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Abstract. Deep learning has started to have an impact on sports ana-
lytics. Several papers have applied action-value Q learning to quantify
a team’s chance of success, given the current match state. However, the
black-box opacity of neural networks prohibits understanding why and
when some actions are more valuable than others. This paper applies
interpretable Mimic Learning to distill knowledge from the opaque neural
net model to a transparent regression tree model. We apply Deep Rein-
forcement Learning to compute the Q function, and action impact under
different game contexts, from 3M play-by-play events in the National
Hockey League (NHL). The impact of an action is the change in Q-value
due to the action. The play data along with the associated Q functions
and impact are fitted by a mimic regression tree. We learn a general
mimic regression tree for all players, and player-specific trees. The trans-
parent tree structure facilitates understanding the general action values
by feature influence and partial dependence plots, and player’s excep-
tional characteristics by identifying player-specific relevant state regions.

1 Introduction

A fundamental goal of sports statistics is to quantify how much physical player
actions contribute to winning in what situation. The advancement of sequential
deep learning opens new opportunities of modeling complex sports dynamics, as
more and larger play-by-play datasets for sports events become available. Action
values based on deep learning are a very recent development, that provides a
state-of-the-art player ranking method [12]. Several very recent works [10,26]
have built deep neural networks to model players’ actions and value them
under different situation. Compared with traditional statistics-based methods
for action values [14,19], deep models support a more comprehensive evaluation
because (1) deep neural networks generalize well to different actions and complex
game contexts and (2) various network structures (e.g. LSTM) can be applied
to model the current game context and its sequential game history.

However, a neural network is an opaque black-box model. It prohibits under-
standing when or why the player’s action is valuable, and which context features
are the most influential for this assessment. A promising approach to overcome
this limitation is Mimic Learning [1], which applies a transparent model to distill
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the knowledge form the opaque model to an interpretable data structure. In this
work, we train a Deep Reinforcement Learning (DRL) model to learn action-
value functions, also known as Q functions, which represent a team’s chance of
success in a given match context. The impact of an action is computed as the dif-
ference between two consecutive Q values, before and after the action. To obtain
an interpretable model that mimics the Q-value network, we first learn general
regression trees for all players, for both Q and impact functions. The results
show our trees achieve good mimic performance (small mean square error and
variance). To understand the Q functions and impact, we compute the feature
importance and use partial dependence plot to analyze the influence of different
features with the mimic trees.

To highlight the strengths and weaknesses of an individual player compared
to a general player, we construct player-specific mimic trees for Q values and
impact. Based on a player-specific tree, we define an interpretable measure for
which players are most exceptional overall.

Contribution. The main contributions of our paper are as follows: (1) A Mimic
Learning Framework to interpret the action values from a deep neural network
model. (2) Both a general mimic model and a player specific mimic model are
trained and compared to find the influential features and exceptional players.

The paper is structured as follow: Sect. 2 covers the related work about the
player evaluation metrics, Deep Sport Analytics and Interpretable Mimic Learn-
ing. Section 3 explains the reinforcement learning model of play dynamics from
NHL dataset. Section 4 introduces the procedure of learning the Q values and
Impact with DRL model, which completes our review of previous work. We show
how to mimic DRL with regression tree in Sects. 5 and 6 discuss the interpretabil-
ity of Q functions and Impact with Mimic tree. We highlight some exceptional
players with the Mimic tree in Sect. 7.

2 Related Work

We discuss the previous work most related to our work.

Player Evaluation Metrics. Numerous metrics have been proposed to measure
the players’ performance.

One of the most common is Plus-Minus (±) [14], which measures how the
presence of a player influences the goals of his team. But it considers only
goals, and for context only which players are on the ice. Total Hockey Rating
(THoR) [18] is an alternative metric that evaluates all the actions by whether
or not a goal occurred in the following 20 s. Using a fixed time window rather
makes this approach less useful for low-scoring goals like hockey and soccer.
Expected Possession Value (EPV) [2] is an alternative metric, developed for bas-
ketball, that evaluate all players’ actions by the points that they are expected to
score. A POINTWISE Markov model is built to compute the point values with
the spatial-temporal tracking data of players’ state and actions. Many recent
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works have applied the Reinforcement Learning (RL) to compute a Q value to
evaluate players actions. [12,17,19,20] built an Markov Decision Model from
the sequential video tracking data and applied dynamic programming to learn
the Q-functions. Value-above-replacement evaluates how many expected goals
or wins the presence of a player adds, compared to a random player, giving rise
to the GAR and WAR metrics [7]. Liu and Schulte [7] provide evidence that the
Q-value ranking performs better than the GAR and WAR metrics.

Sport Analytics with Deep Models. Modelling sports dynamics with deep sequen-
tial neural nets is a rising trend [10,15]. Dynamical models predict the next event
but do not evaluate the expected success from actions, as Q functions do. DRL
for learning sports Q functions is a very recent topic [12,26]. Although these deep
models provide an accurate evaluation of player actions, it is hard to understand
why the model assigns a large influence to a player in a given situation.

Interpretable Mimic Learning. Complex deep neural networks are hard to inter-
pret. An approach to overcome this limitation is Mimic Learning [1]. Recent
works [3,4] have demonstrated that simple models like shallow feed-forward neu-
ral network or decision trees can mimic the function of a deep neural network.
Soft outputs are collected by passing inputs to a large, complex and accurate
deep neural network. Then we train a mimic model with the same input and
soft output as supervisor. The results indicate that training a mimic model with
soft output achieves substantial improvement in accuracy and efficiency, over
training the same model type directly with hard targets from the dataset.

Table 1. Dataset example

GID PID GT TID X Y MP GD Action OC P

1365 126 14.3 6 −11.0 25.5 Even 0 Lpr S A

1365 126 17.5 6 −23.5 −36.5 Even 0 Carry S A

1365 270 17.8 23 14.5 35.5 Even 0 Block S A

1365 126 17.8 6 −18.5 −37.0 Even 0 Pass F A

1365 609 19.3 23 −28.0 25.5 Even 0 Lpr S H

1365 609 19.3 23 −28.0 25.5 Even 0 Pass S H

Table 2. Derived features

Velocity TR D Angle H/A PN

(−23.4, 1.5) 3585.7 3.4 0.250 A 4

(−4.0, −3.5) 3582.5 3.1 0.314 A 4

(−27.0, −3.0) 3582.2 0.3 0.445 H 4

(0, 0) 3582.2 0.0 0.331 A 4

(−30.3, −7.5) 3580.6 1.5 0.214 H 5

(0, 0) 3580.6 0.0 0.214 H 5

GID=GameId, PID=playerId, GT = GameTime, TID = TeamId, MP=Manpower, GD=Goal

Difference, OC=Outcome, S=Succeed, F=Fail, P=Team Possess puck, H=Home, A=Away,

TR=Time Remain, PN=Play Number, D=Duration.

3 Play Dynamics in NHL

Dataset. The Q-function approach was originally developed using the publicly
available NHL data [17]. Our deep RL model could be applied to this data, but
in this paper, we utilize a richer proprietary dataset constructed by SPORT-
LOGiQ with computer vision techniques. It provides information about game
events and player actions for the entire 2015–2016 NHL season, which contains
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3,382,129 events, covering 30 teams, 1,140 games and 2,233 players. Table 1 shows
an excerpt. The data tracks events around the puck, and record the identity and
actions of the player, with space and time stamps, and features of the game
context. The unit for space stamps are feet and for time stamps seconds. We
utilize adjusted spatial coordinates, where negative numbers refer to the defen-
sive zone of the acting player, positive numbers to his offensive zone. Adjusted
X-coordinates (XAdjcoord) run from −100 to +100, Y-coordinates (YAdjcoord)
from 42.5 to −42.5, and the origin is at the ice center. We include data points
from all manpower scenarios, not only even-strength, and add the manpower
context as a feature. We did not include overtime data. Period information is
implicitly represented by game time. We augment the data with derived features
in Table 2 and list the complete feature set in Table 3.

Table 3. Complete feature list. Values for the feature Manpower are EV = Even
Strength, SH = Short Handed, PP = Power Play.

Name Type Range

X Coordinate of puck Continuous [−100, 100]

Y Coordinate of puck Continuous [−42.5, 42.5]

Velocity of puck Continuous (−inf, +inf)

Time remaining Continuous [0, 3600]

Score differential Discrete (−inf, +inf)

Manpower Discrete {EV, SH, PP}
Event duration Continuous [0, +inf)

Action outcome Discrete {successful, failure}
Angle between puck and goal Continuous [−3.14, 3.14]

Home/Away team Discrete {Home, Away}

Reinforcement Learning Model. Our notation for RL concepts follows [17]. There
are two agents Home resp. Away representing the home and away team, respec-
tively. The reward, represented by goal vector gt, is a 1-of-3 indicator vector
that specifies which team scores. For readability, we use Home,Away,Neither to
denote the team in a goal vector (e.g. gt,Home = 1 means that the home team
scores at time t). An action at is one of 13 types, including shot, assist, etc.,
with a mark that specifies the team executing the action, e.g. Shot(Home). An
observation is a feature vector xt for discrete time step t specifies a value for
the 10 features listed in Table 3. A sequence st is a list (x0, a0, . . . , xt, at) of
observation-action pairs.

We divide NHL games into goal-scoring episodes, so that each episode
(1) begins at the beginning of the game, or immediately after a goal, and (2)
terminates with a goal or the end of the game. We define a Q function to represent
the conditional probability of the event that the home resp. away team scores
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the goal at the end of the current goal-scoring episode (denoted goalHome = 1
resp. goalAway = 1), or neither team does (denoted goalNeither = 1):

Qteam(s, a) = P (goalteam = 1|st = s, at = a).

4 Q-Values and Action Impact

We review learning Q values and impact, using neural network Q-function
approximation. A Tensorflow script is available on-line [13].

4.1 Compute Q Functions with Deep Reinforcement Learning

We apply the on policy Temporal Difference (TD) prediction method Sarsa [22]
to estimate Qteam(s, a) for current policies πhome and πaway. The neural network
has three fully connected layers connected by a ReLu activation function. The
number of input nodes equals the sum of the dimensions of feature vector s
and action vector a. The number of output nodes is three, including Q̂Home,
Q̂Away and Q̂Neither, which are normalized to probability. The parameters θ of
neural network are updated by minibatch gradient descent with optimization
method Adam. Using mean squared error function, the Sarsa Gradient Descent
at training step i is based on the square of TD error:

L(θi) = 1/B

B∑

t

(gt + Q̂(st+1, at+1, θi) − Q̂(st, at, θi))2

θt = θt + α∇θL(θt)

where B is the batch size and α is the learning rate optimized by the Adam
algorithm [8]. For post-hoc interpretability [11] for the learned Q function, we
illustrate its temporal and spatial projections in Figs. 1 and 2.

Temporal Projection. Figure 1 plots a value ticker [6] that represents the evolu-
tion of the action-value Q function (including Q values for home, away team and
neither) from the 3rd period of a randomly selected match between Penguins
(Home) and Canadians (Away), Oct.13, 2015. Sports analysts and commenta-
tors use ticker plots to highlight critical match events [6]. We mark significant
changes in the scoring probabilities and their corresponding events.

Spatial Projection. The neural network generalizes from observed sequences and
actions to sequences and actions that have not occurred in our dataset. So we
plot the learned smooth value surface Q̂Home(s�, shot(team)) over the entire rink
for home team shots in Fig. 2. Here s� represents the average play history for
a shot at location �, which runs in unit steps from x axis ∈ [−100, 100] and
y axis ∈ [−42.5, 42.5]. It can be observed that (1) The chance that the home
team scores after a shot is shown to depend on the angle and distance to the
goal. (2) Action-value function generalizes to the regions where shots are rarely
observed (At the lower or upper corner of the rink).
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Fig. 1. Temporal projection: evolution
of scoring probabilities for the next
goal, including the chance that neither
team scores another goal.

Fig. 2. Spatial projection for the shot
action: the probability that the home
team scores the next goal after taking
a shot at a rink location, averaged over
possible game states.

4.2 Evaluate Players with Impact Metric

We follow previous work [12] and evaluate players by how much their actions
change the expected return of their team’s in a given game state [12]. This quan-
tity is defined as the Impact of an action under current environment (observa-
tion) st. Players’ overall performance can be estimated by summing the impact of
players throughout a game season. The resulting metric is named Goal Impact
Metric (GIM).

impact team(st , at) = Q̂ team(st , at) − Q̂ team(st−1 , at−1 )
GIM i(D) =

∑
s,a ni

D(s, a) × impact teami (s, a)

Table 4 shows the top 10 players ranked by GIM. Our purpose in this paper is
to interpret the Q values and the impact ranking, not to evaluate them. Previous
work provides extensive evaluation [12,17,19,20]. We summarize some of the
main points. (1) The impact metric passes the “eye test”. For example the players
in Table 4 are well-known top performers. (2) The metric correlates strongly with
various quantities of interest in the NHL, including goals, points, Time-on-Ice,
and salary. (3) The metric is consistent between and within seasons. (4) The
impact is assessed for all actions, including defensive and offensive actions. It
therefore not biased towards forwards. For instance, defenceman Erik Karlsson
appears at the top of the ranking.

5 Mimicking DRL with Regression Tree

We apply Mimic Learning [1] and train a transparent regression tree to mimic
the black-box neural network. As it is shown in Fig. 3, our framework aims at
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Table 4. 2015–2016 Top-10 player impact scores

Name GIM Assists Goals Points ± Age Team Salary

Taylor Hall 96.40 39 26 65 −4 24 EDM $6,000,000

Joe Pavelski 94.56 40 38 78 25 31 SJS $6,000,000

Johnny Gaudreau 94.51 48 30 78 4 22 CGK $925,000

Anze Kopitar 94.10 49 25 74 34 28 LAK $7,700,000

Erik Karlsson 92.41 66 16 82 −2 25 OTT $7,000,000

Patrice Bergeron 92.06 36 32 68 12 30 BOS $8,750,000

Mark Scheifele 90.67 32 29 61 16 23 WPG $832,500

Sidney Crosby 90.21 49 36 85 19 28 PIT $12,000,000

Claude Giroux 89.64 45 22 67 −8 28 PHI $9,000,000

Dustin Byfuglien 89.46 34 19 53 4 31 WPG $6,000,000

mimicking Q functions and impact. We first train the general tree model with the
deep model’s input/output for all players and then use it to initialize the player-
specific model for an individual player (Sect. 7). The transparent tree structure
provides much information for understanding the Q functions and impact.

Fig. 3. Interpretable Mimic Learning Framework

We focus on two mimicking targets: Q functions and Impact. For Q func-
tions, we fit the mimic tree with the NHL play data and their associated soft
outputs (Q values) from our DRL model (neural network). The last 10 observa-
tions (determined experimentally) from the sequence are extracted, and CART
regression tree learning is applied to fit the soft outputs. This is a multi-output
regression task, as our DRL model outputs a Q vector containing three Q val-
ues (Q̂t = 〈Q̂home

t , Q̂away
t , Q̂end

t 〉) for an observation features vectors (st) and an
action (at). A straightforward approach for the multi-target regression problem
is training a separate regression model for each Q value. But separate trees for
each Q function are somewhat difficult to interpret. An alternative approach to
reduce the total tree size is training a Multi-variate Regression Tree (MRTs) [5],
which fits all three Q values simultaneously in a regression tree. An MRT can
also model the dependencies between the different Q variables [21]. For Impacts,
we have only one output (impactt) for each sequence (st) and current action (at)
at time step t.
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We examine the mimic performance of regression tree for the Q functions
and impact. A common problem of regression trees is over-fitting. We use the
Mean Sample Leaf (MSL) to control the minimum number of samples at each
leaf node. We apply ten-fold cross validation to measure the performance of our
mimic regression tree by Mean Square Error (MSE) and variance. As is shown
in Table 5, the tree achieves satisfactory performance when MSL equals 20 (the
minimum MSE for Q functions, small MSE and variance for impact).

