higher abnormal fertilization, higher cleavage rate, and higher arrested embryos rate were found in conventional IVF than in intracytoplasmic sperm injection. Clin Exp Obstet Gynecol. 2015;42(3):372–5.

    PubMed  Google Scholar 

  45. Sfontouris IA, et al. Live birth rates using conventional in vitro fertilization compared to intracytoplasmic sperm injection in Bologna poor responders with a single oocyte retrieved. J Assist Reprod Genet. 2015;32(5):691–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Babayev SN, Park CW, Bukulmez O. Intracytoplasmic sperm injection indications: how rigorous? Semin Reprod Med. 2014;32(04):283–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Saner Amigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amigh, K.S. (2020). Fertilization: Conventional IVF Versus ICSI. In: Bukulmez, O. (eds) Diminished Ovarian Reserve and Assisted Reproductive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-23235-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23235-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23234-4

  • Online ISBN: 978-3-030-23235-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics