q

Check for
updates

Some Variations of Upper Confidence
Bound for General Game Playing

Ivan Francisco-Valencia®™, José Raymundo Marcial-Romero,
and Rosa Maria Valdovinos-Rosas

Facultad de Ingenieria, Universidad Auténoma del Estado de México,
Cerro de Coatepec S/N Ciudad Universitaria,
50100 Toluca, Estado de México, Mexico
if.valencia@hotmail.com, {jrmarcialr,rvaldovinosr}@uaemex.mx

Abstract. Monte Carlo Tree Search (MCTS) is the most used method
in General Game Playing, area of the Artificial Intelligence, whose main
goal is to develop agents capable of play any board game without preview
knowledge. MCTS requires a tree which represents the states and moves
of the board game which is visited and expanded using an iterations
method. In order to visit the tree, MCTS requires a selection policy
which determines which node is visited in each level. Nowdays, Upper
Confidence Bound (UCB), is the most popular policy in MCTS due to its
simplicity and efficiency. This policy was propose for the Multi-Armed
Bandit Problem (MABP) which consists in set of slot machines each of
which has a certain probability of give a reward. The goal is to maximize
the accumulative reward that is obtained when a machine is played in a
series of rounds. Other policy proposed for MCTS is Upper Confidence
Bound, - (UCB, ;) whose goal is to identify the machine with the highest
probability to give a reward. This paper shows a comparative between
five modifications of UCB and one of UCB,/, this comparative has the
goal of finding a policy which be able to identify the optimal machine
as quickly as possible, this goal in MCTS is equals to identify the node
with the highest probability to leading to a victory. The results show
that some policies find the optimal machine before UCB, however, with
10,000 rounds UCB is the policy who plays the optimal machine more
often.

Keywords: General game playing - Selection policy -
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1 Introduction

For Bjornsson and Finnsson [5], General Game Playing (GGP) is the area of
Artificial Intelligence of which the objective is to create intelligent agents who
can learn, automatically, how to play a wide variety of board games, based only
on the descriptions of the rules of the games. The foregoing implies that without
prior knowledge about the game and while playing, the agent must be able to
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develop strategies that allow it to win. Since its inception GGP makes use of
methods based on MinMax or Alpha-Beta tree [11], this is due to the nature of
boardgames, to which tree can be associated, where the root node represents the
initial state of the game and each child node represents the status of the game
after some movement has been made. Due to the above, the leaf nodes of the
game tree correspond to the statuses where the game has ended, whereby the
agent must only find a leaf node where he achieves a win; this is the reason for
using methods based on search trees.

Monte Carlo Tree Search (MCTS) is the search method based on the most
popular tree in GGP, as it has a better performance in game trees [6]. MCTS
consists of four steps that are repeated cyclically, until a stop criterion is met:
Selection, Expansion, Simulation, and Back Propagation. The stop criterion can
be a limit number of simulations, execution time or number of iterations [6].

Selection In this step the method crosses the tree from the root node until it
finds a node that still has children to add to the tree, once this node is found
the Expansion step is reached. The route taken by this step is guided by a
Selection Policy, which indicates which node should be explored in each level;
an example of this policy is to choose the node that has the highest ratio
between wins and visits.

Expansion In this step, a corresponding child node is added to the node found
in the selection step.

Simulation Starting from the status represented by the newly added node,
the method simulates playing the game by performing the movements of the
players randomly until a result is obtained.

Back Propagation In this step, the result of the simulation step is propagated
in all the nodes visited, updating the number of wins and the number of visits
of each node.

Once the method ends, the movement that the agent must perform is chosen
among the children of the root node which could be: the node with the highest
number of wins, the node with the highest number of visits, the node that meets
the two previous criteria, or the node is chosen based on the selection policy.
MCTS has the advantage of being able to be used at any time during the game
since the root of the tree can be any status of the game, another feature of MCTS
is to be efficient by not having to completely expand the tree as it resorts to
probability to choose the movement that has the highest chance of leading to a
win, so it is also known as a probabilistic method.

In recent years efforts have been made to improve MCTS, mainly in the Sim-
ulation Step where attempts have been made for the simulation to reflect move-
ments of real adversaries without being completely deterministic, highlighting
the works of Cazenave [8-10], whose idea is to make use of online knowledge,
by identifying the movements of previous iterations that led to wins to be used,
with a greater probability, in future iterations.

Another step of MCTS where efforts are made to improve it is the Selection
Step specific to the Selection Policy; in the beginning the average of wins of each
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node was used as selection policy. However, new policies have been proposed,
such as Upper Confidence Bound. In the Selection Step, at each level of the tree,
MCTS has to make the following decision: Which node should be explored? The
one in which the highest number of wins is obtained so far, or should we explore
less promising nodes that may turn out to be better in future iterations? This
decision is an instance of the Explore-Exploit Dilemma, which Auer et al. [3]
describe as the search for a balance between exploring the environment to find
profitable actions while taking the best empirical action as frequently as possible.

Another instance of the Explore-Exploit Dilemma is the Multi-Armed Bandit
Problem (MABP), which consists in set of slot machines each of which has a
certain probability of give a reward. The goal is to maximize the accumulative
reward that is obtained when a machine is played in a series of rounds.

An algorithm that allows to decide which machine to activate in each round in
MABP is known as Activation Policy, where Upper Confidence Bound (UCB) is
the most popular, mainly because it is efficient, simple to implement and can be
used at any time [3,4]. However, there are other policies that achieve performance
close to UCB such as UCB2, e-greedy, UCB-Tuned, UCB-Normal [3], UCB-
Improved [4], UCB-V [2], UCB-Minimal [13] and Minimax Optimal Strategy in
the Stochastic Case [1].

Because MABP and the decision made by MCTS in the Selection Step are
instances of the Explore-Exploit Dilemma, it is possible to use Activation Policies
as Selection Policies. In this case, each level of the tree is treated as a MABP
where each node is equivalent to a slot machine; this idea was used for the first
time by the agent Cadiaplayer, which made use of UCB as a selection policy,
giving good results to such an extent that the combination of MCTS and UCB,
known as Upper Confidence Bound Applied to Trees (UCT), became the state
of the art of GGP.

The approach of activation policies like UCB and its similar ones is to mini-
mize Cumulative Regret which is defined as the loss that is obtained due to the
fact that the policy does not always choose the best machine [3]. However, this
approach is not necessarily suitable for MCTS since in this the idea is to identify
the node that is most likely to lead to a win. Another approach known as Simple
Regret [7,14] has been proposed, and is more suited to MCTS [12], and which
is defined as the difference between the expected reward of the optimal machine
(the machine with the highest probability of giving a reward) and the expected
reward of the machine that has been identified as the optimal machine, from
this approach emerge UCB e

This paper presents a comparison between five modifications of UCB and one
of UCB, /.. In order to find a selection policy that is able to identify the machine
as quickly as possible, the above would be equivalent in MCTS to identifying
the node that has the highest chance of leading to a win at each level of the tree.
The comparison was made in the regarding MABP in two scenarios: the first
consists of the scenario proposed by Auer et al. [3], in the second one the use of
the branching factor of the game tree of different board games is used to generate
sets of machines where the proposed policies were tested. The results show that
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certain policies find the optimal machine in the first iterations, although at close
to 10,000 iterations it is UCB that activates the optimal machine.

2 Upper Confidence Bound

Auer et al. [3,4] formally define MABP by the random variables X; ,, € {0,1}
with 1 < ¢ < K and n > 1, where each 7 is the index of a slot machine, and
K the machines available. By successively activating the ¢ machine, the rewards
Xi1, X2, - are obtained, which are independent and identically distributed
according to an unknown law with unknown expectation ;.

UCB is the most widely used policy in MABP because it achieves logarith-
mic and uniform regret as n increases, and does not require information about
probability distributions and is easy to implement.

UCB consists in the following:

1. Play each machine once.
2lnn
n;
where Z; is the average reward obtained by the j machine, n; is the number
of the times that the 7 machine has been played and n is the total number of
plays done so far.
3. The previous step is repeated until a certain number of rounds is reached.

2. Play the machine j that maximize Z; +

3 Upper Confidence Bound .

Proposed by Tolpin and Shimony [14], the UCB . policy is the one used in
MCTS and is focused on minimizing simple regret, and consists of:

1. Play each machine once
2. Play the machine j that maximize

cv/n

n;j

T+ (1)
where Z; is the average reward obtained by the j machine, n; is the number
of the times that the j machine has been played and n is the total number
plays done so far.

3. The previous step is repeated until a certain number of rounds is reached.

4 Policies Proposals

UCB is the most used policy in MABP and consequently in Monte Carlo Tree
Search; in this section five modifications to this policy are presented:

21
UCB-A =7; + | —2"

(2)

n
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21 j
UCB-B=7; + 2080y

nj

2logn,
UCB-C'=; + || 2 (4)

UCB-D =7, (5)
UCB-E=T; + % (6)

The UCB-A policy makes use only of the total number of Machine Activations
(number of simulations of the parent node in MCTS). The UCB-B policy makes
use of the number of activations of the machine (number of simulations in the
child node). The policy UCB-C is similar to UCB but with n; y n exchanged.
The UCB-D policy only takes the average of rewards obtained in the machine
(the average of wins per node in MCTS) that means that this policy is only
for exploitation. The UCB-FE policy requires the average of the plays. Finally,
UCB-F is a modification of the policy UCB_, with n; y n exchanged.

2 -
UCB-F=7T; + ‘7/1@ (7)

5 Comparative of Policies

In this section we compare the performance of the proposed policies with respect
to UCB and UCB, /.. Specifically, we can see how good the policies are in choos-
ing the optimal machine. The choice to measure how much a policy chooses the
optimal machine is because in the MCTS field it is equivalent to choosing the
child node in which the highest number of wins is given.

The policies were compared in the MABP in two scenarios; the first is the
one proposed by Auer et al. [3] and the second scenario is where the branching
factor of a set of board games is used.

5.1 First Scenario

This scenario is the one proposed by Auer et al. [3] to prove the policies UCB,
UCB-T, UCB2, UCB-Normal and e-greedy. Auer et al. propose that the policies
should be proven in 7 sets of machines, the Table1 shows these sets with the
probabilities of giving a reward of each of their machines.

For Auer et al. the sets A and D are easy to contrast because the reward of
the optimal machine has low variance and the difference between the expected
value of the optimal machine and suboptimal is wide. Sets C' and G are hard sets
because the reward of the optimal machine has high variance and the difference
between the expected value of the optimal machine and suboptimal is small.

The policies were compared with the following conditions:

— Each of the sets proposed by Auer et al. were used.

— Each policy was tested 100 times in each set, from which the average of
activation of the optimal machine was obtained.

— The policies were limited to 100,000 rounds.
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Table 1. Sets of slots machine
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Results. This Figs.1, 2, 3 and 4 show the results obtained in each set and
the Table 2 shows the average percentage of plays of the optimal machine. We
can note at 100,000 rounds, UCB is the best policy because it has the best
performance due it activates the optimal machine over 95.8% on average, the
same happens at 10,000 rounds where the optimal machine is activated 80.6%.
However, in lower rounds UCB-A and UCB-B are the policies that activate the
optimal machine more frequently, over 71% at 1,000 rounds and over 57% at
100 rounds. It is worth highlighting that UC'B — B has performance similar
to the performance of UCB, and it is the second-best performance at 100,000
and 10,000 rounds. The other policies have a performance bellow UCB, UCB-
A, UCB-B and UCB-D, and it is UCB-E the worst policy due it only reaches
37% of the activation of the optimal machine. From the figures we can note
that UCB in the first rounds it is dedicated to exploration in order to find the
optimal machine without underestimate any other suboptimal machine, in these
same rounds UCB-A and UCB-D are the polices that most quickly activate the
optimal machine in all sets except for the set C. However, both policies tend to
stagnate after 1,000 rounds and they do not overcome to UCB.
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Fig. 1. Activations of optimal machine in sets A (left) and B (right)
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Fig. 2. Activations of optimal machine in sets C' (left) and D (right)
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Fig. 3. Activations of optimal machine

in sets E (left) and F (right)
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Table 2. Activation percentage of optimal machine

Rounds| [UCB |\UCB - AUCB - B|UCB—-C|UCB—-D\UCB—-EUCB _/|UCB—-F
100,000|7|95.8182(73.3904 |85.4395 |70.5138 |74.6906 |37.5698 |66.196262.6921
o| 4.9840 |13.0925 6.1034 |15.8557 |13.3010 |28.8866 |25.0811/22.2657
10,000 |z 80.5987|73.0574 |78.3030 |68.7177 |74.4771 |37.5555 |51.9887|61.2636
0/19.4140 |13.1107 |12.1342 |15.9161 |13.3509 |28.8716 |26.0406|23.3561
1,000 |z|56.2810 |71.0549 |61.1777 |61.4323 72.3633 |37.4120 |41.145458.9154
025.9311 |13.8878 |28.8332 |18.1425 |14.0022 |28.7228 |25.7844|24.7352
100 x|37.9771 57.4729 [33.8329 |42.8214 |58.6314 |35.9771 |34.7229/52.6000
0|25.1655 |[19.6814 126.9652 |23.8225 [19.3466 |27.3797 |24.2615|25.9624

5.2 Second Scenario

In this scenario the proposal policies were tested in the field of the MABP
problem however we used the branching factor of the games that we show in the
Table 3.

Table 3. Branching factor of games

Game Branching factor | Game Branching factor
Tic-Tac-Toe 4 Connect 4 4

Draughts (10 x 10) | 4 Domineering (8 x 8) | 8

Nine Men’s Morris | 10 Reversi 10

Fanorona 11 Lines of Action 29

Chess 35 Chinese chess 38

Japanese chess 40 Korean chess 92

Gomoku 210

The branching factor is used because this will be the number of machines
the polices will face if implemented in the Monte Carlo Tree Search
For this scenario the following conditions are required:

— The game branching factor is used.

— For each branching factor, five sets of machines with random probabilities
were created.

The policies were tested 100 times in 10,000 rounds in these sets, of which
the average was obtained.

— We obtained the average of activations of the optimal machine.
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Results. From the Table4 we can note that when we have a branching fac-
tor under 11, it is UCB-B the policy with the best performance due it reaches
between 74% and 83% of activations of the optimal machine, except when we
have a branching factor of 4 where UCB is the best policy. For the rest of branch-
ing factors, we can note that UCB-A and UCB-B have the best performance due
to these are the policies that activate the optimal machine more frequently. Form
the Table 5 we can note that in all games the best policies are UCB-A and UCB-
B given that in average they activate the optimal machine more frequently. From
the Table 6 we can note that the behavior of the policies changes with UCB-A
and UCB-D the best policies when we have a branching factor under 11. Sur-
prisingly, in the Table 6, we can note for the branching factors 29, 35, 38 and 40,

I. Francisco-Valencia et al.

UCB-F has the best performance.

Table 4. Activation percentage of optimal machine in games at 10,000 rounds

BF| [UCB UCB - AlUCB - BlUCB - ClUCB — D|IUCB - E\UCB,,|UCB — F
4|2/65.6611|59.6806 |57.9441 |51.5995 |56.9357 |49.5891 |50.3142|51.0588
015.3476 | 5.5503 |11.2091 5.9047 |11.1973 4.3158 |11.6598| 8.2216
8|x|74.9371 |75.1826 |82.8859 |74.4210 |74.9500 |52.5614 |44.2984/63.2555
018.3563 [16.9671 |13.5736 |14.5467 |17.8437 |16.2887 |16.1516/19.9180
10/2|67.8768 |69.5031 |74.8487 |65.4245 |69.7310 38.7614 |33.7844/59.9355
013.2718 [14.9729 |15.1556 |15.4648 |16.5656 8.5786 7.7511|12.9619
11/2|74.3563 |77.8430 |80.1822 |73.1342 |76.8665 34.9542 |36.9537/65.4115
022.1472 |24.4220 |22.8700 |23.0606 |25.0331 |17.8814 |12.6490/28.0763
29|z|37.2920 |76.8383 |55.7563 |62.7048 |74.1868 36.8889 |10.1818|46.2529
0/11.0098 [15.4155 |29.1863 |18.5392 |14.9992 |22.8625 1.4704/21.5763
35/2|24.5105 |67.4117 |43.2063 |53.0103 |66.6836 |29.6829 7.4822(40.0294
ol 3.1729 |21.0204 |33.6807 |28.1489 |21.6409 |23.6254 0.7376|29.2565
38/2|22.7111 |57.6530 |30.0124 |41.6675 |57.7975 |14.9365 7.0274|25.8340
ol 3.9723 |12.0977 |25.3554 |16.9108 |13.0974 |14.9539 0.5625(16.7117
40/2(30.0559 |72.9773 |50.1235 |59.0959 |73.6321 |26.2777 7.0432|34.8555
ol 9.0977 [19.1200 |30.1434 |25.1066 |20.2007 |29.5561 1.0251|31.7675
92|z| 6.3170 (36.9091 | 7.3637 |17.1300 |33.3640 7.5018 2.0843| 9.1248
ol 0.9060 | 6.4753 |14.5398 |14.8989 8.0411 |10.6270 0.0996|13.7220
210|z| 1.8606 [45.1294 0.0100 1.5039 |45.8125 | 0.9766 0.7544| 0.3475
0.1406 |18.3626 0.0000 2.0300 18.6298 1.9332 0.0139| 0.5902
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Table 5. Activation percentage of optimal machine in games at 1,000 rounds

BF| UCB |UCB-A|lUCB-BlUCB-CUCB-D|UCB—-EUCB_,|UCB—-F
4]x|52.2936|59.2170 |54.3214 |49.6422 |56.3692 49.4910 |42.3852|50.4402
0/13.0574| 5.6605 |10.1968 7.0983 |11.2702 4.3013 7.1777| 7.7528
8|x|49.5066|72.8488 [66.7468 |66.7380 |72.9586 |52.2142 |30.2922/59.5674
0|17.5118|17.3604 |16.4454 |15.3563 |18.0711 |16.1459 9.3635|19.8535
10/2|38.6312|/67.0240 |54.7670 |55.4538 |67.3690 |38.4144 |22.1458|56.6776
ol 9.4914/14.8311 |10.2368 |13.3721 |16.0270 8.4904 3.4105|10.7863
11/2|43.2396/75.2802 |50.4530 |62.3224 |74.4496 |34.5416 |22.0318|59.9800
015.5835|24.9104 |27.2729 |23.6197 |25.5042 |17.6155 5.0195/27.1612
29|7/11.9900/66.7928 [35.8372 |41.6526 |65.1450 |35.8894 |6.4858 |40.4814
o| 2.1578/12.6583 |27.1850 |26.1605 |11.9942 |22.2133 0.4633|22.3180
35|z| 8.5186|57.5004 |14.1398 |28.7188 |56.5842 28.6292 5.0170/35.1438
ol 0.8929/16.3202 |17.7661 |20.9094 |17.1572 |22.8657 0.3096|28.2344
38|z| 8.0218/47.9556 |12.4592 |22.5314 |47.5542 |14.3646 4.6864/21.3432
ol 0.7405/11.1791 |23.7481 |18.1138 |11.8451 |14.4796 0.2377|17.1685
40| z| 8.2068/63.0024 |16.8792 |25.9206 |63.4442 |25.1766 4.5156|30.2384
ol 1.4715/17.5381 |31.2955 |32.3617 |17.9930 |28.4204 0.3370(31.4916
92|z| 2.2336/21.1234 | 0.1284 4.7348 |21.0182 6.6180 1.5626| 6.0978
ol 0.1456| 1.8250 0.0568 8.0212 4.5364 9.4044 0.0389|10.3251
210|z| 0.7472| 9.4600 0.1000 0.3362 9.6454 | 0.7658 0.5976| 0.2388
0.0323| 9.6418 0.0000 0.3081 9.8170 1.3316 0.0017| 0.2776

Table 6. Activation

percentage of optimal machine in games at 100 rounds

BF| [UCB |UCB-A|lUCB—-Bl{UCB-CUCB-D|UCB—-FEUCB_ ,|UCB—-F

4|7|39.2640|55.5520 |47.0840 |46.8160 |53.2960 |48.5100 |35.7300/49.0280
ol 6.3660| 6.3454 |10.9596 7.6774 10.9542 4.1571 3.9259| 6.9773
8|%|26.3080|57.5320 |35.6840 |44.2320 |58.5100 |48.7420 |21.0560/52.1900
o| 6.6413|17.6117 |15.9314 |13.6677 |17.8331 |14.7257 3.7780/16.2202
10 |2|18.9140/49.7680 |17.6100 |31.4280 |50.2840 |34.9440 |15.7100/47.1020
o| 2.5276/11.3634 6.3259 6.6079 11.6234 7.6148 1.2526 7.8605
11 |Z|18.0800/55.9120 10.0180 |23.9920 |56.6580 |30.4160 |14.6320/45.0880
o| 3.6091/20.0240 4.3396 |12.7578 |19.7044 |14.9594 1.8329/18.9701

29 |z| 5.3460/20.1220 |16.8800 |23.3360 |19.4020 |25.8940 4.6920|27.5820
o 0.3909| 7.6491 |13.6249 [18.3071 7.6527 |15.7421 0.2729/15.6954

35 |z| 4.0440/16.0360 7.3080 |11.5380 |16.5060 |18.0920 3.6740/20.2440
o| 0.0739| 9.3594 9.3838 |12.6745 9.2657 |15.3353 0.2782/18.6115

38 |z| 3.7960 8.6560 6.7820 9.3140 8.8000 8.6460 3.0820(10.1560
o| 0.0736| 4.3635 [11.5640 [12.8030 4.8589 9.8454 0.0937/12.0551

40 |z| 3.5040/11.7760 4.2520 |11.4960 [11.8560 14.1660 2.9740/15.4960
0.2938| 8.9449 6.4641 |17.5303 8.9641 |17.1619 0.0372/19.4871

7
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6 Conclusions and Future Work

From the first scenario we could note that UCB is the policy with the best
performance due to it activates the optimal machine over 80% of the time after
10,000 rounds. UCB-B had a similar performance to UCB however it did not
reach the percentage of UCB. In this scenario we could note that UCB-A and
UCB-B are the policies that activate the optimal machine as quick as possible,
however, in the last rounds they are outperformed by UCB. This behavior was
repeated when we used set of machines based in branching factor of games and
we could note that the performance of UCB decreased as the number of rounds
increased, probably in late rounds UCB can outperformed the other polices.

Because UCB-A and UCB-D are policies that only use exploitation and due
to the results that we got, we can conclude that when we have low number of
rounds below 10,000, it is better to use exploitation polices but with a high
number of round is better use UCB. However, we need to apply these policies
in MCTS and GGP in order to get the real behavior. In both scenarios UCB, -
had the worst performance, this may be due to the wrong choice of the value
of its constant, so we leave as future work to tune this value and compare its
performance with the exploitation polices.
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