Skip to main content

Molecular Pathogenesis: From Inflammation and Cholestasis to a Microenvironment-Driven Tumor

  • Chapter
  • First Online:
  • 407 Accesses

Abstract

Intrahepatic cholangiocarcinoma is a primary liver cancer originating from the malignant transformation of different epithelial cell sources, not only the cholangiocyte but also the progenitor stem cell or the hepatocyte. Chronic inflammation, also extending outside the portal tract, and cholestasis are the main mechanisms promoting the pathogenetic sequence ultimately leading to the appearance of the neoplastic biliary lesion. Following tumor formation, a dense fibro-inflammatory stroma, termed “tumor reactive stroma,” progressively accumulate nearby the malignant bile ducts, further boosting tumor overgrowth and invasion. A crowd of cells composes the tumor reactive stroma among cancer-associated fibroblasts, tumor-associated macrophages, tumor-infiltrating lymphocytes, and lymphatic vessels, which lay embedded in an abnormally remodeled and stiff extracellular matrix. Herein, we will outline the molecular underpinnings responsible for the oncogenic effects of inflammation and cholestasis, underlining the different pathways and genetic perturbations. The multifaceted role played by the tumor microenvironment in driving invasiveness of intrahepatic cholangiocarcinoma is discussed, focusing on the main stromal cell types and the paracrine factors molding the pro-invasive functions of the tumoral cholangiocyte.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.

    Google Scholar 

  2. Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R, Spirli C, et al. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol basis Dis. 2018;1864:1435–43.

    Article  CAS  Google Scholar 

  3. Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular mechanisms driving cholangiocarcinoma invasiveness: an overview. Gene Expr. 2018;18:31–50.

    Article  Google Scholar 

  4. Gupta A, Dixon E. Epidemiology and risk factors: intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6(2):101–4.

    Article  Google Scholar 

  5. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin N Am. 2012;41:335–50.

    Article  CAS  Google Scholar 

  6. Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis. 2004;24:127–37.

    Article  CAS  Google Scholar 

  7. Tadlock L, Patel T. Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology. 2001;33(1):43–51.

    Article  CAS  Google Scholar 

  8. Isomoto H, Kobayashi S, Werneburg NW, Bronk SF, Guicciardi ME, Frank DA, et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology. 2005;42(6):1329–38.

    Article  CAS  Google Scholar 

  9. Morton SD, Cadamuro M, Brivio S, Vismara M, Stecca T, Massani M, et al. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget. 2015;6(28):26052–64.

    Article  Google Scholar 

  10. Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology. 2007;132(1):384–96.

    Article  CAS  Google Scholar 

  11. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7:504–16.

    Article  CAS  Google Scholar 

  12. Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol. 2011;29(36):4837–8.

    Article  CAS  Google Scholar 

  13. Fava G, Lorenzini I. Molecular pathogenesis of cholangiocarcinoma. Dig Dis. 2014;32(5):564–9.

    Article  Google Scholar 

  14. Wu T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta (Rev Cancer). 2005;1755(2):135–50.

    Article  CAS  Google Scholar 

  15. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60(1):184–90.

    CAS  PubMed  Google Scholar 

  16. Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48:308–21.

    Article  CAS  Google Scholar 

  17. Wang P, Dong Q, Zhang C, Kuan PF, Liu Y, Jeck WR, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32(25):3091–100.

    Article  CAS  Google Scholar 

  18. Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G, Lucon Xiccato R, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018;563(7730):265–9.

    Article  CAS  Google Scholar 

  19. Fabris L, Cadamuro M, Moserle L, Dziura J, Cong X, Sambado L, et al. Nuclear expression of S100A4 calcium-binding protein increases cholangiocarcinoma invasiveness and metastasization. Hepatology. 2011;54(3):890–9.

    Article  CAS  Google Scholar 

  20. Cadamuro M, Spagnuolo G, Sambado L, Indraccolo S, Nardo G, Rosato A, et al. Low-dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res. 2016;76(16):4775–84.

    Article  CAS  Google Scholar 

  21. Liu R, Zhao R, Zhou X, Liang X, Campbell DJW, Zhang X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology. 2014;60(3):908–18.

    Article  CAS  Google Scholar 

  22. Yoon J, Werneburg NW, Higuchi H, Canbay AE, Kaufmann SH, Akgul C, et al. Bile acids inhibit Mcl-1 protein turnover via anEpidermal Growth Factor Receptor/Raf-1-dependent Mechanism. Cancer Res. 2002;62(22):6500–5.

    CAS  PubMed  Google Scholar 

  23. Nedelcu D, Liu J, Xu Y, Jao C, Salic A. Oxysterol binding to the extracellular domain of smoothened in hedgehog signaling. Nat Chem Biol. 2013;9(9):557–64.

    Article  CAS  Google Scholar 

  24. El Khatib M, Kalnytska A, Palagani V, Kossatz U, Manns MP, Malek NP, et al. Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma. Hepatology. 2013;57(3):1035–45.

    Article  Google Scholar 

  25. Zhou Q, Wang Y, Peng B, Liang L, Li J. The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma. BMC Cancer. 2013;13(1):1.

    Article  CAS  Google Scholar 

  26. Morell CM, Fiorotto R, Fabris L, Strazzabosco M. Notch signaling beyond liver development: emerging concepts in liver repair and oncogenesis. Clin Res Hepatol Gastroenterol. 2013;37:447–54.

    Article  CAS  Google Scholar 

  27. Dong M, Liu X, Evert K, Utpatel K, Peters M, Zhang S, et al. Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death Dis. 2018;9(2)

    Google Scholar 

  28. Wang J, Dong M, Xu Z, Song X, Zhang S, Qiao Y, et al. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene. 2018;37(24):3229–42.

    Article  CAS  Google Scholar 

  29. Brivio S, Cadamuro M, Strazzabosco M, Fabris L. Tumor reactive stroma in cholangiocarcinoma: The fuel behind cancer aggressiveness. World J Hepatol. 2017;9(9):455–68.

    Article  Google Scholar 

  30. Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2012;9:44–54.

    Article  Google Scholar 

  31. Gentilini A, Pastore M, Marra F, Raggi C. The role of stroma in cholangiocarcinoma: the intriguing interplay between fibroblastic component, immune cell subsets, and tumor epithelium. Int J Mol Sci. 2018;19

    Article  Google Scholar 

  32. Pinto C, Giordano DM, Maroni L, Marzioni M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol basis Dis. 2018;1864:1270–8.

    Article  CAS  Google Scholar 

  33. Cadamuro M, Nardo G, Indraccolo S, Dall’Olmo L, Sambado L, Moserle L, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 2013;58(3):1042–53.

    Article  CAS  Google Scholar 

  34. Gentilini A, Rombouts K, Galastri S, Caligiuri A, Mingarelli E, Mello T, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol. 2012;57(4):813–20.

    Article  Google Scholar 

  35. Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, et al. Myofibroblast-derived PDGF-BB promotes hedgehog survival signaling in cholangiocarcinoma cells. Hepatology. 2011;54(6):2076–88.

    Article  CAS  Google Scholar 

  36. Clapéron A, Mergey M, Aoudjehane L, Ho-Bouldoires THN, Wendum D, Prignon A, et al. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology. 2013;58(6):2001–11.

    Article  Google Scholar 

  37. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783–803.

    Article  CAS  Google Scholar 

  38. Techasen A, Namwat N, Loilome W, Duangkumpha K, Puapairoj A, Saya H, et al. Tumor necrosis factor-α modulates epithelial mesenchymal transition mediators ZEB2 and S100A4 to promote cholangiocarcinoma progression. J Hepatobiliary Pancreat Sci. 2014;21(9):703–11.

    Article  Google Scholar 

  39. Tanimura Y, Kokuryo T, Tsunoda N, Yamazaki Y, Oda K, Nimura Y, et al. Tumor necrosis factor α promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett. 2005;219(2):205–13.

    Article  CAS  Google Scholar 

  40. Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, Puapairoj A, et al. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumor Biol. 2014;35(6):5357–67.

    Article  CAS  Google Scholar 

  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  42. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–9.

    Article  CAS  Google Scholar 

  43. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21:24–33.

    Article  CAS  Google Scholar 

  44. Fontugne J, Augustin J, Pujals A, Compagnon P, Rousseau B, Luciani A, et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget [Internet]. 2017;8(15). Available from: http://www.oncotarget.com/fulltext/15602.

  45. Thelen A, Scholz A, Weichert W, Wiedenmann B, Neuhaus P, Gener R, et al. Tumor-associated angiogenesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol. 2010;105(5):1123–32.

    Article  Google Scholar 

  46. Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH. Lymphatic endothelial cells – key players in regulation of tolerance and immunity. Front Immunol. 2012;3(SEP):1–6.

    Google Scholar 

  47. Irjala H, Alanen K, Grénman R, Heikkilä P, Joensuu H, Jalkanen S. Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res. 2003;63(15):4671–6.

    CAS  PubMed  Google Scholar 

  48. Zheng W, Aspelund A, Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Investig. 2014;124:878–87.

    Article  CAS  Google Scholar 

  49. Augustin HG, Young Koh G, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin – Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77.

    Article  CAS  Google Scholar 

  50. Cadamuro M, Brivio S, Mertens J, et al. Platelet-derived growth factor-D enables liver Myofibroblasts to promote tumor Lymphangiogenesis in cholangiocarcinoma. J Hepatol. 2018;70(4):700–9.

    Article  Google Scholar 

Download references

Acknowledgments

M.C. was supported by Fondazione Cariplo, Grant No. 2014-1099; L.F. was supported by the University of Padua, Progetti di Ricerca di Dipartimento (PRID) 2017.

Conflict of Interest Statement

Authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fabris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milani, E., Strazzabosco, M., Fabris, L., Cadamuro, M. (2019). Molecular Pathogenesis: From Inflammation and Cholestasis to a Microenvironment-Driven Tumor. In: Pawlik, T., Cloyd, J., Dillhoff, M. (eds) Intrahepatic Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-22258-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22258-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22257-4

  • Online ISBN: 978-3-030-22258-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics