Skip to main content

Abstract

The marine world is the largest underexplored ecosystem for bioactive compounds due to its inaccessibility beyond the intertidal, hindering the isolation of new chemical entities. There is reason to explore marine environments, as seven marine natural products have been approved by either the FDA or the EMA, five of which are derived from mutualistic interactions between microorganisms and marine invertebrates. Based on the success of these compounds in the clinic and their production by associated microbes, several research programs focus on natural product isolation from microbes dwelling in marine environments, which for the purpose of this chapter, we define as being extreme environments with high salinity, extreme temperatures, minimal light, as well as variable acidity and pressure. While bacteria, archaea, protists, and unicellular fungi account for the majority of oceanic biomass, fewer natural products have been reported from marine fungi than bacteria. However, with improved sampling, culturing, and molecular-based techniques, the number of bioactive metabolites reported from marine fungi has increased significantly over the last 30 years. Notably, cephalosporins and plinabulin are bioactive compounds inspired by marine fungal natural products and have either been clinically approved or are currently in phase III clinical trials. Herein, we discuss fungal isolates that have produced bioactive compounds, especially those in (pre)clinical trials. While we are finding that marine fungi are prolific sources of novel chemical diversity, we continue to isolate the same species belonging to the Aspergillus, Penicillium, Fusarium, and Cladosporium genera. Thus, potential strategies for improving the search for bioactive compounds from marine fungi will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff A, König GM, Fisch KM, Höller U, Jones PG, Wright AD (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Abraham EP, Newton GGF (1956) Experiments on the degradation of cephalosporin C. Biochem J 62:658–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afiyatullov SS, Kuznetsova TA, Isakov VV, Pivkin MV, Prokof’ev NG, Elyakov GB (2000) New diterpenic altrosides of the fungus Acremonium striatisporum isolated from a Sea Cucumber. J Nat Prod 63:848–850

    Article  CAS  PubMed  Google Scholar 

  • Afiyatullov SS, Kalinovsky AI, Kuznetsova TA, Pivkin MV, Prokof’eva NG, Dmitrenok PS, Elyakov GB (2004) New glycosides of the fungus Acremonium striatisporum isolated from a Sea Cucumber. J Nat Prod 67:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Afiyatullov SS, Kalinovsky AI, Pivkin MV, Dmitrenok PS, Kuznetsova TA (2006) New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. Nat Prod Res 20:902–908

    Article  CAS  PubMed  Google Scholar 

  • Alvi KA, Casey A, Nair BG (1998) Pulchellalactam: a CD45 protein tyrosine phosphatase inhibitor from the marine fungus Corollospora pulchella. J Antibiot 51:515–517

    Article  CAS  Google Scholar 

  • Araki K, Saito K, Arimoto H, Uemura D (2004) Enantioselective synthesis of the spirotetracyclic carbon core of mangicols by using a stereoselective transannular Diels–Alder strategy. Angew Chem Int Ed 43:81–84

    Article  CAS  Google Scholar 

  • Babu DC, Rao CB, Venkatesham K, Selvam JJP, Venkateswarlu Y (2014) Toward synthesis of carbasugars (+)-gabosine C, (+)-COTC, (+)-pericosine B, and (+)-pericosine C. Carbohydr Res 388:130–137

    Article  CAS  PubMed  Google Scholar 

  • Bandani AR, Khambay BPS, Faull JL, Newton R, Deadman M, Butt TM (2000) Production of efrapeptins by Tolypocladium species and evaluation of their insecticidal and antimicrobial properties. Mycol Res 104:537–544

    Article  CAS  Google Scholar 

  • Banert K (2012) Acremolin, a stable natural product with an antiaromatic 1H-azirine moiety? A structural reorientation. Tetrahedron Lett 53:6443–6445

    Article  CAS  Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Bellavita NC, Ceccherelli P, Raffaele M (1970) Structure du virescenoside C, nouveau mettabolite de Oospora virescens. Eur J Biochem 15:356–359

    Article  Google Scholar 

  • Belofsky GN, Anguera M, Jensen PR, Fenical W, Köck M (2000) Oxepinamides A-C and fumiquinazolines H-I: Bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chem Eur J 6:1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Biabani MAF, Laatsch H (1998) Advances in chemical studies on low-molecular weight metabolites of marine fungi. J Prakt Chem 340:589–607

    Article  CAS  Google Scholar 

  • Blanchet E, Vansteelandt M, Le Bot R, Egorov M, Guitton Y, Pouchus YF, Grovel O (2014) Synthesis and antiproliferative activity of ligerin and new fumagillin analogs against osteosarcoma. Eur J Med Chem 79:244–250

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53

    Article  CAS  PubMed  Google Scholar 

  • Boot CM, Tenney K, Valeriote FA, Crews P (2006) Highly N-methylated linear peptides produced by an atypical sponge-derived Acremonium sp. J Nat Prod 69:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boot CM, Amagata T, Tenney K, Compton JE, Pietraszkiewicz H, Valeriote FA, Crews P (2007) Four classes of structurally unusual peptides from two marine-derived fungi: structures and bioactivities. Tetrahedron 63:9903–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boufridi A, Quinn RJ (2018) Harnessing the properties of natural products. Annu Rev Pharmacol Toxicol 58:451–470

    Article  CAS  PubMed  Google Scholar 

  • Boyd DR, Sharma ND, Acaru CA, Malon JF, O’Dowd CR, Allen CCR, Stevenson PJ (2010) Chemoenzymatic synthesis of carbasugars (+)-pericosines A−C from diverse aromatic cis-dihydrodiol precursors. Org Lett 12:2206–2209

    Article  CAS  PubMed  Google Scholar 

  • Brotzu G (1948) Ricerche su di un nuovo antibiotico. Lav Inst Igiene Cagliari 1948:1–11

    Google Scholar 

  • Burka LT, Ganguli M, Wilson BJ (1983) Verrucosidin, a tremorgen from Penicillim verrucosum var cyclopium. J Chem Soc Chem Commun 1983:544–545

    Article  Google Scholar 

  • Chaichanan J, Wiyakrutta S, Pongtharangkul T, Isarangkul D, Meevootisom V (2014) Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 45:287–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty B, Sejpal NV, Payghan PV, Ghoshal N, Sengupta J (2016) Structure-based designing of sordarin derivative as potential fungicide with pan-fungal activity. J Mol Graph Model 66:133–142

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, Cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Tay J-H, Ying J, Sabat M, Yu X-Q, Pu L (2013) A quick access to the spirotricyclic core analogue of mangicol A by a Rh(i)-catalyzed tandem Pauson–Khand/[4+2] cycloaddition. Chem Commun 49:170–172

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2001) Natural product drug discovery in the next millennium. Pharm Biol 39:8–17

    CAS  PubMed  Google Scholar 

  • Cui C-B, Kakeya H, Okada G, Onose R, Ubukata M, Takahashi I, Isono K, Osada H (1995) Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. II. Physicochemical properties and structures. J Antibiot 48:1382–1384

    Article  CAS  Google Scholar 

  • Cui C-B, Kakeya H, Okada G, Osada H (1996a) Novel mammalian cell cycle inhibitors, tryprostratins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 49:527–533

    Article  CAS  Google Scholar 

  • Cui C-B, Kakeya H, Osada H (1996b) Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52:12651–12666

    Article  CAS  Google Scholar 

  • Cui C-B, Kakeya H, Osada H (1996c) Novel mammalian cell cycle inhibitors, tryprostins A, B and other diketopiperazines produced by Aspergillus fumigatus. J Antibiot 49:534–540

    Article  CAS  Google Scholar 

  • Cui C-B, Kakeya H, Osada H (1996d) Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J Antibiot 49:832–835

    Article  CAS  Google Scholar 

  • Cui C-B, Kakeya H, Osada H (1997) Novel mammalian cell cycle inhibitors, cyclotroprostatins A–D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 53:59–72

    Article  CAS  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez JM, Martín JJ (1998) Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe TJ, Blades K, Helliwell M, Waring MJ, Newcombe NJ (1998) The synthesis of (+)-pericosine B. Tetrahedron Lett 39:8755–8758

    Article  CAS  Google Scholar 

  • Downey RV, Griffiths HJ, Linse K, Janussen D (2012) Diversity and distribution patterns in high Southern latitude sponges. PLoS One 7:e41672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fani N, Bordbar AK, Ghayeb Y, Sepehri S (2015) Computational design of tryprostatin-A derivatives as novel αβ-tubulin inhibitors. J Biomol Struct Dynam 33:471–486

    Article  CAS  Google Scholar 

  • Fenical W, Jensen PR, Cheng XC (1999) Halimide, a cytotoxic marine natural product, derivatives thereof. Patent, PCT Int. Appl. WO 1999048889 A1, 30 Sept 1999

    Google Scholar 

  • Fenical W, Jensen PR, Cheng XC (2000) Halimide, a cytotoxic marine natural product, and derivatives thereof. Patent US6069146A, 30 May 2000

    Google Scholar 

  • Fenical W, LeClair JJ, Hughes CC, Jensen PR, Gaudencio SP, MacMillan JB (2013) The deep oceans as a source for new treatments of cancer. In: Shibaski M, Masamitsu J, Osada H (eds) Chemobiomolecular science. Springer, Berlin, pp 83–91

    Google Scholar 

  • Fernandez PM, Tabbara SO (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26

    Article  CAS  PubMed  Google Scholar 

  • Fisher CR, Takai K, Le Bris N (2007) Hydrothermal vent systems. Oceanography 20:14–23

    Article  Google Scholar 

  • Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136

    Article  CAS  Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Medina M, Preto-Martinez FD, Naveja JJ, Mendez-Lucio O, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2016) Chemoinformatic expedition of the chemical space of natural products. Future Med Chem 8:1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths HJ, Meijers AJS, Bracegirdle TJ (2017) More losers than winners in a century of future Southern Ocean seafloor warming. Nat Clim Change 7:749–754

    Article  Google Scholar 

  • Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1992) Structure of efrapeptins from the fungus Tolypocladium niveum: peptide inhibitors of mitochondrial ATPase. J Org Chem 57:2306–2313

    Article  CAS  Google Scholar 

  • Hayakawa Y, Hattori Y, Kawasaki T, Kanoh K, Adachi K, Shizuri Y, Shin-ya K (2008) Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J Antibiot 61:365–371

    Article  CAS  Google Scholar 

  • He F, Sun Y-L, Liu K-S, Zhang X-Y, Quian P-Y, Wang Y-F, Qi SH (2012) Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. J Antibiot 65:109–111

    Article  CAS  Google Scholar 

  • Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W (2016) A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Change 143:228–250

    Article  Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi—still an underrepresented resource. Mar Drugs 14:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain HD, Zhang C, Zhou S, Zhou H, Ma J, Liu X, Liao X, Deveau AM, Dieckhaus CM, Johnson MA, Smith KS, Macdonald TL, Kakeya H, Osada H, Cook JM (2008) Synthesis and structure–activity relationship studies on tryprostatin A, an inhibitor of breast cancer resistance protein. Bioorg Med Chem 16:4626–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang J-H, Kanoh K, Adachi K, Shizuri Y (2006a) Awajanomycin, a cytotoxic γ-lactone-δ-lactam metabolite from marine-derived Acremonium sp. AWA16-1. J Nat Prod 69:1358–1360

    Article  CAS  PubMed  Google Scholar 

  • Jang J-H, Kanoh K, Adachi K, Shizuri Y (2006b) New dihydrobenzofuran derivative, Awajanoran, from marine-derived Acremonium sp. AWA16-1. J Antibiot 59:428–431

    Article  CAS  Google Scholar 

  • Johnson TW Jr, Sparrow FK (1961) Fungi in oceans and estuaries. Publisher J. Cremer, Weinheim, pp 1–668

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Julianti E, Oh H, Jang KH, Lee JK, Lee SK, Oh D-C, Oh K-B, Shin J (2011) Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J Nat Prod 74:2592–2594

    Article  CAS  PubMed  Google Scholar 

  • Julianti E, Oh H, Lee H-S, Oh D-C, Oh K-B, Shin J (2012) Acremolin, a new 1H-azirine metabolite from the marine-derived fungus Acremonium strictum. Tetrahedron Lett 53:2885–2886

    Article  CAS  Google Scholar 

  • Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S (2005) Antifungal activities of R-135853, a sordarin derivative, in experimental candiiasis in mice. Antimicrob Agents Chemother 49:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameshwar SAK, Qin W (2018a) Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9:93–105

    Article  CAS  Google Scholar 

  • Kameshwar SAK, Qin W (2018b) Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: a review. Bioresour Bioprocess 5:43

    Article  Google Scholar 

  • Kaneko S, Arai M, Uchida T, Harasaki T, Fukuoka T, Konosu T (2002a) Synthesis and evaluation of N-substituted 1,4-oxazepanyl sordaricins as selective fungal EF-2 inhibitors. Bioorg Med Chem Lett 12:1705–1708

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Uchida T, Shibuya S, Honda T, Kawamoto I, Harasaki T, Fukuoka T, Konosu T (2002b) Synthesis of sordaricin analogues as potent antifungal agents against Candida albicans. Bioorg Med Chem Lett 12:803–806

    Article  CAS  PubMed  Google Scholar 

  • Kanoh K, Kohno S, Asari T, Harada T, Katada J, Muramatsu M, Kawashima H, Sekiya H, Uno I (1997) (−)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 7:2847–2852

    Article  CAS  Google Scholar 

  • Kanoh K, Kohno S, Katada J, Hayashi Y, Muramatsu M, Un I (1999a) Antitumor activity of phenylahistin in vitro and in vivo. Biosci Biotechnol Biochem 63:1130–1133

    Article  CAS  PubMed  Google Scholar 

  • Kanoh K, Kohno S, Katada J, Takahashi J, Uno I (1999b) (−)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot 52:134–141

    Article  CAS  Google Scholar 

  • Kennedy TC, Webb G, Cannell RJ, Kinsman OS, Middleton RF, Sidebottom PJ, Taylor NL, Dawson M, Buss AD (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. Isolation, characterisation and biological properties. J Antibiot 51:1012–1018

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York, pp 1–690

    Book  Google Scholar 

  • Krasnoff SB, Gupta S (1991) Identification and directed biosynthesis of efrapeptins in the fungus Tolypocladium geodes gams (Deuteromycotina: Hyphomycetes). J Chem Ecol 17:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Krasnoff SB, Gupta S (1992) Efrapeptin production by Tolypocladium fungi (Deuteromycotina: Hyphomycetes): intra- and interspecific variation. J Chem Ecol 18:1727–1741

    Article  CAS  PubMed  Google Scholar 

  • Krishna PR, Prabhakar S, Ramana DV (2012) The first total synthesis of a 12-membered macrolide balticolid. Tetrahedron Lett 53:6843–6845

    Article  CAS  Google Scholar 

  • Kristoffersen V, Rämä T, Isaksson J, Andersen JH, Gerwick WH, Hansen E (2018) Characterization of rhamnolipids Produced by an Arctic marine bacterium from the Pseudomonas fluorescence group. Mar Drugs 16:163

    Article  PubMed Central  CAS  Google Scholar 

  • Laurent D, Guella G, Roquebert M-F, Farinole F, Mancini I, Pietra F (2000) Cytotoxins, mycotoxins and drugs from a new Deuteromycete, Acremonium neo-caledoniae, from the Southwestern lagoon of New Caledonia. Planta Med 66:63–66

    Article  CAS  PubMed  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  CAS  PubMed  Google Scholar 

  • Li L-S, Hou D-R (2014) Diastereoselective vinylalumination for the synthesis of pericosine A, B and C. RSC Adv 4:91–97

    Article  CAS  Google Scholar 

  • Li X-M, Sun G-X, Chen S-C, Fang Z, Yuan H-Y, Shi Q, Zhu Y-G (2018) Molecular chemodiversity of dissolved organic matter in paddy soils. Environ Sci Technol 52:963–971

    Article  CAS  PubMed  Google Scholar 

  • Liberra K, Jansen R, Lindequist U (1998) Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie 53:578–581

    CAS  PubMed  Google Scholar 

  • Lin A, Wu G, Gu Q, Zhu T, Li D (2014) New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch Pharm Res 37:839–844

    Article  CAS  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luzzatto-Knaan T, Garg N, Wang M, Glukhov E, Peng Y, Ackermann G, Amir A, Duggan BM, Ryazanov S, Gerwick L, Knight R, Alexandrov T, Bandeira N, Gerwick WH, Dorrestein PC (2017) Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. eLife 6:e24214

    Article  PubMed  PubMed Central  Google Scholar 

  • McBride MM, Dalpadado P, Drinkwater KF, Godø OR, Hobday AJ, Hollowed AB, Kristiansen T, Murphy EJ, Ressler PH, Subbey S, Hofmann EE, Loeng H (2014) Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J Mar Sci 71:1934–1955

    Article  Google Scholar 

  • McKindles K, Tiquia-Arashiro SM (2012) Functional gene arrays for analysis of microbial communities on ocean platform. In: Tiquia-Arahiro SM (ed) Molecular biological technologies for ocean sensing. Humana Press, Totowa, NJ, Chap. 9, 169–201 p

    Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  PubMed  Google Scholar 

  • Moussaief M, Jacques P, Schaarwachter P, Budzikiewicz H, Thonart P (1997) Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol 63:1739–1743

    Google Scholar 

  • Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemsk O, Isbandi M, Thomas AD, Ali R, Sharma K, Kyrpides NC, Reddy TBK (2017) Genomes onLine database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res 45:D446–D456

    Article  CAS  PubMed  Google Scholar 

  • MuniRaju C, Rao JP, Rao BV (2012) Stereoselective synthesis of (+)-pericosine B and (+)-pericosine C using ring closing metathesis approach. Tetrahedron Asymmetry 23:86–93

    Article  CAS  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Namikoshi M, Akano K, Meguro S, Kasuga I, Mine Y, Takahashi T, Kobayashi H (2001) A new macrocyclic trichothecene, 12,13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in Palau. J Nat Prod 64:396–398

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ (2016) Predominately uncultured microbes as sources of bioactive agents. Front Microbiol 7:1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548

    Article  CAS  PubMed  Google Scholar 

  • Newton GGF, Abraham EP (1956) Isolation of cephalosporin C, a penicillin-like antibiotic containing d-α-aminoadipic acid. Biochem J 62:651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayash Y, Neuteboom STC (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 17:25–31

    Article  CAS  PubMed  Google Scholar 

  • Numata A, Iritani M, Yamada T, Minoura K, Matsumura E, Yamori T, Tsuruo T (1997) Novel antitumour metabolites produced by a fungal strain from a sea hare. Tetrahedron Lett 38:8215–8218

    Article  CAS  Google Scholar 

  • Ogita T, Hayashi A, Sato S, Furay K (1987) Antibiotic Zofimarin, manufacture by Zofiela marina SNAK21274. JP 624092, 21 Feb 1987

    Google Scholar 

  • Oh D-C, Jensen PR, Fenical W (2006) Zygosporamide, a cytotoxic cyclic depsipeptide from the marine-derived fungus Zygosporium masonii. Tetrahedron Lett 47:8625–8628

    Article  CAS  Google Scholar 

  • Orsi AH, Whitworth T (2005) Hydrographic atlas of the world ocean circulation experiment (WOCE), Southern Ocean, vol 1. Scripps Institution Oceanography, La Jolla, CA

    Google Scholar 

  • Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. Mycology 5:145–167

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Shi Y, Auckloo NB, Chen X, Chen AC-T, Tao X, Wu B (2016) An unusual conformational isomer of verrucosidin backbone from a hydrothermal vent fungus, Penicillium sp. Y-50-10. Mar Drugs 14:156

    Article  PubMed Central  CAS  Google Scholar 

  • Pan C, Shi Y, Chen X, Chen AC-T, Tao X, Wu B (2017) New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4. Org Biomol Chem 15:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: A primer for the natural products research community. J Nat Prod 80:756–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rämä T, Davey ML, Nordén J, Halvorsen R, Blaalid R, Mathiassen GH, Alsos IG, Kauserud H (2016) Fungi sailing the Arctic Ocean: Speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb Ecol 72:295–304

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Reddy YS, Kadigachalam P, Basak RK, John Pal AP, Vankar YD (2012) Total synthesis of (+)-pericosine B and (+)-pericosine C and their enantiomers by using the Baylis–Hillman reaction and ring-closing metathesis as key steps. Tetrahedron Lett 53:132–136

    Article  CAS  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reich M, Labes A (2017) How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 36:57–75

    Article  PubMed  Google Scholar 

  • Renner MK, Jensen PR, Fenical W (1998) Neomangicols: Structures and absolute stereochemistries of unprecedented halogenated sesterterpenes from a marine fungus of the genus Fusarium. J Org Chem 63:8346–8354

    Article  CAS  Google Scholar 

  • Renner MK, Jensen PR, Fenical W (2000) Mangicols: Structures and biosynthesis of a new cass of sesterterpene polyols from a marine fungus of the genus Fusarium. J Org Chem 65:4843–4852

    Article  CAS  PubMed  Google Scholar 

  • Roth FJ Jr, Orpurt PA, Ahearn DG (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383

    Article  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Sato A, Takahashi, K, Ogita T, Sugano M, Kodama K (1985) Marine Natural Products. Annu. Rpt. Sankyo Res. Lab. pp 1–58

    Google Scholar 

  • Sepcic K, Zalar P, Gunde-Cimerman N (2011) Low water activity Induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs 9:43–58

    Article  CAS  Google Scholar 

  • Shushni MAM, Mentel R, Lindequist U, Jansen R (2009) Balticols A–F, new naphthalenone derivatives with antiviral activity, from an ascomycetous fungus. Chem Biodivers 6:127–137

    Article  CAS  PubMed  Google Scholar 

  • Singh P (2012) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol 5:543–553

    Article  Google Scholar 

  • Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31:999–1025

    Article  CAS  PubMed  Google Scholar 

  • Smith KE, Aronson RB, Steffel BV, Amsler MO, Thatje S, Singh H, Anderson J, Brothers CJ, Brown A, Ellis DS, Havenhand JN, James WR, Moksnes P-O, Randolph AW, Sayre-McCord T, McClintock JB (2017) Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8:e02017

    Article  Google Scholar 

  • Soldatou S, Baker BJ (2017) Cold-water marine natural products, 2006 to 2016. Nat Prod Rep 34:585–626

    Article  CAS  PubMed  Google Scholar 

  • Spence JTJ, George JH (2013) Biomimetic total synthesis of ent-Penilactone A and Penilactone B. Org Lett 15:3891–3893

    Article  CAS  PubMed  Google Scholar 

  • Stodůlková E, Man F, Kuzma M, Černý J, Císařová I, Kubátová A, Chudíčková M, Kolařík M, Flieger M (2015) A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol (Praha) 60:259–267

    Article  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM (2012) Molecular biological technologies for ocean sensing. Humana Press, Totowa, NJ, 295 p

    Book  Google Scholar 

  • Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46

    Article  Google Scholar 

  • Tripathi S, Shaikha AC, Chen C (2011) Facile carbohydrate-based stereocontrolled divergent synthesis of (+)-pericosines A and B. Org Biomol Chem 9:7306–7308

    Article  CAS  PubMed  Google Scholar 

  • Usami Y, Mizuki K, Kawahata R, Shibano M, Sekine A, Yoneyama H, Harusawa S (2017) Synthesis of natural O-linked carba-disaccharides, (+)- and (−)-pericosine E, and their analogues as α-glucosidase inhibitors. Mar Drugs 15:22

