Skip to main content

Introduction

  • Chapter
  • First Online:
  • 555 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 35))

Abstract

Nitrogen is the most common natural element in the atmosphere, being nearly 80% of the air we breathe. Nitrogen can be found in gaseous form in the air, such as Nitrogen (N2), Nitrous oxide (N2O), Nitric oxide (NO), Nitrogen dioxide (NO2), and Ammonia (NH3). Some of these gases react with rainwater and produce nitrate and ammonium ions, which can become part of the soil layer, or mix with groundwater in solution. Intake of the nitrate ion has several positive aspects for the human body, such as improved blood flow, reducing blood pressure, and cardio-vaso-protective effects. However, adverse effects can occur to the human body with an excessive intake of nitrate ions, especially through drinking water, such as gastric, cancer and Parkinson’s diseases. Infants can suffer “blue baby syndrome” or methemoglobinemia which reduces the oxygen content of the blood. It affects those infants who are less than six months old.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Berner, R. Berner, The Global Water Cycle (Prentice Hall, Upper Saddle River, 1987)

    MATH  Google Scholar 

  2. J. Gaillard, Lecture on Nitrogen Cycle (1995)

    Google Scholar 

  3. W.H. Organization, in Nitrate and nitrite in drinking-water. http://www.who.int/water_sanitation_health/dwq/chemicals/nitrate-nitrite-background-jan17.pdf. Accessed 26 April 2018

  4. H.H. Comly, Cyanosis in infants caused by nitrates in well water. JAMA 129(2), 112–116 (1945)

    Article  Google Scholar 

  5. C.J. Johnson et al., Fatal outcome of methemoglobinemia in an infant. JAMA 257(20), 2796–2797 (1987)

    Article  Google Scholar 

  6. P.F. Swann, The toxicology of nitrate, nitrite and n-nitroso compounds. J. Sci. Food Agric. 26(11), 1761–1770 (1975)

    Article  Google Scholar 

  7. C.S. Bruning-Fann, J. Kaneene, The effects of nitrate, nitrite and N-nitroso compounds on human health: a review. Vet. Hum. Toxicol. 35(6), 521–538 (1993)

    Google Scholar 

  8. O. G. Licenase, in The water supply (water quality) regulations 2016. Accessed 26 April 2018

    Google Scholar 

  9. J. Davis, K.J. McKeegan, M.F. Cardosi, D.H. Vaughan, Evaluation of phenolic assays for the detection of nitrite. Talanta 50(1), 103–112 (1999)

    Article  Google Scholar 

  10. M. Friedberg, M. Hinsdale, Z. Shihabi, Analysis of nitrate in biological fluids by capillary electrophoresis. J. Chromatogr. A 781(1–2), 491–496 (1997)

    Article  Google Scholar 

  11. P.N. Bories, E. Scherman, L. Dziedzic, Analysis of nitrite and nitrate in biological fluids by capillary electrophoresis. Clin. Biochem. 32(1), 9–14 (1999)

    Article  Google Scholar 

  12. G. Ellis, I. Adatia, M. Yazdanpanah, S.K. Makela, Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin. Biochem. 31(4), 195–220 (1998)

    Article  Google Scholar 

  13. A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus, Techniques in advancing the capabilities of various nitrate detection methods: a review. Int. J. Smart Sens. Intell. Syst. 10(2) (2017)

    Article  Google Scholar 

  14. P. Brimblecombe, D. Stedman, Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 298(5873), 460 (1982)

    Article  Google Scholar 

  15. G.R. Hallberg, Nitrate in ground water in the United States, in Developments in Agricultural and Managed Forest Ecology, vol. 21 (Elsevier, Amsterdam, 1989), pp. 35–74

    Chapter  Google Scholar 

  16. G. Hallberg, D. Keeney, in Nitrate, Regional Groundwater Quality, ed. by W.J. Alley (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  17. D. Behm, Ill Waters: the fouling of Wisconsin’s lakes and streams (special report). Milwaukee J. 2 (1989)

    Google Scholar 

  18. M.A.M. Yunus, S. Ibrahim, W.A.H. Altowayti, G.P.San, S.C. Mukhopadhyay, Selective membrane for detecting nitrate based on planar electromagnetic sensors array, in 10th Asian Control Conference (ASCC) (IEEE, 2015), pp. 1–6

    Google Scholar 

  19. C. Wardak, Solid contact nitrate ion-selective electrode based on ionic liquid with stable and reproducible potential. Electroanalysis 26(4), 864–872 (2014)

    Article  Google Scholar 

  20. R.K. Mahajan, R. Kaur, H. Miyake, H. Tsukube, Zn (II) complex-based potentiometric sensors for selective determination of nitrate anion. Anal. Chim. Acta 584(1), 89–94 (2007)

    Article  Google Scholar 

  21. T. Kjær, L.H. Larsen, N.-P. Revsbech, Sensitivity control of ion-selectivebiosensors by electrophoretically mediated analyte transport. Anal. Chim. Acta 391, 57–63 (1999)

    Article  Google Scholar 

  22. J. Aylott, D. Richardson, D. Russell, Optical biosensing of nitrate ions using asol–gel immobilized nitrate reductase. Analyst 122, 77–80 (1997)

    Article  Google Scholar 

  23. P.T. Charles, P.R. Gauger, C.H. Patterson, A.W. Kusterbeck, On-siteimmunoanalysis of nitrate and nitroaromatic compounds in groundwater. Environ. Sci. Technol. 34, 4641–4650 (2000)

    Article  Google Scholar 

  24. H. Wan, Q. Sun, H. Li, F. Sun, N. Hu, P. Wang, Screen-printed gold electrodewith gold nanoparticles modification for simultaneous electrochemicaldetermination of lead and copper. Sens. Actuators B: Chem. 209, 336–342 (2015)

    Article  Google Scholar 

  25. H. Wan, Q. Sun, H. Li, F. Sun, N. Hu, P. Wang, Design of a miniaturizedmultisensor chip with nanoband electrode array and light addressablepotentiometric sensor for ion sensing. Anal. Methods 7, 9190–9197 (2015)

    Article  Google Scholar 

  26. C. Berggren, B. Bjarnason, G. Johansson, Capacitive biosensors. Electroanalysis 13, 173–180 (2001)

    Article  Google Scholar 

  27. W. Limbut, M. Hedström, P. Thavarungkul, P. Kanatharana, B. Mattiasson, Capacitive biosensor for detection of endotoxin. Anal. Bioanal. Chem. 389, 517–525 (2007)

    Article  Google Scholar 

  28. S.C. Mukhopadhyay, C.P. Gooneratne, G.S. Gupta, S.N. Demidenko, A low-costsensing system for quality monitoring of dairy products. IEEE Trans. Instrum. Meas. 55, 1331–1338 (2006)

    Article  Google Scholar 

  29. S. Mukhopadhyay, S.D. Choudhury, T. Allsop, V. Kasturi, G. Norris, Assessmentof pelt quality in leather making using a novel non-invasive sensing approach. J. Biochem. Biophys. Methods 70, 809–815 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Eshrat E Alahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alahi, M.E., Mukhopadhyay, S.C. (2019). Introduction. In: Smart Nitrate Sensor. Smart Sensors, Measurement and Instrumentation, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-20095-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20095-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20094-7

  • Online ISBN: 978-3-030-20095-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics