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Abstract. We consider the affect of capillary pressure on the Van
der Waals fuid and on the Peng-Robinson fluid by minimizing total
Helmholtz energy in given total volume, temperature, and total moles.
We propose simple but conditionally energy stable numerical schemes,
and we provide interesting numerical examples. We compare our numer-
ical results with the prediction of Kelvin’s equation, indicating that
Kelvin’s equation works well only when the temperature is not too low.
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1 Introduction

Two-phase and multi-phase flows are important and common phenomena in
petroleum industry, where oil, gas and water are often produced and transported
together. In particular, engineers and researchers in reservoir engineering study
drainage problems arising during the development and production of oil and gas
reservoirs so as to obtain a high economic recovery, by developing, conducting,
and interpolating the simulation of subsurface flows of reservoir fluids, including
water, hydrocarbon, CO2, H2S for example in porous geological formation. Field-
scale (Darcy-scale) simulation has conventionally and routinely used for this
purpose [2,4,12,16,17]. A number of parameters like relative permeability and
capillary pressure are taken as given functions in Darcy-scale simulation [14].
To study these parameters as well as to obtain deep understanding of porous
media flow and transport, researchers develop and utilize pore-scale simulation
of two-phase [1,3,5–9,11,13], which has been shown to be a great research tool
to understand the complex hydrodynamic and phase behaviors of the systems.
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2 Mathematical Modeling Framework

2.1 Mathematical Model of Bulk Properties

In this paper we consider the Van der Waals equation of state (EOS) and the
Peng-Robinson EOS [15] to model the bulk properties of our fluid system. We
note that the Van der Waals EOS is one of the simplest equations of state that
allow phase splitting. On the other hand, the Peng-Robinson EOS is the most
popular equation of state (EOS) to model and compute the fluid equilibrium
property of hydrocarbon fluid and other petroleum fluids, and it is widely used
in reservoir engineering and oil industries. Some of the material in this section
can be found in many textbooks, but we list them here for completeness of
information only.

The PVT-form of the Van der Waals EOS appears as
(
p +

a

v2

)
(v − b) = RT. (1)

At the critical condition, we have
(

∂p
∂v

)
T

= 0 and
(

∂2p
∂v2

)
T

= 0. These two con-
ditions together with the above Van der Waals EOS lead to vc = 3b, pc = a

27b2 ,
Tc = 8a

27Rb , and Zc = 3
8 . we substitute the definitions of the reduced pressure,

reduced molar volume and reduced temperature with the values of critical prop-
erties (in terms of a and b) into the above Van der Waals EOS to obtain the
following reduced form of the Van der Waals equation

(
pr +

3
v2

r

)
(3vr − 1) = 8Tr. (2)

From the PVT-form of the Van der Waals EOS, we can derive the
bulk Helmholtz free energy for the Van der Waals fluid as F (T, V,N) =
Fideal(T, V,N) + Fexcess(T, V,N), where the ideal gas contribution (note that
N =

∑
i Ni) is Fideal(T, V,N) = RT

∑M
i=1 Ni ln

(
Ni

V

)
+ NCintg(T ), with one

choice of Cintg as Cintg(T ) = −RT
(
ln( nQ

NA
) + 1

)
and nQ =

(
2πmkBT

h2

)3/2
. The

excess part of Helmholtz free energy is: Fexcess(T, V,N) = −NRT ln
(
1 − Nb

V

) −
N2a
V .

We define the Helmholtz free energy density f as the Helmholtz free energy
per unit volume of fluid. It is clear that

f(T,n) = fideal(T,n) + fexcess(T,n), (3)

fideal(T,n) = RT
M∑
i=1

ni ln (ni) + nCintg(T ), (4)

fexcess(T, n) = −nRT ln (1 − bn) − an2. (5)
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With the Peng-Robinson EOS, the bulk Helmholtz free energy density f(T,n)
of a bulk fluid is determined by f(T,n) = fideal(T,n) + fexcess(T,n) and

f ideal(T,n) = RT

M∑
i=1

ni (ln ni − 1) , (6)

f excess(T, n) = −nRT ln (1 − bn) +
a(T )n
2
√

2b
ln

(
1 + (1 − √

2)bn
1 + (1 +

√
2)bn

)
. (7)

The two parameters a and b can be computed as follows. For a mixture, these
parameters can be calculated from the ones of the pure fluids by mixing rules:

a(T ) =
M∑
i=1

M∑
j=1

yiyjaia
1/2
j (1 − kij), b =

M∑
i=1

yibi, (8)

where yi = ni/n is the mole fraction of component i, and ai and bi are the
Peng-Robinson parameters for pure-substance component i. We often use exper-
imental data to fit the binary interaction coefficient kij of Peng-Robinson. For
convenience, kij is usually assumed to be constant for a fixed species pair.

