Skip to main content

Novel Approaches to the Treatment of Noninfectious Uveitis

  • Chapter
  • First Online:
  • 421 Accesses

Abstract

Conventional immunosuppressive drugs are effective treatment for some, but not all, patients with noninfectious uveitis. An additional consideration in the use of these drugs is the potential for serious systemic complications. Multiple alternative therapeutic approaches are under development, targeted to the cells and molecular pathways that mediate noninfectious uveitis. Leukocyte drug targets include CD4+ T cells, mononuclear phagocytes, and B cells. Migration of leukocytes into the eye may be inhibited with agents designed to block adhesion molecules expressed on the endothelium. Inflammatory cytokines that direct leukocyte activities within the eye are also logical pharmaceutical targets. Other therapeutic options include drugs directed against components of the complement system and the antioxidants. This chapter presents a summary of current experimental work and clinical developments on novel approaches to the treatment of noninfectious uveitis.

Dr. Smith is supported by an Australian Research Council Future Fellowship (FT130101648).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Smet MD, Taylor SR, Bodaghi B, et al. Understanding uveitis: the impact of research on visual outcomes. Prog Retin Eye Res. 2011;30(6):452–70.

    Article  PubMed  Google Scholar 

  2. Lin P, Suhler EB, Rosenbaum JT. The future of uveitis treatment. Ophthalmology. 2014;121(1):365–76.

    Article  PubMed  Google Scholar 

  3. Van Ginderdeuren R, Van Calster J, Stalmans P, Van den Oord J. A new and standardized method to sample and analyse vitreous samples by the Cellient automated cell block system. Acta Ophthalmol. 2014;92(5):e388–92.

    Article  PubMed  Google Scholar 

  4. Caspi RR. Understanding autoimmune uveitis through animal models. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 2011;52(3):1872–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kezic J, McMenamin PG. The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2010;51(10):5121–7.

    Article  PubMed  Google Scholar 

  6. Zhao J, Chen M, Xu H. Experimental autoimmune uveoretinitis (EAU)-related tissue damage and angiogenesis is reduced in CCL2(−)/(−)CX(3)CR1gfp/gfp mice. Invest Ophthalmol Vis Sci. 2014;55(11):7572–82.

    Article  CAS  PubMed  Google Scholar 

  7. Smith JR, Stempel AJ, Bharadwaj AS, Appukuttan B. Involvement of B cells in non-infectious uveitis. Clin Transl Immunology. 2016;5:e63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thurau SR, Wildner G, Reiter C, Riethmuller G, Lund OE. Treatment of endogenous uveitis with anti-CD4 monoclonal antibody: first report. Ger J Ophthalmol. 1994;3(6):409–13.

    CAS  PubMed  Google Scholar 

  9. Tappeiner C, Miserocchi E, Bodaghi B, et al. Abatacept in the treatment of severe, longstanding, and refractory uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2015;42(4):706–11.

    Article  CAS  PubMed  Google Scholar 

  10. London A, Benhar I, Mattapallil MJ, Mack M, Caspi RR, Schwartz M. Functional macrophage heterogeneity in a mouse model of autoimmune central nervous system pathology. J Immunol. 2013;190(7):3570–8.

    Article  CAS  PubMed  Google Scholar 

  11. Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K. Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology. 2011;50(8):1390–4.

    Article  CAS  PubMed  Google Scholar 

  12. Liu B, Dhanda A, Hirani S, et al. CD14++CD16+ monocytes are enriched by glucocorticoid treatment and are functionally attenuated in driving effector T cell responses. J Immunol. 2015;194(11):5150–60.

    Article  CAS  PubMed  Google Scholar 

  13. Tappeiner C, Heinz C, Specker C, Heiligenhaus A. Rituximab as a treatment option for refractory endogenous anterior uveitis. Ophthalmic Res. 2007;39(3):184–6.

    Article  CAS  PubMed  Google Scholar 

  14. Miserocchi E, Pontikaki I, Modorati G, Bandello F, Meroni PL, Gerloni V. Rituximab for uveitis. Ophthalmology. 2011;118(1):223–4.

    Article  PubMed  Google Scholar 

  15. Cornish KS, Kuffova L, Forrester JV. Treatment of diffuse subretinal fibrosis uveitis with rituximab. Br J Ophthalmol. 2015;99(2):153–4.

    Article  PubMed  Google Scholar 

  16. Caso F, Rigante D, Vitale A, et al. Long-lasting uveitis remission and hearing loss recovery after rituximab in Vogt-Koyanagi-Harada disease. Clin Rheumatol. 2015;34(10):1817–20.

    Article  PubMed  Google Scholar 

  17. Umran RMR, Shukur ZYH. Rituximab for sight-threatening refractory pediatric Vogt-Koyanagi-Harada disease. Mod Rheumatol. 2018;28(1):197–9.

    Article  PubMed  Google Scholar 

  18. Davatchi F, Shams H, Rezaipoor M, et al. Rituximab in intractable ocular lesions of Behcet’s disease; randomized single-blind control study (pilot study). Int J Rheum Dis. 2010;13(3):246–52.

    Article  PubMed  Google Scholar 

  19. Terrada C, Fisson S, De Kozak Y, et al. Regulatory T cells control uveoretinitis induced by pathogenic Th1 cells reacting to a specific retinal neoantigen. J Immunol. 2006;176(12):7171–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gregoire S, Terrada C, Martin GH, et al. Treatment of uveitis by in situ administration of ex vivo-activated polyclonal regulatory T cells. J Immunol. 2016;196(5):2109–18.

    Article  CAS  PubMed  Google Scholar 

  21. Wang RX, Yu CR, Dambuza IM, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20(6):633–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon SO, Choi H, Prockop DJ, Oh JY. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci U S A. 2016;113(1):158–63.

    Article  CAS  PubMed  Google Scholar 

  23. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  24. Nolan DJ, Ginsberg M, Israely E, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013;26(2):204–19.

    Article  CAS  PubMed  Google Scholar 

  25. Parnaby-Price A, Stanford MR, Biggerstaff J, et al. Leukocyte trafficking in experimental autoimmune uveitis in vivo. J Leukoc Biol. 1998;64(4):434–40.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Kezic JM, Forrester JV, et al. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression. J Neuroinflammation. 2015;12:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol. 2008;30(2):165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kuppner MC, Liversidge J, McKillop-Smith S, Lumsden L, Forrester JV. Adhesion molecule expression in acute and fibrotic sympathetic ophthalmia. Curr Eye Res. 1993;12(10):923–34.

    Article  CAS  PubMed  Google Scholar 

  29. Wakefield D, McCluskey P, Palladinetti P. Distribution of lymphocytes and cell adhesion molecules in iris biopsy specimens from patients with uveitis. Arch Ophthalmol. 1992;110(1):121–5.

    Article  CAS  PubMed  Google Scholar 

  30. Whitcup SM, Chan CC, Li Q, Nussenblatt RB. Expression of cell adhesion molecules in posterior uveitis. Arch Ophthalmol. 1992;110(5):662–6.

    Article  CAS  PubMed  Google Scholar 

  31. Haznedaroglu E, Karaaslan Y, Buyukasik Y, et al. Selectin adhesion molecules in Behcet’s disease. Ann Rheum Dis. 2000;59(1):61–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee MT, Hooper LC, Kump L, et al. Interferon-beta and adhesion molecules (E-selectin and s-intracellular adhesion molecule-1) are detected in sera from patients with retinal vasculitis and are induced in retinal vascular endothelial cells by Toll-like receptor 3 signalling. Clin Exp Immunol. 2007;147(1):71–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaman AG, Edelsten C, Stanford MR, et al. Soluble intercellular adhesion molecule-1 (sICAM-1) as a marker of disease relapse in idiopathic uveoretinitis. Clin Exp Immunol. 1994;95(1):60–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang MM, Lai TY, Luk FO, Pang CP. The roles of genetic factors in uveitis and their clinical significance. Retina. 2014;34(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  35. Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC. Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol. 1993;67(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  36. Uchio E, Kijima M, Tanaka S, Ohno S. Suppression of experimental uveitis with monoclonal antibodies to ICAM-1 and LFA-1. Invest Ophthalmol Vis Sci. 1994;35(5):2626–31.

    CAS  PubMed  Google Scholar 

  37. Xu H, Manivannan A, Jiang HR, et al. Recruitment of IFN-gamma-producing (Th1-like) cells into the inflamed retina in vivo is preferentially regulated by P-selectin glycoprotein ligand 1:P/E-selectin interactions. J Immunol. 2004;172(5):3215–24.

    Article  CAS  PubMed  Google Scholar 

  38. Bharadwaj AS, Schewitz-Bowers LP, Wei L, Lee RW, Smith JR. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci. 2013;54(10):6917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furtado JM, Bharadwaj AS, Ashander LM, Olivas A, Smith JR. Migration of toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci. 2012;53(11):6856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mosli MH, Rivera-Nieves J, Feagan BG. T-cell trafficking and anti-adhesion strategies in inflammatory bowel disease: current and future prospects. Drugs. 2014;74(3):297–311.

    Article  CAS  PubMed  Google Scholar 

  41. Frampton JE, Plosker GL. Efalizumab: a review of its use in the management of chronic moderate-to-severe plaque psoriasis. Am J Clin Dermatol. 2009;10(1):51–72.

    Article  PubMed  Google Scholar 

  42. Straus Farber R, Harel A, Lublin F. Novel agents for relapsing forms of multiple sclerosis. Annu Rev Med. 2016;67:309–21.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Ibrahim M, Turkcuoglu P, et al. Intercellular adhesion molecule inhibitors as potential therapy for refractory uveitic macular edema. Ocul Immunol Inflamm. 2010;18(5):395–8.

    Article  PubMed  Google Scholar 

  44. Baldwin KJ, Hogg JP. Progressive multifocal leukoencephalopathy in patients with multiple sclerosis. Curr Opin Neurol. 2013;26(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  45. Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121(3):785–796.e783.

    Article  PubMed  Google Scholar 

  46. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  47. Willermain F, Rosenbaum JT, Bodaghi B, et al. Interplay between innate and adaptive immunity in the development of non-infectious uveitis. Prog Retin Eye Res. 2012;31(2):182–94.

    Article  CAS  PubMed  Google Scholar 

  48. Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep. 2007;8(12):1142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Lim WK, Mahesh SP, Liu B, Nussenblatt RB. Cutting edge: in vivo blockade of human IL-2 receptor induces expansion of CD56(bright) regulatory NK cells in patients with active uveitis. J Immunol. 2005;174(9):5187–91.

    Article  CAS  PubMed  Google Scholar 

  50. Wroblewski K, Sen HN, Yeh S, et al. Long-term daclizumab therapy for the treatment of noninfectious ocular inflammatory disease. Can J Ophthalmol. 2011;46(4):322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin P. Targeting interleukin-6 for noninfectious uveitis. Clin Ophthalmol. 2015;9:1697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deroux A, Chiquet C, Bouillet L. Tocilizumab in severe and refractory Behcet’s disease: four cases and literature review. Semin Arthritis Rheum. 2016;45:733–7.

    Article  CAS  PubMed  Google Scholar 

  53. Deuter CM, Zierhut M, Igney-Oertel A, et al. Tocilizumab in uveitic macular edema refractory to previous immunomodulatory treatment. Ocul Immunol Inflamm. 2016:1–6.

    Google Scholar 

  54. Mesquida M, Molins B, Llorenc V, Sainz de la Maza M, Adan A. Long-term effects of tocilizumab therapy for refractory uveitis-related macular edema. Ophthalmology. 2014;121(12):2380–6.

    Article  PubMed  Google Scholar 

  55. Papo M, Bielefeld P, Vallet H, et al. Tocilizumab in severe and refractory non-infectious uveitis. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S75–9.