    Article  PubMed Central  CAS  Google Scholar 

  • Usui T, Kondoh M, Cui C-B, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333:543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJ, pp 1–425

    Google Scholar 

  • van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–2157

    Article  PubMed  Google Scholar 

  • Vansteelandt M, Blanchet E, Egorov M, Petit F, Toupet L, Bondon A, Monteau F, Bizec B, Thomas OP, Pouchus YF, Bot RL, Grovel O (2013) Ligerin, an antiproliferative chlorinated sesquiterpenoid from a marine-derived Penicillium strain. J Nat Prod 76:297–301

    Article  CAS  PubMed  Google Scholar 

  • Vicente F, Basilio A, Platas G, Collado J, Bills GF, González Del Val A, Martín JJ, Tormo JR, Harris GH, Zink DL, Justice M, Nielsen Kahn J, Peláez F (2009) Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res 113:754–770

    Article  CAS  PubMed  Google Scholar 

  • Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B, Pacherres CO, Hughes KA (2017) Microplastics in the Antarctic marine system: An emerging area of research. Sci Total Environ 598:220–227

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-F, Li Z-L, Zhang L-M, Wu X, Zhang L, Pei Y-H, Jing Y-K, Hua H-M (2012) 2,5-Diketopiperazines from the marine-derived fungus Aspergillus fumigatus YK-7. Chem Biodivers 9:385–393

    Article  CAS  PubMed  Google Scholar 

  • Weiss RF, Lonsdale P, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the Galapagos Rift. Nature 267:600–603

    Article  Google Scholar 

  • Wetwitaklung P, Thavanaspong N, Charoenteeraboon J (2009) Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained form water distillation and supercritical fluid carbon dioxide extraction. Silpakorn Univ Sci Technol J 3:25–33

    Google Scholar 

  • Whang K, Cooke RJ, Okay G, Cha JK (1990) Total syntheis of (+)-verrucosidin. J Am Chem Soc 112:8985–8987

    Article  CAS  Google Scholar 

  • Woehlecke H, Osada H, Herrmann A, Lage H (2003) Reversal of breast cancer resistance protein–mediated drug resistance by tryprostatin A. Int J Cancer 107:721–728

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Dockendorff C (2018) Synthesis of a novel bicyclic scaffold inspired by the antifungal natural product sordarin. Tetrahedron Lett 59:3373–3376

    Article  CAS  Google Scholar 

  • Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749

    Article  CAS  Google Scholar 

  • Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11:1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Wiese J, Labes A, Kramer A, Schmaljohann R, Imhoff JF (2015) Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar Drugs 13:4617–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Takasaki A, Kobayashi H, Oda T, Yamada J, Mangindaan REP, Ukai K, Nagai H, Namikoshi M (2006) Four new macrocyclic trichothecenes from two strains of marine-derived fungi of the genus Myrothecium. J Antibiot 59:451–455

    Article  CAS  Google Scholar 

  • Yamada T, Iritani M, Ohishi H, Tanaka K, Minoura K, Doi M, Numata A (2007) Pericosines, antitumour metabolites from the sea hare-derived fungus Periconia byssoides. Structures and biological activities. Org Biomol Chem 5:3979–3986

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa T, Ideue E, Iwaki Y, Sato A, Tokuyama H, Shimokawa J, Fukuyama T (2011) Total synthesis of tryprostatins A and B. Tetrahedron 67:6547–6560

    Article  CAS  Google Scholar 

  • Ying J, Pu L (2014) A facile asymmetric approach to the multicyclic core structure of mangicol A. Chem Eur J 20:16301–16307

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Y, Tang G-L, Xu X-Y, Nong X-H, Qi S-H (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, Smith KS, Deveau AM, Dieckhaus CM, Johnson MA, Macdonald TL, Cook JM (2002) Biological activity of the tryprostatins and their diastereomers on human carcinoma cell lines. J Med Chem 45:1559–1562

    Article  CAS  PubMed  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley-Ann Giddings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giddings, LA., Newman, D.J. (2019). Bioactive Compounds from Extremophilic Marine Fungi. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_18

Download citation

Publish with us

Policies and ethics