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and Rosa Maŕıa Valdovinos-Rosas
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Abstract. Monte Carlo Tree Search (MCTS) is the most used method
in General Game Playing, area of the Artificial Intelligence, whose main
goal is to develop agents capable of play any board game without preview
knowledge. MCTS requires a tree which represents the states and moves
of the board game which is visited and expanded using an iterations
method. In order to visit the tree, MCTS requires a selection policy
which determines which node is visited in each level. Nowdays, Upper
Confidence Bound (UCB), is the most popular policy in MCTS due to its
simplicity and efficiency. This policy was propose for the Multi-Armed
Bandit Problem (MABP) which consists in set of slot machines each of
which has a certain probability of give a reward. The goal is to maximize
the accumulative reward that is obtained when a machine is played in a
series of rounds. Other policy proposed for MCTS is Upper Confidence
Bound√

. (UCB√
.) whose goal is to identify the machine with the highest

probability to give a reward. This paper shows a comparative between
five modifications of UCB and one of UCB√

., this comparative has the
goal of finding a policy which be able to identify the optimal machine
as quickly as possible, this goal in MCTS is equals to identify the node
with the highest probability to leading to a victory. The results show
that some policies find the optimal machine before UCB, however, with
10,000 rounds UCB is the policy who plays the optimal machine more
often.

Keywords: General game playing · Selection policy ·
Upper confidence bound

1 Introduction

For Bjornsson and Finnsson [5], General Game Playing (GGP) is the area of
Artificial Intelligence of which the objective is to create intelligent agents who
can learn, automatically, how to play a wide variety of board games, based only
on the descriptions of the rules of the games. The foregoing implies that without
prior knowledge about the game and while playing, the agent must be able to
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develop strategies that allow it to win. Since its inception GGP makes use of
methods based on MinMax or Alpha-Beta tree [11], this is due to the nature of
boardgames, to which tree can be associated, where the root node represents the
initial state of the game and each child node represents the status of the game
after some movement has been made. Due to the above, the leaf nodes of the
game tree correspond to the statuses where the game has ended, whereby the
agent must only find a leaf node where he achieves a win; this is the reason for
using methods based on search trees.

Monte Carlo Tree Search (MCTS) is the search method based on the most
popular tree in GGP, as it has a better performance in game trees [6]. MCTS
consists of four steps that are repeated cyclically, until a stop criterion is met:
Selection, Expansion, Simulation, and Back Propagation. The stop criterion can
be a limit number of simulations, execution time or number of iterations [6].

Selection In this step the method crosses the tree from the root node until it
finds a node that still has children to add to the tree, once this node is found
the Expansion step is reached. The route taken by this step is guided by a
Selection Policy, which indicates which node should be explored in each level;
an example of this policy is to choose the node that has the highest ratio
between wins and visits.

Expansion In this step, a corresponding child node is added to the node found
in the selection step.

Simulation Starting from the status represented by the newly added node,
the method simulates playing the game by performing the movements of the
players randomly until a result is obtained.

Back Propagation In this step, the result of the simulation step is propagated
in all the nodes visited, updating the number of wins and the number of visits
of each node.

Once the method ends, the movement that the agent must perform is chosen
among the children of the root node which could be: the node with the highest
number of wins, the node with the highest number of visits, the node that meets
the two previous criteria, or the node is chosen based on the selection policy.
MCTS has the advantage of being able to be used at any time during the game
since the root of the tree can be any status of the game, another feature of MCTS
is to be efficient by not having to completely expand the tree as it resorts to
probability to choose the movement that has the highest chance of leading to a
win, so it is also known as a probabilistic method.

In recent years efforts have been made to improve MCTS, mainly in the Sim-
ulation Step where attempts have been made for the simulation to reflect move-
ments of real adversaries without being completely deterministic, highlighting
the works of Cazenave [8–10], whose idea is to make use of online knowledge,
by identifying the movements of previous iterations that led to wins to be used,
with a greater probability, in future iterations.

Another step of MCTS where efforts are made to improve it is the Selection
Step specific to the Selection Policy; in the beginning the average of wins of each
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node was used as selection policy. However, new policies have been proposed,
such as Upper Confidence Bound. In the Selection Step, at each level of the tree,
MCTS has to make the following decision: Which node should be explored? The
one in which the highest number of wins is obtained so far, or should we explore
less promising nodes that may turn out to be better in future iterations? This
decision is an instance of the Explore-Exploit Dilemma, which Auer et al. [3]
describe as the search for a balance between exploring the environment to find
profitable actions while taking the best empirical action as frequently as possible.

Another instance of the Explore-Exploit Dilemma is the Multi-Armed Bandit
Problem (MABP), which consists in set of slot machines each of which has a
certain probability of give a reward. The goal is to maximize the accumulative
reward that is obtained when a machine is played in a series of rounds.

An algorithm that allows to decide which machine to activate in each round in
MABP is known as Activation Policy, where Upper Confidence Bound (UCB) is
the most popular, mainly because it is efficient, simple to implement and can be
used at any time [3,4]. However, there are other policies that achieve performance
close to UCB such as UCB2, ε-greedy, UCB-Tuned, UCB-Normal [3], UCB-
Improved [4], UCB-V [2], UCB-Minimal [13] and Minimax Optimal Strategy in
the Stochastic Case [1].

Because MABP and the decision made by MCTS in the Selection Step are
instances of the Explore-Exploit Dilemma, it is possible to use Activation Policies
as Selection Policies. In this case, each level of the tree is treated as a MABP
where each node is equivalent to a slot machine; this idea was used for the first
time by the agent Cadiaplayer, which made use of UCB as a selection policy,
giving good results to such an extent that the combination of MCTS and UCB,
known as Upper Confidence Bound Applied to Trees (UCT), became the state
of the art of GGP.

The approach of activation policies like UCB and its similar ones is to mini-
mize Cumulative Regret which is defined as the loss that is obtained due to the
fact that the policy does not always choose the best machine [3]. However, this
approach is not necessarily suitable for MCTS since in this the idea is to identify
the node that is most likely to lead to a win. Another approach known as Simple
Regret [7,14] has been proposed, and is more suited to MCTS [12], and which
is defined as the difference between the expected reward of the optimal machine
(the machine with the highest probability of giving a reward) and the expected
reward of the machine that has been identified as the optimal machine, from
this approach emerge UCB√

.

This paper presents a comparison between five modifications of UCB and one
of UCB√

.. In order to find a selection policy that is able to identify the machine
as quickly as possible, the above would be equivalent in MCTS to identifying
the node that has the highest chance of leading to a win at each level of the tree.
The comparison was made in the regarding MABP in two scenarios: the first
consists of the scenario proposed by Auer et al. [3], in the second one the use of
the branching factor of the game tree of different board games is used to generate
sets of machines where the proposed policies were tested. The results show that
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certain policies find the optimal machine in the first iterations, although at close
to 10,000 iterations it is UCB that activates the optimal machine.

2 Upper Confidence Bound

Auer et al. [3,4] formally define MABP by the random variables Xi,n ∈ {0, 1}
with 1 ≤ i ≤ K and n ≥ 1, where each i is the index of a slot machine, and
K the machines available. By successively activating the i machine, the rewards
Xi,1,Xi,2, · · · are obtained, which are independent and identically distributed
according to an unknown law with unknown expectation μi.

UCB is the most widely used policy in MABP because it achieves logarith-
mic and uniform regret as n increases, and does not require information about
probability distributions and is easy to implement.

UCB consists in the following:

1. Play each machine once.
2. Play the machine j that maximize x̄j +

√
2 lnn
nj

where x̄j is the average reward obtained by the j machine, nj is the number
of the times that the j machine has been played and n is the total number of
plays done so far.

3. The previous step is repeated until a certain number of rounds is reached.

3 Upper Confidence Bound√
.

Proposed by Tolpin and Shimony [14], the UCB√
. policy is the one used in

MCTS and is focused on minimizing simple regret, and consists of:

1. Play each machine once
2. Play the machine j that maximize

x̄j +

√
c
√

n

nj
(1)

where x̄j is the average reward obtained by the j machine, nj is the number
of the times that the j machine has been played and n is the total number
plays done so far.

3. The previous step is repeated until a certain number of rounds is reached.

4 Policies Proposals

UCB is the most used policy in MABP and consequently in Monte Carlo Tree
Search; in this section five modifications to this policy are presented:

UCB-A = xj +

√
2 log n

n
(2)
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UCB-B = xj +

√
2 log nj

nj
(3)

UCB-C = xj +

√
2 log nj

n
(4)

UCB-D = xj (5)

UCB-E = xj +
nj

n
(6)

The UCB-A policy makes use only of the total number of Machine Activations
(number of simulations of the parent node in MCTS). The UCB-B policy makes
use of the number of activations of the machine (number of simulations in the
child node). The policy UCB-C is similar to UCB but with nj y n exchanged.
The UCB-D policy only takes the average of rewards obtained in the machine
(the average of wins per node in MCTS) that means that this policy is only
for exploitation. The UCB-E policy requires the average of the plays. Finally,
UCB-F is a modification of the policy UCB√

. with nj y n exchanged.

UCB-F = xj +

√
2√

nj

n
(7)

5 Comparative of Policies

In this section we compare the performance of the proposed policies with respect
to UCB and UCB√

.. Specifically, we can see how good the policies are in choos-
ing the optimal machine. The choice to measure how much a policy chooses the
optimal machine is because in the MCTS field it is equivalent to choosing the
child node in which the highest number of wins is given.

The policies were compared in the MABP in two scenarios; the first is the
one proposed by Auer et al. [3] and the second scenario is where the branching
factor of a set of board games is used.

5.1 First Scenario

This scenario is the one proposed by Auer et al. [3] to prove the policies UCB,
UCB-T, UCB2, UCB-Normal and ε-greedy. Auer et al. propose that the policies
should be proven in 7 sets of machines, the Table 1 shows these sets with the
probabilities of giving a reward of each of their machines.

For Auer et al. the sets A and D are easy to contrast because the reward of
the optimal machine has low variance and the difference between the expected
value of the optimal machine and suboptimal is wide. Sets C and G are hard sets
because the reward of the optimal machine has high variance and the difference
between the expected value of the optimal machine and suboptimal is small.

The policies were compared with the following conditions:
– Each of the sets proposed by Auer et al. were used.
– Each policy was tested 100 times in each set, from which the average of

activation of the optimal machine was obtained.
– The policies were limited to 100,000 rounds.
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Table 1. Sets of slots machine

Set Probability of giving a reward

A 0.9 0.6

B 0.9 0.8

C 0.55 0.45

D 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

E 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

F 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

G 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Results. This Figs. 1, 2, 3 and 4 show the results obtained in each set and
the Table 2 shows the average percentage of plays of the optimal machine. We
can note at 100,000 rounds, UCB is the best policy because it has the best
performance due it activates the optimal machine over 95.8% on average, the
same happens at 10,000 rounds where the optimal machine is activated 80.6%.
However, in lower rounds UCB-A and UCB-B are the policies that activate the
optimal machine more frequently, over 71% at 1, 000 rounds and over 57% at
100 rounds. It is worth highlighting that UCB − B has performance similar
to the performance of UCB, and it is the second-best performance at 100,000
and 10,000 rounds. The other policies have a performance bellow UCB, UCB-
A, UCB-B and UCB-D, and it is UCB-E the worst policy due it only reaches
37% of the activation of the optimal machine. From the figures we can note
that UCB in the first rounds it is dedicated to exploration in order to find the
optimal machine without underestimate any other suboptimal machine, in these
same rounds UCB-A and UCB-D are the polices that most quickly activate the
optimal machine in all sets except for the set C. However, both policies tend to
stagnate after 1,000 rounds and they do not overcome to UCB.
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Fig. 1. Activations of optimal machine in sets A (left) and B (right)
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Fig. 2. Activations of optimal machine in sets C (left) and D (right)
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Fig. 3. Activations of optimal machine in sets E (left) and F (right)
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Fig. 4. Activations of optimal machine in set G
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Table 2. Activation percentage of optimal machine

Rounds UCB UCB − A UCB − B UCB − C UCB − D UCB − E UCB√
. UCB − F

100,000 x 95.8182 73.3904 85.4395 70.5138 74.6906 37.5698 66.1962 62.6921
σ 4.9840 13.0925 6.1034 15.8557 13.3010 28.8866 25.0811 22.2657

10,000 x 80.5987 73.0574 78.3030 68.7177 74.4771 37.5555 51.9887 61.2636
σ 19.4140 13.1107 12.1342 15.9161 13.3509 28.8716 26.0406 23.3561

1,000 x 56.2810 71.0549 61.1777 61.4323 72.3633 37.4120 41.1454 58.9154
σ 25.9311 13.8878 28.8332 18.1425 14.0022 28.7228 25.7844 24.7352

100 x 37.9771 57.4729 33.8329 42.8214 58.6314 35.9771 34.7229 52.6000
σ 25.1655 19.6814 26.9652 23.8225 19.3466 27.3797 24.2615 25.9624

5.2 Second Scenario

In this scenario the proposal policies were tested in the field of the MABP
problem however we used the branching factor of the games that we show in the
Table 3.

Table 3. Branching factor of games

Game Branching factor Game Branching factor

Tic-Tac-Toe 4 Connect 4 4

Draughts (10 × 10) 4 Domineering (8 × 8) 8

Nine Men’s Morris 10 Reversi 10

Fanorona 11 Lines of Action 29

Chess 35 Chinese chess 38

Japanese chess 40 Korean chess 92

Gomoku 210

The branching factor is used because this will be the number of machines
the polices will face if implemented in the Monte Carlo Tree Search

For this scenario the following conditions are required:

– The game branching factor is used.
– For each branching factor, five sets of machines with random probabilities

were created.
– The policies were tested 100 times in 10,000 rounds in these sets, of which

the average was obtained.
– We obtained the average of activations of the optimal machine.



76 I. Francisco-Valencia et al.

Results. From the Table 4 we can note that when we have a branching fac-
tor under 11, it is UCB-B the policy with the best performance due it reaches
between 74% and 83% of activations of the optimal machine, except when we
have a branching factor of 4 where UCB is the best policy. For the rest of branch-
ing factors, we can note that UCB-A and UCB-B have the best performance due
to these are the policies that activate the optimal machine more frequently. Form
the Table 5 we can note that in all games the best policies are UCB-A and UCB-
B given that in average they activate the optimal machine more frequently. From
the Table 6 we can note that the behavior of the policies changes with UCB-A
and UCB-D the best policies when we have a branching factor under 11. Sur-
prisingly, in the Table 6, we can note for the branching factors 29, 35, 38 and 40,
UCB-F has the best performance.

Table 4. Activation percentage of optimal machine in games at 10,000 rounds

BF UCB UCB − A UCB − B UCB − C UCB − D UCB − E UCB√ UCB − F

4 x̄ 65.6611 59.6806 57.9441 51.5995 56.9357 49.5891 50.3142 51.0588

σ 15.3476 5.5503 11.2091 5.9047 11.1973 4.3158 11.6598 8.2216

8 x̄ 74.9371 75.1826 82.8859 74.4210 74.9500 52.5614 44.2984 63.2555

σ 18.3563 16.9671 13.5736 14.5467 17.8437 16.2887 16.1516 19.9180

10 x̄ 67.8768 69.5031 74.8487 65.4245 69.7310 38.7614 33.7844 59.9355

σ 13.2718 14.9729 15.1556 15.4648 16.5656 8.5786 7.7511 12.9619

11 x̄ 74.3563 77.8430 80.1822 73.1342 76.8665 34.9542 36.9537 65.4115

σ 22.1472 24.4220 22.8700 23.0606 25.0331 17.8814 12.6490 28.0763

29 x̄ 37.2920 76.8383 55.7563 62.7048 74.1868 36.8889 10.1818 46.2529

σ 11.0098 15.4155 29.1863 18.5392 14.9992 22.8625 1.4704 21.5763

35 x̄ 24.5105 67.4117 43.2063 53.0103 66.6836 29.6829 7.4822 40.0294

σ 3.1729 21.0204 33.6807 28.1489 21.6409 23.6254 0.7376 29.2565

38 x̄ 22.7111 57.6530 30.0124 41.6675 57.7975 14.9365 7.0274 25.8340

σ 3.9723 12.0977 25.3554 16.9108 13.0974 14.9539 0.5625 16.7117

40 x̄ 30.0559 72.9773 50.1235 59.0959 73.6321 26.2777 7.0432 34.8555

σ 9.0977 19.1200 30.1434 25.1066 20.2007 29.5561 1.0251 31.7675

92 x̄ 6.3170 36.9091 7.3637 17.1300 33.3640 7.5018 2.0843 9.1248

σ 0.9060 6.4753 14.5398 14.8989 8.0411 10.6270 0.0996 13.7220

210 x̄ 1.8606 45.1294 0.0100 1.5039 45.8125 0.9766 0.7544 0.3475

σ 0.1406 18.3626 0.0000 2.0300 18.6298 1.9332 0.0139 0.5902
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Table 5. Activation percentage of optimal machine in games at 1,000 rounds

BF UCB UCB − A UCB − B UCB − C UCB − D UCB − E UCB√ UCB − F

4 x̄ 52.2936 59.2170 54.3214 49.6422 56.3692 49.4910 42.3852 50.4402

σ 13.0574 5.6605 10.1968 7.0983 11.2702 4.3013 7.1777 7.7528

8 x̄ 49.5066 72.8488 66.7468 66.7380 72.9586 52.2142 30.2922 59.5674

σ 17.5118 17.3604 16.4454 15.3563 18.0711 16.1459 9.3635 19.8535

10 x̄ 38.6312 67.0240 54.7670 55.4538 67.3690 38.4144 22.1458 56.6776

σ 9.4914 14.8311 10.2368 13.3721 16.0270 8.4904 3.4105 10.7863

11 x̄ 43.2396 75.2802 50.4530 62.3224 74.4496 34.5416 22.0318 59.9800

σ 15.5835 24.9104 27.2729 23.6197 25.5042 17.6155 5.0195 27.1612

29 x̄ 11.9900 66.7928 35.8372 41.6526 65.1450 35.8894 6.4858 40.4814

σ 2.1578 12.6583 27.1850 26.1605 11.9942 22.2133 0.4633 22.3180

35 x̄ 8.5186 57.5004 14.1398 28.7188 56.5842 28.6292 5.0170 35.1438

σ 0.8929 16.3202 17.7661 20.9094 17.1572 22.8657 0.3096 28.2344

38 x̄ 8.0218 47.9556 12.4592 22.5314 47.5542 14.3646 4.6864 21.3432

σ 0.7405 11.1791 23.7481 18.1138 11.8451 14.4796 0.2377 17.1685

40 x̄ 8.2068 63.0024 16.8792 25.9206 63.4442 25.1766 4.5156 30.2384

σ 1.4715 17.5381 31.2955 32.3617 17.9930 28.4204 0.3370 31.4916

92 x̄ 2.2336 21.1234 0.1284 4.7348 21.0182 6.6180 1.5626 6.0978

σ 0.1456 1.8250 0.0568 8.0212 4.5364 9.4044 0.0389 10.3251

210 x̄ 0.7472 9.4600 0.1000 0.3362 9.6454 0.7658 0.5976 0.2388

σ 0.0323 9.6418 0.0000 0.3081 9.8170 1.3316 0.0017 0.2776

Table 6. Activation percentage of optimal machine in games at 100 rounds

BF UCB UCB − A UCB − B UCB − C UCB − D UCB − E UCB√ UCB − F

4 x̄ 39.2640 55.5520 47.0840 46.8160 53.2960 48.5100 35.7300 49.0280

σ 6.3660 6.3454 10.9596 7.6774 10.9542 4.1571 3.9259 6.9773

8 x̄ 26.3080 57.5320 35.6840 44.2320 58.5100 48.7420 21.0560 52.1900

σ 6.6413 17.6117 15.9314 13.6677 17.8331 14.7257 3.7780 16.2202

10 x̄ 18.9140 49.7680 17.6100 31.4280 50.2840 34.9440 15.7100 47.1020

σ 2.5276 11.3634 6.3259 6.6079 11.6234 7.6148 1.2526 7.8605

11 x̄ 18.0800 55.9120 10.0180 23.9920 56.6580 30.4160 14.6320 45.0880

σ 3.6091 20.0240 4.3396 12.7578 19.7044 14.9594 1.8329 18.9701

29 x̄ 5.3460 20.1220 16.8800 23.3360 19.4020 25.8940 4.6920 27.5820

σ 0.3909 7.6491 13.6249 18.3071 7.6527 15.7421 0.2729 15.6954

35 x̄ 4.0440 16.0360 7.3080 11.5380 16.5060 18.0920 3.6740 20.2440

σ 0.0739 9.3594 9.3838 12.6745 9.2657 15.3353 0.2782 18.6115

38 x̄ 3.7960 8.6560 6.7820 9.3140 8.8000 8.6460 3.0820 10.1560

σ 0.0736 4.3635 11.5640 12.8030 4.8589 9.8454 0.0937 12.0551

40 x̄ 3.5040 11.7760 4.2520 11.4960 11.8560 14.1660 2.9740 15.4960

σ 0.2938 8.9449 6.4641 17.5303 8.9641 17.1619 0.0372 19.4871
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6 Conclusions and Future Work

From the first scenario we could note that UCB is the policy with the best
performance due to it activates the optimal machine over 80% of the time after
10,000 rounds. UCB-B had a similar performance to UCB however it did not
reach the percentage of UCB. In this scenario we could note that UCB-A and
UCB-B are the policies that activate the optimal machine as quick as possible,
however, in the last rounds they are outperformed by UCB. This behavior was
repeated when we used set of machines based in branching factor of games and
we could note that the performance of UCB decreased as the number of rounds
increased, probably in late rounds UCB can outperformed the other polices.

Because UCB-A and UCB-D are policies that only use exploitation and due
to the results that we got, we can conclude that when we have low number of
rounds below 10,000, it is better to use exploitation polices but with a high
number of round is better use UCB. However, we need to apply these policies
in MCTS and GGP in order to get the real behavior. In both scenarios UCB√

.

had the worst performance, this may be due to the wrong choice of the value
of its constant, so we leave as future work to tune this value and compare its
performance with the exploitation polices.
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