Table 5. Performance of General Mimic Regression Tree (RT) with different Minimum
Samples in each Leaf node (MSL). We apply ten-fold cross validation and report the
regression result with format: Mean Square Error (Variance)

Model Q home Q away Q end Impact

RT-MSL1 3.35E-04(1.43E-09) 3.21E-04(1.26E-09) 1.74E-04(2.18E-09) 1.33E-03(5.43E-09)

RT-MSL5 2.59E-04(1.07E-09) 2.51E-04(0.89E-09) 1.35E-04(1.87E-10) 9.84E-04(2.72E-09)

RT-MSL10 2.38E-04(1.02E-09) 2.30E-04(0.89E-09) 1.25E-04(2.30E-10) 8.66E-04(2.17E-09)

RT-MSL20 2.31E-04(0.92E-09) 2.22E-04(0.82E-09) 1.23E-04(2.05E-10) 7.92E-04(1.45E-09)

RT-MSL30 2.35E-04(0.98E-09) 2.27E-04(0.85E-09) 1.27E-04(2.32E-10) 7.67E-04(1.16E-09)

RT-MSL40 2.39E-04(0.96E-09) 2.30E-04(0.85E-09) 1.29E-04(2.19E-10) 7.58E-04(1.10E-09)

6 Interpreting Q Functions and Impact with Mimic Tree

We now show how to interpret Q functions and Impact using the general Mimic
tree, by deriving feature importance and a partial dependence plot.

6.1 Compute Feature Importance

In CART regression tree learning, variance reduction is the criterion for evalu-
ating the quality of a split. Therefore we compute the importance of a target
feature by summing the variance reductions at each split using the target fea-
ture [3]. We list the top 10 important features in the mimic tree for Q values
and impact in Table 6. The frequency of a feature is the number of times the
tree splits on the feature. The notation T − n : f indicates that a feature occurs
n time steps before the current time. We find that the Q and impact functions
agree on nearly half of the features, but their importance values differ. For Q
values, time remaining is the most influence features with significantly larger
importance value than other. This is because less time means fewer chance of
any goals (see Fig. 1). But for impact, time remaining is much less important,
because impact is the difference of consecutive Q values, which cancels the time
effect and focuses only on the influence of a player’s action a: Near the end of
the match, players still have a chance to make actions with high impact. The top
three important features for impact are (1) Goal: if the player scores a goal. (2)
Shot-on-Goal Outcome: if the player’s shot is on target (3) X Coordinate: the
x-location of the puck (goal-to-goal axis). Thus the impact function recognizes
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players for shooting, successful actions, and for advancing the puck towards the
goal of their opponent. A less intuitive finding is that the duration of an action
affects its impact. Notice that for both Q values and impact, the top ten impor-
tant features contain historical features (with T − n for n > 0), which supports
the importance of including historical data in observation sequence s.

Table 6. Top 10 features for Q values (left) and Impact (right). The notation T −n : f
indicates that a feature occurs n time steps before the current time.

6.2 Draw Partial Dependence Plot

A partial dependence plot is a common visualization to determine qualitatively
what a model has learned and thus provides interpretability [3,11]. The plot
approximates the prediction function for a single target feature, by marginaliz-
ing over the values of all other features. We select X Coordinate (of puck), Time
Remaining and X Velocity (of puck), three continuous features with high impor-
tance for both the Q and the impact mimic tree. As it is shown in Fig. 4, Time
Remaining has significant influence on Q values but very limited effect on impact.
This is consistent with our findings for feature importance. For X Coordinate,
as a team is likely to score the next goal in the offensive zone, both Q values
and impact increase significantly when the puck is approaching its opponent’s
goal (larger X Coordinate). And compared to the position of the puck, velocity
in X-axis has limited influence on Q values but it does affect the impact. This
shows that the impact function uses speed on the ice as an important criterion
for valuing a player. We also observe the phenomenon of home advantage [23] as
the Q value (scoring probability) of the home team is slightly higher than that
of the away team.



78 G. Liu et al.

Fig. 4. Partial dependence plot for Time Remaining (left), X Coordinate (middle) and
X Velocity (right)

7 Highlighting Exceptional Players

Our approach to quantifying which players are exceptional is based on a partition
the continuous state space into a discrete set of m disjoint regions. Given a Q
or impact function, exceptional players can be found by region-wise comparison
of a player’s excepted impact to that of a random player’s. For a specific player,
this comparison highlights match settings in which the player is especially strong
or weak. The formal details are as follows.

Let nD be the number of actions by player P , of which n� fall into discrete
state region � = 1, . . . ,m. For a function f , let f̂� be the value of f estimated
from all data points that fall into region �, and let f̂P

� be the value of f estimated
from the n� data points for region � and player P . Then the weighted squared
f -difference is given by:

∑

�

n�/nD(f̂� − f̂P
� )2. (1)

Regression trees provide an effective way to discretize a Q-function for a
continuous state space [25]: Each leaf forms a partition cell in state space (con-
structed by the splits with various features along the path from root to the leaf).
The regression trees described in Sect. 5 could be used, but they represent general
discretizations learned for all the players over a game season, which means that
they may miss distinctions that are important for a specific player. For example,
if an individual player is especially effective in the neutral zone, but the average
player’s performance is not special in the neutral zone, the generic tree will not
split on “neutral zone” and therefore will not be able to capture the individ-
ual’s special performance. Therefore we learn for each player, a player-specific
regression tree.

The General Tree is learned with all the inputs and their corresponding
Q or Impact values (soft labels). The Player Tree is initialized with the Gen-
eral Tree and then fitted with the nD datapoints of a specific player P and
their corresponding Q values (fP

Q̂
(fQ̂, sP

t , aP
t ) → range(Q̂P

t )) or Impact values

(fP
I (fI , s

P
t , aP

t ) → range(ImpactPt )). It inherits the tree structure of the general
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model RT-MSL20 in Sect. 5, uses the target player data to prune the general
tree, then expands the tree with further splits. Initializing with the general tree
assumes players share relevant features and prevents over-fitting to a player’s
specific data. A Player Tree defines a discrete set of state regions, so we can
apply Eq. 1 with the Q or impact functions. Table 7 shows the weighted squared
differences for the top 5 players in the GIM metric.

Table 7. Exceptional players based on tree discretization

Player Q home Q away Q end Impact

Taylor Hall 1.80E-04 2.49E-04 2.28E-04 6.66E-05

Joe Pavelski 4.64E-04 2.90E-04 3.04E-04 1.09E-04

Johnny Gaudreau 2.12E-04 1.96E-04 1.43E-04 6.77E-05

Anze Kopitar 2.58E-04 2.00E-04 2.43E-04 8.28E-05

Erik Karlsson 2.97E-04 1.89E-04 1.86E-04 2.00E-04

We find that (1) Joe Pavelski, who scored the most in the 2015–2016 game
season, has the largest Q values difference and (2) Erik Karlsson, who had the
most points (goal+assists), has the largest Impact difference. They are the two
players who differ the most from the average players by Q-value and Impact.

8 Conclusion and Future Work

This paper applies Mimic Learning to understand the Q function and impact
from Deep Reinforcement Learning Model in valuing actions and players. To
study the influence of a feature, we analyze a general mimic model for all players
by feature importance and partially dependence plot. For individual players,
performance in state regions defined by the player specific tree is implemented
to find exceptional players. With our interpretable Mimic Learning, coaches and
fans can understand what the deep models have learned and thus trust the
results. While our evaluation focuses on ice hockey, our techniques apply to
other continuous-flow sports such as soccer and basketball.

In future work, the player trees can be used to highlight match scenarios
where a player shows exceptionally strong or weak performance, in both defense
and offense. A limitation of our current model is that it pools all data from the
different teams, rather than modelling the differences among teams. A hierar-
chical model for ice hockey can be used to analyze how teams are similar and
how they are different, like those that have been built for other sports (e.g.,
cricket [16].) Another limitation is that players get credit only for recorded indi-
vidual actions. An influential approach to extend credit to all players on the rink
has been based on regression [9,14,24]. A promising direction for future work is
to combine Q-values with regression.
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