Even though the pure-substance Peng-Robinson parameters ai and bi can
also be fit by using experimental data, they can also be computed from the
critical properties of the species:

ai = ai (T ) = 0.45724
R2T 2

ci

Pci

(
1 + mi

(
1 −

√
T

Tci

))2

,

bi = 0.07780
RTci

Pci

.

As intrinsic properties of the species, the critical temperature Tci
and critical

pressure Pci
of a pure substance are available for most substances encountered

in engineering practice. In the above formula for ai, we need also to specify
the parameter mi for modeling the influence of temperature on ai. It was sug-
gested that one may correlates the parameter mi experimentally to the accentric
parameter ωi of the species by the following equations:

mi = 0.37464 + 1.54226ωi − 0.26992ω2
i , ωi ≤ 0.49,

mi = 0.379642 + 1.485030ωi − 0.164423ω2
i + 0.016666ω3

i , ωi > 0.49.

The accentric parameter can be fit by using experimental data, but if we lack
data, we can also compute it by using critical temperature Tci

, critical pressure
Pci

and the normal boiling point Tbi
:

ω =
3
7

⎛
⎝ log10

(
Pci

14.695 PSI

)

Tci

Tbi
− 1

⎞
⎠ − 1 =

3
7

⎛
⎝ log10

(
Pci

1 atm

)

Tci

Tbi
− 1

⎞
⎠ − 1.
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Based on the fundamental relation on thermodynamic variables, the pressure
of homogeneous fluids p and the Helmholtz free energy f(n) can be linked in the
following way

p = p(n, T ) = −
(

∂F (n, T,Ω)
∂V

)

T,N

= −
(

∂
(
f

(
N
V , T

)
V

)
∂V

)

T,N

= −f − V

M∑
i=1

(
∂f

∂ni

)

T,n1,··· ,ni−1,ni+1,···nM

(
∂ Ni

V

∂V

)

Ni

=
M∑
i=1

ni

(
∂f

∂ni

)

T,n1,··· ,ni−1,ni+1,···nM

− f =
M∑
i=1

niμi − f.

Substitution of the Peng-Robinson expression of f leads to

p =
nRT

1 − bn
− n2a(T )

1 + 2bn − b2n2
=

RT

v − b
− a(T )

v(v + b) + b(v − b)
.

2.2 Modeling the Two-Phase Systems with Interfaces

The total Helmholtz energy F tot has two contributions, one from the homoge-
neous bulk fluid, and another one from the interface between the two phases:

F tot (n) = Fbulk (n; T,Ω) + Finterface (n; T,AI)

=
ˆ

Ω\AI

f(n; T )dx +
ˆ

AI

σ([n], {n}; T )ds,

where σ is the interfacial tension (or the interfacial Helmholtz energy per unit
area), which is a function of the jump and average of n across the interface.
In the paper, for convenience, we assume that σ is a given constant. With this
assumption, we have

F tot = f
(
nL

)
V L + f

(
nG

)
V G + σAI ,

where nL and V L are the molar density and volume of liquid phase, respectively.
Meanings of nG and V G are similar to these.

We impose the total volume V tot and the total moles Ntot such as V tot =
V L +V G and N tot

i = nL
i V L +nG

i V G, i = 1, 2, · · · ,M. The interface AI is also a
function of V G; for example, if there is only one single bubble, then AI = 4πr2

while V G = 4πr3

3 . Considering nG and V G as the primary variables, we can write
the total Helmholtz energy F tot as

F tot(nG, V G) = f

(
Ntot − nGV G

V tot − V G

)
(V tot − V G) + f

(
nG

)
V G + σAI(V G).

When F tot achieves its minimum and the function F tot is smooth, we have

∂F tot(nG, V G)
∂nG

i

= 0, and
∂F tot(nG, V G)

∂V G
= 0,
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which implies respectively μ(nG) = μ(nL), and pG − pL = σ dAI

dV G . If there is
only one single bubble, then AI = 4πr2 and V G = 4πr3

3 ; the above condition
simplifies to

pG − pL =
2σ

r
,

which is known as the Young-Laplace equation.

3 Numerical Methods

To find the minimum of the F tot(nG, V G), we design the following ordinary
differential equation (ODE) system

∂NG
i

∂t
= −∂NL

i

∂t
= kNi

N tot
i (μ(nL) − μ(nG)), i = 1, 2, · · · ,M,

∂V G

∂t
= −∂V L

∂t
= kV V tot(pG(nG) − pL(nL) − σ

dAI

dV G
).

We solve the above ODE using the following explicit Euler method, which is
conditionally stable provided that the time step is less than a certain value.

NG,k+1
i − NG,k

i

tk+1 − tk
= kNi

N tot
i (μ(nL,k) − μ(nG,k)), i = 1, 2, · · · ,M,

V G,k+1 − V G,k

tk+1 − tk
= kV V tot(pG(nG,k) − pL(nL,k) − σ

dAI

dV G
),

where nG,k and nL,k can be determined from V G,k, NG,k
i , i = 1, 2, · · · ,M.

Existence, uniqueness, and energy-decay property of the solution to the above
ODE equation system as well as the existence, uniqueness, and the conditional
energy-decay property of the numerical solution defined above can be proved
using techniques similar to the ones used in our previous work [10].

4 Numerical Examples

4.1 Effect of Capillary Pressure on the Van der Waals Fluid

We first consider the single-component two-phase fluid system modeled by the
Van der Waals EOS. If we write the single-component Van der Waals EOS
using reduced temperature, reduced pressure and reduced molar volume, we
then may obtain an universal dimensionless Eq. (2) for the EOS. That is, all
single-component two-phase fluids behave in the same way after certain linear
transformation. Since we will report results in reduced quantities, it does not
matter the parameters a and b we choose, but in the implementation, the choice
of kN and kV might depend on the specific values of a and b. Without loss of
generality, we choose a = 3 and b = 1

3 ; in this way, pc = 1 and vc = 1 and thus
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Fig. 1. Phase diagrams of the single-component Van der Waals fluid: (a) reduced molar
volumes of gas and liquid phases at equilibrium as a function of reduced temperature;
(b) reduced boiling temperature as a function of reduced pressure

pr = p and vr = v. The units of these quantities can be any fixed units, as long
as consistent units are used, such as the SI unit system.

For comparison and verification, we first let σ = 0 in our model, and we
calculate the liquid-vapor phase behavior of the Van der Waals fluid without
capillarity. We generate phase diagrams numerically and plot them in Figs. 1(a)
and (b). Figure 1(a) is the volume-temperature phase envelope while Fig. 1(b)
displays reduced boiling temperature as a function of reduced pressure.

We then consider two cases with capillary pressure. The first case is a sin-
gle bubble of radius r immersed in the liquid. In this case, V G = 4πr3

3 and
dAI/dV G = 2/r. For this single-component two-phase fluid system, our model-
ing ODE reduces to

∂NG

∂t
= kNN tot(μ(nL) − μ(nG)),

∂r

∂t
=

kV V

4πr2

tot

(pG(nG) − pL(nL) − 2σ

r
).

The values of kN and kV are manually tuned for one typical simulation, and
are then fixed for all other runs. In all numerical examples in this subsection,
we choose kN = 0.05 and kV = 0.02. We use the unit time step Δt = 1 for all
numerical runs in this paper.

The effect of capillary pressure on the saturation pressure of the liquid phase
and the vapor (gas) phase is provided in Figs. 2(a)–(d) under various condition
of reduced temperatures and capillary pressures. The horizontal axis of these
plots are σ

rpc
. The ratio of interfacial tension to the radius of the gas bubble σ

r
is the influencing factor, we divide this ratio by the critical pressure of the fluid
pc so that we get a dimensionless quantity.
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Fig. 2. The effect of capillary pressure on the saturation pressures of the liquid phase
and the vapor (gas) bubble modeled by the single-component Van der Waals EOS: (a)
Tr = 0.7 (b) Tr = 0.8 (c) Tr = 0.9 (d) Tr = 0.95

We also compare the our numerical prediction of vapor pressure with the
one calculated by the Kelvin equation. The Kelvin equation can be derived by
using the two equilibrium conditions dpG − dpL = d(2σ/r) and dμG = dμL,
and the two fundamental relations dμG = vGdpG and dμL = vLdpL, which
yield dpG = d( 2σ

r )

(1− vG

vL )
. By assuming the ideal gas law for the vG and assuming a

constant molar density for vL, we can integrate the above differential equation
to obtain the following Kelvin equation

pG = p∞ exp(−2σvL

rRT
),

which quickly reveals that the vapor pressure decreases with increasing interface
curvature and increasing interfacial tension.
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Fig. 3. The effect of capillary pressure on the molar densities of the liquid phase and
the vapor (gas) bubble modeled by the single-component Van der Waals EOS: (a)
Tr = 0.7 (b) Tr = 0.8 (c) Tr = 0.9 (d) Tr = 0.95

Figures 2(a)–(d) indicates that the vapor pressure predicted by the Kelvin
equation agree well with our numerical simulation when the temperature is not
too low. When the temperature is low, the vapor pressure predicted by the
Kelvin equation has pronounced derivation, because the ideal gas law is no loner
a good approximation at low temperature. From Figs. 2(a)–(d), we also see that
the saturation liquid pressure departs from its zero-capillary value much more
significantly than the saturation vapor pressure.

We observe the number of time steps required for convergence varies with
the reduced temperature. When Tr = 0.7, the number of time steps required
for convergence is about 10 to 30 depending on the value of σ

rpc
, while when

Tr = 0.95, the number of time steps required for convergence is can be more
than 2000.



546 S. Sun

0.000 0.005 0.010 0.015

0.
20

0.
21

0.
22

0.
23

0.
24

sigma/r/Pc

re
du

ce
d 

pr
es

su
re

 o
f l

iq
ui

d 
ph

as
e

0.
20

0
0.

20
5

0.
21

0
0.

21
5

0.
22

0

re
du

ce
d 

pr
es

su
re

 o
f g

as
 p

ha
se

Pr_liquid (left axis)

Pr_gas (right axis)

Pr_gas from Kelvin's equation (right axis)

0.000 0.005 0.010 0.015

0.
39

0.
40

0.
41

0.
42

sigma/r/Pc

re
du

ce
d 

pr
es

su
re

 o
f l

iq
ui

d 
ph

as
e

0.
38

5
0.

39
0

0.
39

5
0.

40
0

0.
40

5

re
du

ce
d 

pr
es

su
re

 o
f g

as
 p

ha
se

Pr_liquid (left axis)

Pr_gas (right axis)

Pr_gas from Kelvin's equation (right axis)

)b()a(

0.000 0.005 0.010 0.015

0.
65

0.
66

0.
67

0.
68

0.
69

sigma/r/Pc

re
du

ce
d 

pr
es

su
re

 o
f l

iq
ui

d 
ph

as
e

0.
65

0
0.

65
5

0.
66

0
0.

66
5

0.
67

0

re
du

ce
d 

pr
es

su
re

 o
f g

as
 p

ha
se

Pr_liquid (left axis)

Pr_gas (right axis)

Pr_gas from Kelvin's equation (right axis)

0.000 0.005 0.010 0.015

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

sigma/r/Pc

re
du

ce
d 

pr
es

su
re

 o
f l

iq
ui

d 
ph

as
e

0.
81

5
0.

82
0

0.
82

5
0.

83
0

0.
83

5
0.

84
0

re
du

ce
d 

pr
es

su
re

 o
f g

as
 p

ha
se

Pr_liquid (left axis)

Pr_gas (right axis)

Pr_gas from Kelvin's equation (right axis)

)d()c(

Fig. 4. The effect of capillary pressure on the saturation pressures of the liquid droplet
and the vapor (gas) phase modeled by the single-component Van der Waals EOS: (a)
Tr = 0.7 (b) Tr = 0.8 (c) Tr = 0.9 (d) Tr = 0.95

In Figs. 3(a)–(d), we show the variation of molar densities of the saturated
liquid phase and saturated vapor phase as influenced by capillarity. It is evident
that the molar densities of both phases decrease with increasing interface cur-
vature and increasing interfacial tension. This is likely because the decrease of
saturation pressure causes the decrease of molar densities.

The second case is a single liquid droplet of radius r immersed in the vapor
phase. In this case, V G = V tot − 4πr3

3 and dAI/dV G = −2/r. For this single-
component two-phase fluid system, our modeling ODE reduces to
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Fig. 5. The effect of capillary pressure on the molar densities of the liquid droplet
and the vapor (gas) phase modeled by the single-component Van der Waals EOS: (a)
Tr = 0.7 (b) Tr = 0.8 (c) Tr = 0.9 (d) Tr = 0.95

∂NG

∂t
= kNN tot(μ(nL) − μ(nG)),

∂r

∂t
=

kV V

4πr2

tot

(pL(nL) − pG(nG) − 2σ

r
).

Figures 4(a)–(d) provide the trend of the saturation liquid pressure of a sin-
gle liquid droplet and the surrounding saturation vapor pressure as influenced
by capillarity. Unlike the vapor bubble case, both the liquid pressure and the
saturation vapor pressure increase here with increasing interface curvature and
increasing interfacial tension. The trend of the saturation vapor pressure is also
compared with the ones predicted by the Kelvin equation, which does a good
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Fig. 6. The effect of capillary pressure on phase behaviors of a vapor (gas) bub-
ble immersed in its saturated liquid phase modeled by the single-component Peng-
Robinson EOS: (a) liquid and vapor (gas) pressures (b) molar densities of two phases

0 2000 4000 6000 8000 10000

95
00

00
95

50
00

96
00

00
96

50
00

97
00

00

sigma/r (Pa)

pr
es

su
re

 o
f l

iq
ui

d 
ph

as
e 

(P
a)

94
80

00
94

85
00

94
90

00
94

95
00

pr
es

su
re

 o
f g

as
 p

ha
se

 (P
a)

liquid pressure (left axis)

gas pressure (right axis)

gas pressure from Kelvin's equation (right axis)

0 2000 4000 6000 8000 10000

40
4

40
5

40
6

40
7

sigma/r (Pa)

m
ol

ar
 d

en
si

ty
 o

f g
as

 p
ha

se
 (m

ol
/m

^3
)

88
75

88
76

88
77

88
78

88
79

88
80

88
81

m
ol

ar
 d

en
si

ty
 o

f l
iq

ui
d 

ph
as

e 
(m

ol
/m

^3
)

gas molar density

liquid molar density

)b()a(

Fig. 7. The effect of capillary pressure on phase behaviors of a liquid droplet immersed
in its vapor (gas) phase modeled by the single-component Peng-Robinson EOS: (a)
liquid and vapor (gas) pressures (b) molar densities of two phases

job only when the temperature is not too low. In Figs. 5(a)–(d), we show the
variation of molar densities of the saturated liquid phase and saturated vapor
phase as influenced by capillarity. Unlike the vapor bubble case, the molar den-
sities of both phases increase with increasing interface curvature and increasing
interfacial tension.
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Table 1. Relevant data of isobutane (excerpted from Table 3.1 of [4], Page 141)

Component Symbol Tc, K Pc, MPa Tb, K

Isobutane nC4 425.18 3.797 272.64

4.2 Effect of Capillary Pressure on the Peng-Robinson Fluid

The Peng-Robinson EOS, unlike the single-component Van der Waals EOS,
cannot transformed into a same reduced from by using reduced temperature,
reduced pressure and reduced molar volume, because a third parameter, the
accentric parameter appears in the Peng-Robinson EOS. We thus consider a
specific example below with physical units. In the example below, we consider
the species of isobutane (nC4) at the temperature of 350 K. For convenience
of readers, we provide in Table 1 its critical properties and its normal boiling
point. The values of kN and kV are manually tuned for one typical simulation,
and are then fixed for all other runs. In all runs in this subsection, we choose
kN = 1 × 10−3 mol J−1 s−1 and kV = 1 × 10−9 Pa−1 s−1. We again use the unit
time step Δt = 1 s.

Figure 6(a) displays the effect of capillary pressure on the saturation pressures
of both phases when a single gas bubble is in equilibrium on its liquid phase.
The corresponding variation of molar densities of both phases are plotted in
Fig. 6(b). The trend of the saturation vapor pressure is also compared with
the ones predicted by the Kelvin equation, which does a reasonable job in the
condition simulated in this example. Clearly, like the case modeled by the Van der
Waals EOS, both the liquid pressure and the saturation vapor pressure decrease
here with increasing interface curvature and increasing interfacial tension, which
also leads a decrease of molar density of both phases.

Figure 7(a) and (b) show the variation of the saturation pressures and molar
densities of both phases when a single liquid droplet is in equilibrium on its vapor
phase under various conditions of interface curvature and increasing interfacial
tension. The trend seems similar to the case predicted by the single-component
Van der Waals EOS qualitatively.

5 Conclusion

In this paper, we formulate a framework to model a two-phase fluid with a
(sharp) interface using Van der Waals EOS and Peng-Robinson EOS. Our model
is able to predict the affect of capillary pressure on phase behaviors. We propose
simple but conditionally energy stable numerical schemes to solve the minimiza-
tion problem of total Helmholtz energy in given total volume, temperature, and
total moles. We consider bubbles in liquid as well as droplets in vapor in our
numerical examples. Our numerical agree well with the prediction of Kelvin’s
equation when the temperature is not too low. Due to the limitation of the
space, we provide only single-component examples. Our model and schemes,
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however, are expected to work well with multi-component systems, which will
be investigated and reported in a separate paper elsewhere.
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