    PubMed  Google Scholar 

  56. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  57. Hueber W, Patel DD, Dryja T, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72.

    Article  PubMed  CAS  Google Scholar 

  58. Dick AD, Tugal-Tutkun I, Foster S, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87.

    Article  PubMed  Google Scholar 

  59. Letko E, Yeh S, Foster CS, et al. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939–48.

    Article  PubMed  Google Scholar 

  60. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Przepiera-Bedzak H, Fischer K, Brzosko M. Extra-articular symptoms in constellation with selected serum cytokines and disease activity in spondyloarthritis. Mediators Inflamm. 2016;2016:7617954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chi W, Yang P, Li B, Wu C, Jin H, Zhu X, Chen L, Zhou H, Huang X, Kijlstra A. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J Allergy Clin Immunol. 2007;119(5):1218–24.

    Article  CAS  PubMed  Google Scholar 

  63. Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, Huang X, Kijlstra A. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49(7):3058–64.

    Article  PubMed  Google Scholar 

  64. Yang P, Foster CS. Interleukin 21, interleukin 23, and transforming growth factor beta1 in HLA-A29-associated birdshot retinochoroidopathy. Am J Ophthalmol. 2013;156(2):400–406.e2.

    Article  CAS  PubMed  Google Scholar 

  65. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH, Ustekinumab MS Investigators. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 2008;7(9):796–804.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Z, Gong Y, Shi Y. Novel biologic agents targeting interleukin-23 and interleukin-17 for moderate-to-severe psoriasis. Clin Drug Investig. 2017;37(10):891–9.

    Article  CAS  PubMed  Google Scholar 

  67. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.

    PubMed  PubMed Central  Google Scholar 

  68. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257.

    PubMed  PubMed Central  Google Scholar 

  69. Mondino BJ, Rao H. Complement levels in normal and inflamed aqueous humor. Invest Ophthalmol Vis Sci. 1983;24(3):380–4.

    CAS  PubMed  Google Scholar 

  70. Mondino BJ, Sidikaro Y, Sumner H. Anaphylatoxin levels in human vitreous humor. Invest Ophthalmol Vis Sci. 1988;29(7):1195–8.

    CAS  PubMed  Google Scholar 

  71. Lass JH, Walter EI, Burris TE, et al. Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest Ophthalmol Vis Sci. 1990;31(6):1136–48.

    CAS  PubMed  Google Scholar 

  72. Mondino BJ, Sumner H. Complement inhibitors in normal cornea and aqueous humor. Invest Ophthalmol Vis Sci. 1984;25(4):483–6.

    CAS  PubMed  Google Scholar 

  73. Mondino BJ, Glovsky MM, Ghekiere L. Activated complement in inflamed aqueous humor. Invest Ophthalmol Vis Sci. 1984;25(7):871–3.

    CAS  PubMed  Google Scholar 

  74. Mondino BJ, Sidikaro Y, Mayer FJ, Sumner HL. Inflammatory mediators in the vitreous humor of AIDS patients with retinitis. Invest Ophthalmol Vis Sci. 1990;31(5):798–804.

    CAS  PubMed  Google Scholar 

  75. Jha P, Sohn JH, Xu Q, et al. Suppression of complement regulatory proteins (CRPs) exacerbates experimental autoimmune anterior uveitis (EAAU). J Immunol. 2006;176(12):7221–31.

    Article  CAS  PubMed  Google Scholar 

  76. Manickam B, Jha P, Hepburn NJ, et al. Suppression of complement activation by recombinant Crry inhibits experimental autoimmune anterior uveitis (EAAU). Mol Immunol. 2010;48(1–3):231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Copland DA, Hussain K, Baalasubramanian S, et al. Systemic and local anti-C5 therapy reduces the disease severity in experimental autoimmune uveoretinitis. Clin Exp Immunol. 2010;159(3):303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Read RW, Szalai AJ, Vogt SD, McGwin G, Barnum SR. Genetic deficiency of C3 as well as CNS-targeted expression of the complement inhibitor sCrry ameliorates experimental autoimmune uveoretinitis. Exp Eye Res. 2006;82(3):389–94.

    Article  CAS  PubMed  Google Scholar 

  79. Read RW, Vogt SD, Barnum SR. The complement anaphylatoxin receptors are not required for the development of experimental autoimmune uveitis. J Neuroimmunol. 2013;264(1–2):127–9.

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Zhu P, Verma A, Prasad T, Deng H, Yu D, Li Q. A novel bispecific molecule delivered by recombinant AAV2 suppresses ocular inflammation and choroidal neovascularization. J Cell Mol Med. 2017;21(8):1555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol. 2013;190(8):3839–47.

    Article  CAS  PubMed  Google Scholar 

  82. Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Rao NA, Sevanian A, Fernandez MA, et al. Role of oxygen radicals in experimental allergic uveitis. Invest Ophthalmol Vis Sci. 1987;28(5):886–92.

    CAS  PubMed  Google Scholar 

  84. Yadav UC, Kalariya NM, Ramana KV. Emerging role of antioxidants in the protection of uveitis complications. Curr Med Chem. 2011;18(6):931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen AM, Rao NA. Oxidative photoreceptor cell damage in autoimmune uveitis. J Ophthalmic Inflamm Infect. 2011;1:7–13.

    Article  CAS  Google Scholar 

  86. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun. 2008;31(4):354–61.

    Article  CAS  PubMed  Google Scholar 

  87. Bozkurt M, Yuksel H, Em S, et al. Serum prolidase enzyme activity and oxidative status in patients with Behcet’s disease. Redox Rep. 2014;19(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  88. Korkmaz S, Erturan I, Naziroglu M, Uguz AC, Cig B, Ovey IS. Colchicine modulates oxidative stress in serum and neutrophil of patients with Behcet disease through regulation of Ca(2)(+) release and antioxidant system. J Membr Biol. 2011;244(3):113–20.

    Article  CAS  PubMed  Google Scholar 

  89. Ozyazgan S, Andican G, Erman H, et al. Relation of protein oxidation parameters and disease activity in patients with Behcet’s disease. Clin Lab. 2013;59(7–8):819–25.

    CAS  PubMed  Google Scholar 

  90. Parikh JG, Saraswathy S, Rao NA. Photoreceptor oxidative damage in sympathetic ophthalmia. Am J Ophthalmol. 2008;146(6):866–875.e862.

    Article  CAS  PubMed  Google Scholar 

  91. Lan C, Tam PO, Chiang SW, et al. Manganese superoxide dismutase and chemokine genes polymorphisms in chinese patients with anterior uveitis. Invest Ophthalmol Vis Sci. 2009;50(12):5596–600.

    Article  PubMed  Google Scholar 

  92. Turk A, Aykut M, Akyol N, et al. Serum anti-carbonic anhydrase antibodies and oxidant-antioxidant balance in patients with acute anterior uveitis. Ocul Immunol Inflamm. 2014;22(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  93. Lal B, Kapoor AK, Asthana OP, et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res. 1999;13(4):318–22.

    Article  CAS  PubMed  Google Scholar 

  94. van Rooij J, Schwartzenberg SG, Mulder PG, Baarsma SG. Oral vitamins C and E as additional treatment in patients with acute anterior uveitis: a randomised double masked study in 145 patients. Br J Ophthalmol. 1999;83(11):1277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nussenblatt RB, Kim J, Thompson DJ, et al. Vitamin E in the treatment of uveitis-associated macular edema. Am J Ophthalmol. 2006;141(1):193–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, J.R. (2019). Novel Approaches to the Treatment of Noninfectious Uveitis. In: Lin, P., Suhler, E. (eds) Treatment of Non-infectious Uveitis. Springer, Cham. https://doi.org/10.1007/978-3-030-22827-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22827-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22825-5

  • Online ISBN: 978-3-030-22827-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics