®

Check for
updates

Identifiers in Registers
Describing Network Algorithms with Logic

Benedikt Bollig, Patricia Bouyer, and Fabian Reiter®)

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
{bollig,bouyer}@lsv.fr, fabian.reiterQgmail.com

Abstract. We propose a formal model of distributed computing based
on register automata that captures a broad class of synchronous network
algorithms. The local memory of each process is represented by a finite-
state controller and a fixed number of registers, each of which can store
the unique identifier of some process in the network. To underline the nat-
uralness of our model, we show that it has the same expressive power as a
certain extension of first-order logic on graphs whose nodes are equipped
with a total order. Said extension lets us define new functions on the set
of nodes by means of a so-called partial fixpoint operator. In spirit, our
result bears close resemblance to a classical theorem of descriptive com-
plexity theory that characterizes the complexity class PSPACE in terms of
partial fixpoint logic (a proper superclass of the logic we consider here).

1 Introduction

This paper is part of an ongoing research project aiming to develop a descriptive
complezity theory for distributed computing.

In classical sequential computing, descriptive complexity is a well-established
field that connects computational complexity classes to equi-expressive classes
of logical formulas. It began in the 1970s, when Fagin showed in [6] that the
graph properties decidable by nondeterministic Turing machines in polynomial
time are exactly those definable in existential second-order logic. This provided
a logical—and thus machine-independent—characterization of the complexity
class NP. Subsequently, many other popular classes, such as P, PSPACE, and
EXPTIME were characterized in a similar manner (see for instance the text-
books [8,12,15]).

Of particular interest to us is a result due to Abiteboul, Vianu [1], and
Vardi [19], which states that on structures equipped with a total order rela-
tion, the properties decidable in PSPACE coincide with those definable in partial
fixpoint logic. The latter is an extension of first-order logic with an operator that
allows us to inductively define new relations of arbitrary arity. Basically, this
means that new relations can occur as free (second-order) variables in the logi-
cal formulas that define them. Those variables are initially interpreted as empty
relations and then iteratively updated, using the defining formulas as update

© The Author(s) 2019
M. Bojariczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 115-132, 2019.
https://doi.org/10.1007/978-3-030-17127-8_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_7

116 B. Bollig et al.

rules. If the sequence of updates converges to a fixpoint, then the ultimate inter-
pretations are the relations reached in the limit. Otherwise, the variables are
simply interpreted as empty relations. Hence the term “partial fixpoint”.

While well-developed in the classical case, descriptive complexity has so far
not received much attention in the setting of distributed network computing.
As far as the authors are aware, the first step in this direction was taken by
Hella et al. in [10,11], where they showed that basic modal logic evaluated on
finite graphs has the same expressive power as a particular class of distributed
automata operating in constant time. Those automata constitute a weak model
of distributed computing in arbitrary network topologies, where all nodes syn-
chronously execute the same finite-state machine and communicate with each
other by broadcasting messages to their neighbors. Motivated by this result, sev-
eral variants of distributed automata were investigated by Kuusisto and Reiter
in [14,18] and [17] to establish similar connections with standard logics such as
the modal p-calculus and monadic second-order logic. However, since the models
of computation investigated in those works are based on anonymous finite-state
machines, they are much too weak to solve many of the problems typically
considered in distributed computing, such as leader election or constructing a
spanning tree. It would thus be desirable to also characterize stronger models.

A common assumption underlying many distributed algorithms is that each
node of the considered network is given a unique identifier. This allows us, for
instance, to elect a leader by making the nodes broadcast their identifiers and
then choose the one with the smallest identifier as the leader. To formalize such
algorithms, we need to go beyond finite-state machines because the number of
bits required to encode a unique identifier grows logarithmically with the num-
ber of nodes in the network. Recently, in [2,3], Aiswarya, Bollig and Gastin
introduced a synchronous model where, in addition to a finite-state controller,
nodes also have a fixed number of registers in which they can store the identi-
fiers of other nodes. Access to those registers is rather limited in the sense that
their contents can be compared with respect to a total order, but their numeric
values are unknown to the nodes. (This restriction corresponds precisely to the
notion of order-invariant distributed algorithms, which was introduced by Naor
and Stockmeyer in [16].) Similarly, register contents can be copied, but no new
values can be generated. Since the original motivation for the model was to
automatically verify certain distributed algorithms running on ring networks,
its formal definition is tailored to that particular setting. However, the underly-
ing principle can be generalized to arbitrary networks of unbounded maximum
degree, which was the starting point for the present work.

Contributions. While on an intuitive level, the idea of finite-state machines
equipped with additional registers might seem very natural, it does not imme-
diately yield a formal model for distributed algorithms in arbitrary networks. In
particular, it is not clear what would be the canonical way for nodes to commu-
nicate with a non-constant number of peers, if we require that they all follow
the same, finitely representable set of rules.



Identifiers in Registers — Describing Network Algorithms with Logic 117

The model we propose here, dubbed distributed register automata, is an
attempt at a solution. As in [2,3], nodes proceed in synchronous rounds and
have a fixed number of registers, which they can compare and update without
having access to numeric values. The new key ingredient that allows us to for-
malize communication between nodes of unbounded degree is a local computing
device we call transition maker. This is a special kind of register machine that the
nodes can use to scan the states and register values of their entire neighborhood
in a sequential manner. In every round, each node runs the transition maker to
update its own local configuration (i.e., its state and register valuation) based
on a snapshot of the local configurations of its neighbors in the previous round.
A way of interpreting this is that the nodes communicate by broadcasting their
local configurations as messages to their neighbors. Although the resulting model
of computation is by no means universal, it allows formalizing algorithms for a
wide range of problems, such as constructing a spanning tree (see Example5) or
testing whether a graph is Hamiltonian (see Example6).

Nevertheless, our model is somewhat arbitrary, since it could be just one par-
ticular choice among many other similar definitions capturing different classes
of distributed algorithms. What justifies our choice? This is where descriptive
complexity comes into play. By identifying a logical formalism that has the same
expressive power as distributed register automata, we provide substantial evi-
dence for the naturalness of that model. Our formalism, referred to as functional
fixpoint logic, is a fragment of the above-mentioned partial fixpoint logic. Like
the latter, it also extends first-order logic with a partial fixpoint operator, but a
weaker one that can only define unary functions instead of arbitrary relations.
We show that on totally ordered graphs, this logic allows one to express precisely
the properties that can be decided by distributed register automata. The con-
nection is strongly reminiscent of Abiteboul, Vianu and Vardi’s characterization
of PSPACE, and thus contributes to the broader objective of extending classical
descriptive complexity to the setting of distributed computing. Moreover, given
that logical formulas are often more compact and easier to understand than
abstract machines (compare Examples 6 and 8), logic could also become a useful
tool in the formal specification of distributed algorithms.

The remainder of this paper is structured around our main result:

Theorem 1. When restricted to finite graphs whose nodes are equipped with a
total order, distributed register automata are effectively equivalent to functional
fixpoint logic.

After giving some preliminary definitions in Sect. 2, we formally introduce
distributed register automata in Sect.3 and functional fixpoint logic in Sect. 4.
We then sketch the proof of Theorem 1 in Sect. 5, and conclude in Sect. 6.

2 Preliminaries

We denote the empty set by (), the set of nonnegative integers by N =
{0,1,2,...}, and the set of integers by Z = {...,—1,0,1,...}. The cardinal-
ity of any set S is written as |S| and the power set as 2.



118 B. Bollig et al.

In analogy to the commonly used notation for real intervals, we define the
notation [m:n] = {i € Z | m < i < n} for any m,n € Z such that m < n.
To indicate that an endpoint is excluded, we replace the corresponding square
bracket with a parenthesis, e.g., (m:n] := [m:n]\ {m}. Furthermore, if we omit
the first endpoint, it defaults to 0. This gives us shorthand notations such as
[n] :==[0:n] and [n) :=1[0:n) =[0:n — 1].

All graphs we consider are finite, simple, undirected, and connected. For
notational convenience, we identify their nodes with nonnegative integers, which
also serve as unique identifiers. That is, when we talk about the identifier of a
node, we mean its numerical representation. A graph is formally represented as a
pair G = (V, E), where the set V of nodes is equal to [n), for some integer n > 2,
and the set F consists of undirected edges of the form e = {u,v} C V such that
u # v. Additionally, ' must satisfy that every pair of nodes is connected by a
sequence of edges. The restriction to graphs of size at least two is for technical
reasons; it ensures that we can always encode Boolean values as nodes.

We refer the reader to [5] for standard graph theoretic terms such as neighbor,
degree, mazximum degree, distance, and spanning tree.

Graphs are used to model computer networks, where nodes correspond to pro-
cesses and edges to communication links. To represent the current configuration
of a system as a graph, we equip each node with some additional information:
the current state of the corresponding process, taken from a nonempty finite set
@, and some pointers to other processes, modeled by a finite set R of registers.

We call ¥ = (Q,R) a signature and define a X-configuration as a tuple
C = (G,q,t), where G = (V, E) is a graph, called the underlying graph of C,
q: V — @ is a state function that assigns to each node a state ¢ € @, and
v: V. — VR is a register valuation function that associates with each node a
register valuation p € VE. The set of all X-configurations is denoted by C(X).
Figure 1 on page 6 illustrates part of a ({¢1, g2, 3}, {r1, 72, r3})-configuration.

If R = (), then we are actually dealing with a tuple (G, q), which we call a
Q-labeled graph. Accordingly, the elements of ) may also be called labels. A set
P of labeled graphs will be referred to as a graph property. Moreover, if the labels
are irrelevant, we set @ equal to the singleton 1 := {e}, where ¢ is our dummy
label. In this case, we identify (G, q) with G and call it an unlabeled graph.

3 Distributed Register Automata

Many distributed algorithms can be seen as transducers. A leader-election algo-
rithm, for instance, takes as input a network and outputs the same network,
but with every process storing the identifier of the unique leader in some ded-
icated register r. Thus, the algorithm transforms a (1,0)-configuration into
a (L, {r})-configuration. We say that it defines a (1,0)-(1,{r})-transduction.
By the same token, if we consider distributed algorithms that decide graph
properties (e.g., whether a graph is Hamiltonian), then we are dealing with a
(I,0)-({YEs,NO}, 0)-transduction, where I is some set of labels. The idea is that
a graph will be accepted if and only if every process eventually outputs YES.



Identifiers in Registers — Describing Network Algorithms with Logic 119

Let us now formalize the notion of transduction. For any two signatures
ym = (I,R™) and Y°% = (O,R°"), a X"-X°u transduction is a partial
mapping T: C(X") — C(X°%) such that, if defined, T(G,q,t) = (G,q,t')
for some q' and t’. That is, a transduction does not modify the underlying
graph but only the states and register valuations. We denote the set of all
yyin_yout_transductions by T(X™, X°%) and refer to X" and Y°% as the input
and output signatures of T'. By extension, I and O are called the sets of input and
output labels, and R and R°“ the sets of input and output registers. Similarly,
any X"-configuration C' can be referred to as an input configuration of T and
T(C) as an output configuration.

Next, we introduce our formal model of distributed algorithms.

Definition 2 (Distributed register automaton). Let X = (I, R™) and
yout = (0, R°"") be two signatures. A distributed register automaton (or sim-
ply automaton) with input signature X and output signature X°% is a tuple
A=(Q,R,t,A, H, o) consisting of a nonempty finite set Q of states, a finite set
R of registers that includes both R™™ and R°“, an input function ¢: I — Q, a
transition maker A whose specification will be given in Definition 3 below, a set
H C @ of halting states, and an output function o: H — O. The registers in
R\ (R™ U R°"") are called auxiliary registers.

Automaton A computes a transduction T4 € T(X™, X°%). To do so, it runs
in a sequence of synchronous rounds on the input configuration’s underlying
graph G = (V, E). After each round, the automaton’s global configuration is a
(Q, R)-configuration C' = (G, q,t), i.e., the underlying graph is always G. As
mentioned before, for a node v € V', we interpret q(v) € @ as the current state
of v and t(v) € VF as the current register valuation of v. Abusing notation, we
let C(v) = (q(v),t(v)) and say that C(v) is the local configuration of v. In Fig. 1,
the local configuration node 17 is (q1, {r1, 72,73 — 17, 34, 98}).

For a given input configuration C' = (G,q,t) € C(X™), the automaton’s
initial configuration is C' = (G, 0 q,t’), where for all v € V, we have v'(v)(r) =
t(v)(r) if r € R™, and v/(v)(r) = v if r € R\ R™. This means that every node
v is initialized to state ¢(q(v)), and v’s initial register valuation t/(v) assigns v’s
own identifier (provided by G) to all non-input registers while keeping the given
values assigned by t(v) to the input registers.

Each subsequent configuration is obtained by running the transition maker A
synchronously on all nodes. As we will see, A computes a function

[A]: (@ xVE)YT - QxVE

that maps from nonempty sequences of local configurations to local configura-
tions. This allows the automaton A to transition from a given configuration C
to the next configuration C’ as follows. For every node u € V of degree d, we
consider the list vy, ...v4 of u’s neighbors sorted in ascending (identifier) order,
ie., v; < vy for i € [1:d). (See Fig.1 for an example, where u corresponds
to node 17.) If u is already in a halting state, i.e., if C(u) = (¢,p) € H x VE,



120 B. Bollig et al.

Fig. 1. Part of a configuration, as seen by a single node. Assuming the identifiers of
the nodes are the values represented in black boxes (i.e., those stored in register r1),
the automaton at node 17 will update its own local configuration (g1, {r1,r2,73 —
17, 34, 98}) by running the transition maker on the sequence consisting of the local
configurations of nodes 17, 2, 34, and 98 (in that exact order).

then its local configuration does not change anymore, i.e., C'(u) = C'(u). Other-
wise, we define C’(u) = [A](C(u),C(v1),...,C(vq)), which we may write more
suggestively as

C(vl),...,C(vd)

[4]: C(u) C'(u).

Intuitively, node u updates its own local configuration by using A to scan a
snapshot of its neighbors’ local configurations. As the system is synchronous,
this update procedure is performed simultaneously by all nodes.

A configuration C' = (G, q,t) is called a halting configuration if all nodes are
in a halting state, i.e., if q(v) € H for all v € V. We say that A halts if it reaches
a halting configuration.

The output configuration produced by a halting configuration C = (G, g,t)
is the X °%_configuration C' = (G, 00 q,t'), where for all v € V and r € R°%,
we have t/(v)(r) = t(v)(r). In other words, each node v outputs the state o(g(v))
and keeps in its output registers the values assigned by t(v).

It is now obvious that A defines a transduction Ty : C(X*") — C(X°%). If A
receives the input configuration C' € C(X™) and eventually halts and produces
the output configuration €’ € C(X°%"), then T4 (C) = C’. Otherwise (if A does
not halt), T4 (C) is undefined.

Deciding graph properties. Our primary objective is to use distributed register
automata as decision procedures for graph properties. Therefore, we will focus
on automata A that halt in a finite number of rounds on every input configura-
tion, and we often restrict to input signatures of the form (I, () and the output



Identifiers in Registers — Describing Network Algorithms with Logic 121

signature ({YEs, NO}, (). For example, for I = {a, b}, we may be interested in the
set of I-labeled graphs that have exactly one a-labeled node v (the “leader”).
We stipulate that A accepts an input configuration C' with underlying graph
G = (V,E) if T4(C) = (G, q,t) such that q(v) = YES for all v € V. Conversely,
A rejects C if Ty(C) = (G, q,t) such that q(v) = NO for some v € V. This
corresponds to the usual definition chosen in the emerging field of distributed
decision [7]. Accordingly, a graph property P is decided by A if the automaton
accepts all input configurations that satisfy P and rejects all the others.
It remains to explain how the transition maker A works internally.

Definition 3 (Transition maker). Suppose that A = (Q,R,t, A, H,0) is a
distributed register automaton. Then its transition maker A = (Q, R,7,0, 0) con-
sists of a nonempty finite set Q of inner states, a finite set R of inner registers
that is disjoint from R, an inner initial state 7 € 6:2, an inner transition function
6:Q X QX 2(RUR)* _, Q x (RUR)®, and an inner output function 6: Q —
Q x RE.

Basically, a transition maker A = (Q,R,1, 5, 0) is a sequential reg-
ister automaton (in the spirit of [13]) that reads a nonempty sequence
(405 P0)s - - - (qa, pa) € (Qx VE)F of local configurations of A in order to produce
a new local configuration (¢’, p’). While reading this sequence, it traverses itself
a sequence (o, P0)s - - -5 (§a+1, Pa+1) of inner configurations, which each consist
of an inner state §; € Q and an inner register valuation p; € (V U{L})®, where
the symbol L represents an undefined value. For the initial inner configuration,
we set Go = 7 and jo(7) = L for all # € R. Now for i € [d], when A is in the
inner configuration (g;, p;) and reads the local configuration (g;, p;), it can com-
pare all values assigned to the inner registers and registers by p; and p; (with
respect to the order relation on V'). In other words, it has access to the binary
relation <; C (]:2 U R)? such that for 7,5 € R and r,s € R, we have 7 <; r if
and only if p;(7) < p;(r), and analogously for r <; 7, 7 <; §, and r <; s. In par-
ticular, if p;(7) = L, then 7 is incomparable with respect to <;. Equipped with
this relation, A transitions to (G;+1, pi+1) by evaluating §(G;, ¢;, <i) = (git1, &)
and computing p;11 such that p;11(7) = p;(8) if &(7) = 5, and p;1(7) = pi(s)
if &(7) = s, where 7,5 € R and s € R. Finally, after having read the entire
input sequence and reached the inner configuration (Gg+1, fd+1), the transition
maker outputs the local configuration (¢’,p") such that 6(gss1) = (¢,B) and
B(r) = 7 implies p'(r) = pg41(7). Here we assume without loss of generality that
A guarantees that p/(r) # L for all r € R.

Remark 4. Recall that V' = [n) for any graph G = (V, E) with n nodes. How-
ever, as registers cannot be compared with constants, this actually represents
an arbitrary assignment of unique, totally ordered identifiers. To determine the
smallest identifier (i.e., 0), the nodes can run an algorithm such as the following.

Ezample 5 (Spanning tree). We present a simple automaton A = (Q, R, ¢, A,
H,o0) with input signature X = (1,0) and output signature X°% =
(1, {parent, root}) that computes a (breadth-first) spanning tree of its input



122 B. Bollig et al.

Algorithm 1. Transition maker of the automaton from Example 5

if 3 neighbor nb (nb.root < my.root): Rule 1
ule
my.state < 1;  my.parent < nb.self; my.root < nb.root
else if my.state =1 b root LA
. nb.root = my.roo )
AV neighbor nb (nb.parent # my.self V nb.state = 2) ] Rule 2
my.state «— 2
else if (my.state = 2 A my.root = my.self) V (my.parent.state = 3): Rule 3
ule
my.state «— 3

else do nothing

graph G = (V, E), rooted at the node with the smallest identifier. More pre-
cisely, in the computed output configuration C' = (G, g, t), every node will store
the identifier of its tree parent in register parent and the identifier of the root
(i.e., the smallest identifier) in register root. Thus, as a side effect, A also solves
the leader election problem by electing the root as the leader.

The automaton operates in three phases, which are represented by the set
of states @ = {1,2,3}. A node terminates as soon as it reaches the third phase,
i.e.,, we set H = {3}. Accordingly, the (trivial) input and output functions are
t:e+— 1 and o: 3 — ¢. In addition to the output registers, each node has an
auxiliary register self that will always store its own identifier. Thus, we choose
R = {self, parent, root}. For the sake of simplicity, we describe the transition
maker A in Algorithm 1 using pseudocode rules. However, it should be clear
that these rules could be relatively easily implemented according to Definition 3.

All nodes start in state 1, which represents the tree-construction phase. By
Rule 1, whenever an active node (i.e., a node in state 1 or 2) sees a neighbor
whose root register contains a smaller identifier than the node’s own root register,
it updates its parent and root registers accordingly and switches to state 1. To
resolve the nondeterminism in Rule 1, we stipulate that nb is chosen to be the
neighbor with the smallest identifier among those whose root register contains
the smallest value seen so far.

As can be easily shown by induction on the number of communication rounds,
the nodes have to apply Rule 1 no more than diameter(G) times in order for
the pointers in register parent to represent a valid spanning tree (where the
root, points to itself). However, since the nodes do not know when diameter(Q)
rounds have elapsed, they must also check that the current configuration does
indeed represent a single tree, as opposed to a forest. They do so by propagating
a signal, in form of state 2, from the leaves up to the root.

By Rule 2, if an active node whose neighbors all agree on the same root
realizes that it is a leaf or that all of its children are in state 2, then it switches to
state 2 itself. Assuming the parent pointers in the current configuration already
represent a single tree, Rule 2 ensures that the root will eventually be notified of
this fact (when all of its children are in state 2). Otherwise, the parent pointers



Identifiers in Registers — Describing Network Algorithms with Logic 123

represent a forest, and every tree contains at least one node that has a neighbor
outside of the tree (as we assume the underlying graph is connected).
Depending on the input graph, a node can switch arbitrarily often between
states 1 and 2. Once the spanning tree has been constructed and every node is in
state 2, the only node that knows this is the root. In order for the algorithm to
terminate, Rule 3 then makes the root broadcast an acknowledgment message
down the tree, which causes all nodes to switch to the halting state 3. O

Building on the automaton from Example5, we now give an example of a
graph property that can be decided in our model of distributed computing. The
following automaton should be compared to the logical formula presented later
in Example 8, which is much more compact and much easier to specify.

Ezample 6 (Hamiltonian cycle). We describe an automaton with input signa-
ture X" = (1, {parent, root}) and output signature X°* = ({YES, N0}, () that
decides if the underlying graph G = (V, E) of its input configuration C' = (G, g, t)
is Hamiltonian, i.e., whether G contains a cycle that goes through each node
exactly once. The automaton works under the assumption that v encodes a valid
spanning tree of GG in the registers parent and root, as constructed by the automa-
ton from Example 5. Hence, by combining the two automata, we could easily
construct a third one that decides the graph property of Hamiltonicity.

The automaton A = (Q, R, ¢, A, H,0) presented here implements a simple
backtracking algorithm that tries to traverse G along a Hamiltonian cycle. Its set
of states is Q = ({unvisited, visited, backtrack} x {idle, request, good, bad}) UH,
with the set of halting states H = {YES,NO}. Each non-halting state consists
of two components, the first one serving for the backtracking procedure and the
second one for communicating in the spanning tree. The input function ¢ initial-
izes every node to the state (unwvisited, idle), while the output function simply
returns the answers chosen by the nodes, i.e., 0: YES +— YES, NO +— NO. In addi-
tion to the input registers, each node has a register self storing its own identifier
and a register successor to point to its successor in a (partially constructed)
Hamiltonian path. That is, R = {self, parent, root, successor}. We now describe
the algorithm in an informal way. It is, in principle, easy to implement in the
transition maker A, but a thorough formalization would be rather cumbersome.

In the first round, the root marks itself as visited and updates its successor reg-
ister to point towards its smallest neighbor (the one with the smallest identifier).
Similarly, in each subsequent round, any unvisited node that is pointed to by one
of its neighbors marks itself as visited and points towards its smallest unvisited
neighbor. However, if all neighbors are already wvisited, the node instead sends the
backtrack signal to its predecessor and switches back to unvisited (in the following
round). Whenever a visited node receives the backtrack signal from its successor,
it tries to update its successor to the next-smallest unvisited neighbor. If no such
neighbor exists, it resets its successor pointer to itself, propagates the backtrack
signal to its predecessor, and becomes unvisited in the following round.

There is only one exception to the above rules: if a node that is adjacent to
the root cannot find any unuwisited neighbor, it chooses the root as its successor.



124 B. Bollig et al.

This way, the constructed path becomes a cycle. In order to check whether
that cycle is Hamiltonian, the root now broadcast a request down the spanning
tree. If the request reaches an unwvisited node, that node replies by sending the
message bad towards the root. On the other hand, every visited leaf replies with
the message good. While bad is always forwarded up to the root, good is only
forwarded by nodes that receive this message from all of their children. If the
root receives only good, then it knows that the current cycle is Hamiltonian
and it switches to the halting state YES. The information is then broadcast
through the entire graph, so that all nodes eventually accept. Otherwise, the root
sends the backtrack signal to its predecessor, and the search for a Hamiltonian
cycle continues. In case there is none (in particular, if there is not even an
arbitrary cycle), the root will eventually receive the backtrack signal from its
greatest neighbor, which indicates that all possibilities have been exhausted. If
this happens, the root switches to the halting state NO, and all other nodes
eventually do the same. a

4 Functional Fixpoint Logic

In order to introduce functional fixpoint logic, we first give a definition of first-
order logic that suits our needs. Formulas will always be evaluated on ordered,
undirected, connected, I-labeled graphs, where I is a fixed finite set of labels.

Throughout this paper, let N be an infinite supply of node variables and F be
an infinite supply of function variables; we refer to them collectively as variables.
The corresponding set of terms is generated by the grammar ¢t == x | f(¢), where
z € N and f € F. With this, the set of formulas of first-order logic over I is
given by the grammar

pr=(a)t]s<t|s<t|-ploVe|dry,

where s and t are terms, a € I, and x € N. As usual, we may also use the
additional operators A, =, <, V to make our formulas more readable, and we
define the notations s < t, s = t, and s # ¢ as abbreviations for —(t < s),
(s <t)A(t <s),and —(s = t), respectively.

The sets of free variables of a term ¢ and a formula ¢ are denoted by free(t)
and free(y), respectively. While node variables can be bound by the usual quan-
tifiers 3 and V, function variables can be bound by a partial fixpoint operator
that we will introduce below.

To interpret a formula ¢ on an I-labeled graph (G,q) with G = (V, E), we
are given a wariable assignmento for the variables that occur freely in ¢. This
is a partial function o: N'UF — V UVV such that o(z) € V if z is a free node
variable and o(f) € V'V if f is a free function variable. We call o(x) and o(f) the
interpretations of x and f under o, and denote them by z% and f7, respectively.
For a composite term ¢, the corresponding interpretation ¢t under o is defined
in the obvious way.

We write (G, q),0 = ¢ to denote that (G, q) satisfies ¢ under assignment o.
If ¢ does not contain any free variables, we simply write (G,q) = ¢ and refer



Identifiers in Registers — Describing Network Algorithms with Logic 125

to the set P of I-labeled graphs that satisfy ¢ as the graph property defined
by ¢. Naturally enough, we say that two devices (i.e., automata or formulas) are
equivalent if they specify (i.e., decide or define) the same graph property and
that two classes of devices are equivalent if their members specify the same class
of graph properties.

As we assume that the reader is familiar with first-order logic, we only define
the semantics of the atomic formulas (whose syntax is not completely standard):

(G,9),0 = (a)t iff q(t”) =a (“t has label a”),
(G,q9),0 Fs<t iff 57 < t? (“s is smaller than t”),
(G,q),0 F s+t iff {s%,t°} e E (“s and t are adjacent”).

We now turn to functional fixpoint logic. Syntactically, it is defined as the
extension of first-order logic that allows us to write formulas of the form

fi: o1(f1,.., fe,IN,0UT)
pfp (I (*)
f@t (}Qf(fla"'vfvaNaOUT)

where fi,...,fr € F, INyouT € N, and ¢1,...,9,% are formulas. We
use the notation “@;(f1,..., f¢,IN,0UT)” to emphasize that fi,..., fo, IN,OUT
may occur freely in ¢; (possibly among other variables). The free variables
of formula (x) are given by ;¢ [free(p;) \ {f1,-- -, fe,IN,0UT}] U [free(v) \
{fr,. o fe}]

The idea is that the partial fixpoint operator pfp binds the function variables
f1,..., fe. The £ lines in square brackets constitute a system of function defini-
tions that provide an interpretation of f1, ..., f¢, using the special node variables
IN and OUT as helpers to represent input and output values. This is why pfp also
binds any free occurrences of IN and OUT in ¢, ..., @y, but not in .

To specify the semantics of (), we first need to make some preliminary obser-
vations. As before, we consider a fixed I-labeled graph (G, q) with G = (V, E)
and assume that we are given a variable assignment ¢ for the free variables
of (x). With respect to (G,q) and o, each formula ¢; induces an operator
F,,: (VV)® — VYV that takes some interpretation of the function variables
fi,..., fe and outputs a new interpretation of f;, corresponding to the func-
tion graph defined by ¢; via the node variables IN and OUT. For inputs on which
; does not define a functional relationship, the new interpretation of f; behaves
like the identity function. More formally, given a variable assignment & that
extends o with interpretations of fi,..., f;, the operator Fi,, maps e,
to the function f*V such that for all uw € V,

£ () =

v if vistheuniquenodeinV s.t. (G, q), 5[IN,OUT — u,v]| = ¢,
u otherwise.



126 B. Bollig et al.

Here, 6[IN, OUT — u,v] is the extension of § interpreting IN as u and OUT as v.
In this way, the operators F,,,...,F,, give rise to an infinite sequence
(fk,..., ff)kzo of tuples of functions, called stages, where the initial stage con-
tains solely the identity function idy, and each subsequent stage is obtained from
its predecessor by componentwise application of the operators. More formally,
f=idy ={u—uluecV} and  fFT=F,(ff,..., 5,

K2

for i € (/) and k& > 0. Now, since we have not imposed any restrictions on
the formulas ¢;, this sequence might never stabilize, i.e, it is possible that
(FF, . fF) # (FFTY, ., fEFh) for all k > 0. Otherwise, the sequence reaches a

(simultaneous) fixpoint at some position k no greater than |V||VM (the number
of {-tuples of functions on V).

We define the partial fizpoint (f£°,..., f¢°) of the operators Fy,,, ..., Fy,, to
be the reached fixpoint if it exists, and the tuple of identity functions otherwise.
That is, for i € (¢],

Fo = fF if thereexists k > Osuch that ff = fjlc+1 forallj € (4],
" )idy otherwise.

Having introduced the necessary background, we can finally provide the
semantics of the formula pfp[f;: ¢;]ic(¢ 1 presented in (x):

(G,a),0 & pfplfi: gilicgy it (G,q),0lfi = [Flic E ¥,

where o[f; — f]ic(g is the extension of o that interprets f; as f°, for i € (£].

In other words, the formula pfp[fi: il;c(q % can intuitively be read as

“f f1,..., fe are interpreted as the partial fixpoint of @1, ..., @y, then ¥ holds”.

Syntactic Sugar

Before we consider a concrete formula (in Example 8), we first introduce some
“syntactic sugar” to make using functional fixpoint logic more pleasant.

Set variables. According to our definition of functional fixpoint logic, the oper-
ator pfp can bind only function variables. However, functions can be used to
encode sets of nodes in a straightforward manner: any set U may be represented
by a function that maps nodes outside of U to themselves and nodes inside U
to nodes distinct from themselves. Therefore, we may fix an infinite supply S of
set variables, and extend the syntax of first-order logic to allow atomic formulas
of the form ¢t € X, where ¢ is a term and X is a set variable in S. Naturally, the
semantics is that “t is an element of X”. To bind set variables, we can then write
partial fixpoint formulas of the form pfp[(fi: ©i)ie, (Xi: ﬁi)ie(m]] 1, where
fi,-o o fe€eF, X1,..., Xim €S, and @1, ...,00,91,...,9m,% are formulas. The
stages of the partial fixpoint induction are computed as before, but each set
variable X; is initialized to (), and falls back to () in case the sequence of stages
does not converge to a fixpoint.



Identifiers in Registers — Describing Network Algorithms with Logic 127

Quantifiers over functions and sets. Partial fixpoint inductions allow us to iter-
ate over various interpretations of function and set variables and thus provide
a way of expressing (second-order) quantification over functions and sets. Since
we restrict ourselves to graphs whose nodes are totally ordered, we can easily
define a suitable order of iteration and a corresponding partial fixpoint induction
that traverses all possible interpretations of a given function or set variable. To
make this more convenient, we enrich the language of functional fixpoint logic
with second-order quantifiers, allowing us to write formulas of the form 3f ¢ and
3X ¢, where f € F, X € §, and ¢ is a formula. Obviously, the semantics is that
“there exists a function f, or a set X, respectively, such that ¢ holds”.

As a consequence, it is possible to express any graph property definable in
monadic second-order logic, the extension of first-order logic with set quantifiers.

Corollary 7. When restricted to finite graphs equipped with a total order, func-
tional fizpoint logic is strictly more expressive than monadic second-order logic.

The strictness of the inclusion in the above corollary follows from the fact
that even on totally ordered graphs, Hamiltonicity cannot be defined in monadic
second-order logic (see, e.g., the proofin [4, Prp. 5.13]). As the following example
shows, this property is easy to express in functional fixpoint logic.

Ezample 8 (Hamiltonian cycle). The following formula of functional fixpoint
logic defines the graph property of Hamiltonicity. That is, an unlabeled graph G
satisfies this formula if and only if there exists a cycle in G that goes through
each node exactly once.

Vo (f(z) «» z) A Vz3y[fly) =z AVz(f(z) =2 = z=y)] A

2 VX([HJ:(J: eEX)AVy(ye X = f(y) € X)] = Vy(y € X))

Here, z,y,2 € N, X € S, and f € F. Intuitively, we represent a given Hamilto-
nian cycle by a function f that tells us for each node x, which of x’s neighbors we
should visit next in order to traverse the entire cycle. Thus, f actually represents
a directed version of the cycle.

To ensure the existence of a Hamiltonian cycle, our formula states that there
is a function f satisfying the following two conditions. By the first line, each
node x must have exactly one f-predecessor and one f-successor, both of which
must be neighbors of . By the second line, if we start at any node x and collect
into a set X all the nodes reachable from = (by following the path specified by
f), then X must contain all nodes. O

5 Translating Between Automata and Logic

Having introduced both automata and logic, we can proceed to explain the first
part of Theorem 1 (stated in Sect. 1), i.e., how distributed register automata can
be translated into functional fixpoint logic.



128 B. Bollig et al.

Proposition 9. For every distributed register automaton that decides a graph
property, we can construct an equivalent formula of functional fixrpoint logic.

Proof (sketch). Given a distributed register automaton A = (@, R,t, A, H,0)
deciding a graph property P over label set I, we can construct a formula ¢4 of
functional fixpoint logic that defines P. For each state ¢ € @), our formula uses
a set variable X, to represent the set of nodes of the input graph that are in
state q. Also, for each register r € R, it uses a function variable f,. to represent
the function that maps each node u to the node v whose identifier is stored
in u’s register r. By means of a partial fixpoint operator, we enforce that on any
I-labeled graph (G, q), the final interpretations of (X, ),eq and (f;)rer represent
the halting configuration reached by A on (G, q). The main formula is simply

pa = pip [(()Jf: :Dprq)):;g} Vm( \/x c X, ),
pEH: o(p)=YES
which states that all nodes end up in a halting state that outputs YES.
Basically, the subformulas (¢4)4eq and (¢r)rer can be constructed in such
a way that for all ¢ € N, the (¢ + 1)-th stage of the partial fixpoint induction
represents the configuration reached by A in the i-th round. To achieve this,
each of the subformulas contains a nested partial fixpoint formula describing
the result computed by the transition maker A between two consecutive syn-
chronous rounds, using additional set and function variables to encode the inner
configurations of A at each node. Thus, each stage of the nested partial fix-
point induction corresponds to a single step in the transition maker’s sequential
scanning process. O

Let us now consider the opposite direction and sketch how to go from func-
tional fixpoint logic to distributed register automata.

Proposition 10. For every formula of functional fizpoint logic that defines a
graph property, we can construct an equivalent distributed register automaton.

Proof (sketch). We proceed by structural induction: each subformula ¢ will be
evaluated by a dedicated automaton A, and several such automata can then be
combined to build an automaton for a composite formula. For this purpose, it
is convenient to design centralized automata, which operate on a givenspanning
tree (as computed in Example5) and are coordinated by the root in a fairly
sequential manner. In A, each free node variable x of ¢ is represented by a
corresponding input register x whose value at the root is the current interpre-
tation x? of z. Similarly, to represent a function variable f, every node v has a
register f storing f?(v). The nodes also possess some auxiliary registers whose
purpose will be explained below. In the end, for any formula ¢ (potentially
with free variables), we will have an automaton A, computing a transduction
Ta,: C(I,{parent, root} U free(p)) — C({YES,NO},0), where parent and root
are supposed to constitute a spanning tree. The computation is triggered by the
root, which means that the other nodes are waiting for a signal to wake up.



Identifiers in Registers — Describing Network Algorithms with Logic 129

Algorithm 2. A, for ¢ = pfp[fi: @ilic1.4 ¥, as controlled by the root

init(AmC)
repeat
Qevery node do for i € [1:/4] do f; «— fI°V
for i € [1:4] do update(f*")
if Qevery node (Vi € [1:/4]: f*°¥ = f;) then goto 8
until execute(Ainc) returns NO /#* until global counter at maximum x/
Qevery node do for i € [1:4] do f; « self
execute(Ay)

0 N Utk WwN

Essentially, the nodes involved in the evaluation of ¢ collect some information,
send it towards the root, and go back to sleep. The root then returns YES or NO,
depending on whether or not ¢ holds in the input graph under the variable
assignment provided by the input registers. Centralizing A, in that way makes
it very convenient (albeit not efficient) to evaluate composite formulas. For exam-
ple, in Agyy, the root will first run A, and then Ay in case A, returns No.
The evaluation of atomic formulas is straightforward. So let us focus on the
most interesting case, namely when ¢ = pfp[fi: il;c(q % The root’s program is
outlined in Algorithm 2. Line 1 initializes a counter that ranges from 0 to n‘* —1,
where n is the number of nodes in the input graph. This counter is distributed
in the sense that every node has some dedicated registers that together store the
current counter value. Every execution of Aj,. will increment the counter by 1, or
return NO if its maximum value has been exceeded. Now, in each iteration of the
loop starting at Line 2, all registers f; and f"" are updated in such a way that
they represent the current and next stage, respectively, of the partial fixpoint
induction. For the former, it suffices that every node copies, for all 7, the contents
of % to f; (Line 3). To update f"*", Line 4 calls a subroutine update( ")
whose effect is that % = Fy,, ((fi)ieqy) for all i, where Fi, : (VV)! — VV is
the operator defined in Sect. 4. Line 5 checks whether we have reached a fixpoint:
The root asks every node to compare, for all ¢, its registers f"*" and f;. The
corresponding truth value is propagated back to the root, where false is given
preference over true. If the result is true, we exit the loop and proceed with
calling Ay to evaluate ¢ (Line 8). Otherwise, we try to increment the global
counter by executing Aj,. (Line 6). If the latter returns NO, the fixpoint com-
putation is aborted because we know that it has reached a cycle. In accordance
with the partial fixpoint semantics, all nodes then write their own identifier to
every register f; (Line 7) before ¢ is evaluated (Line 8). O

6 Conclusion

This paper makes some progress in the development of a descriptive distributed
complexity theory by establishing a logical characterization of a wide class of
network algorithms, modeled as distributed register automata.



130 B. Bollig et al.

In our translation from logic to automata, we did not pay much attention to
algorithmic efficiency. In particular, we made extensive use of centralized subrou-
tines that are triggered and controlled by a leader process. A natural question for
future research is to identify cases where we can understand a distributed archi-
tecture as an opportunity that allows us to evaluate formulas faster. In other
words, is there an expressive fragment of functional fixpoint logic that gives
rise to efficient distributed algorithms in terms of running time? What about
the required number of messages? We are then entering the field of automatic
synthesis of practical distributed algorithms from logical specifications. This is a
worthwhile task, as it is often much easier to declare what should be done than
how it should be done (cf. Examples6 and 8).

As far as the authors are aware, this area is still relatively unexplored. How-
ever, one noteworthy advance was made by Grumbach and Wu in [9], where they
investigated distributed evaluation of first-order formulas on bounded-degree
graphs and planar graphs. We hope to follow up on this in future work.

Acknowledgments. We thank Matthias Fiigger for helpful discussions. Work sup-
ported by ERC EQuallS (FP7-308087) (http://www.lsv.fr/~bouyer/equalis) and ANR
FREDDA (17-CE40-0013) (https://www.irif.fr/anr/fredda/index).

References

1. Abiteboul, S., Vianu, V.: Fixpoint extensions of first-order logic and datalog-like
languages. In: Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS 1989), Pacific Grove, California, USA, 5-8 June 1989, pp. 71-79.
IEEE Computer Society (1989). https://doi.org/10.1109/LICS.1989.39160

2. Aiswarya, C., Bollig, B., Gastin, P.: An automata-theoretic approach to the ver-
ification of distributed algorithms. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th
International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
14 September 2015. LIPIcs, vol. 42, pp. 340-353. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs. CONCUR.2015.
340

3. Aiswarya, C., Bollig, B., Gastin, P.: An automata-theoretic approach to the ver-
ification of distributed algorithms. Inf. Comput. 259(Part 3), 305-327 (2018).
https://doi.org/10.1016/j.ic.2017.05.006

4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012). https://hal.archives-
ouvertes.fr/hal-00646514. https://doi.org/10.1017/CB0O9780511977619

5. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R.M. (ed.) Complexity of Computation. STAM-AMS Proceedings, vol. 7,
pp. 43-73 (1974). http://www.almaden.ibm.com/cs/people/fagin/genspec.pdf

7. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016). http://eatcs.org/beatcs/index.php/beatcs/article/view /411

8. Grédel, E., et al.: Finite Model Theory and Its Applications. Texts in Theoret-
ical Computer Science. An EATCS Series, 1st edn. Springer, Heidelberg (2007).
https://doi.org/10.1007/3-540-68804-8


http://www.lsv.fr/~bouyer/equalis
https://www.irif.fr/anr/fredda/index
https://doi.org/10.1109/LICS.1989.39160
https://doi.org/10.4230/LIPIcs.CONCUR.2015.340
https://doi.org/10.4230/LIPIcs.CONCUR.2015.340
https://doi.org/10.1016/j.ic.2017.05.006
https://hal.archives-ouvertes.fr/hal-00646514
https://hal.archives-ouvertes.fr/hal-00646514
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
http://www.almaden.ibm.com/cs/people/fagin/genspec.pdf
http://eatcs.org/beatcs/index.php/beatcs/article/view/411
https://doi.org/10.1007/3-540-68804-8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Identifiers in Registers — Describing Network Algorithms with Logic 131

Grumbach, S., Wu, Z.: Logical locality entails frugal distributed computation over
graphs (extended abstract). In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol.
5911, pp. 154-165. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11409-0_14

Hella, L., et al.: Weak models of distributed computing, with connections to modal
logic. In: Kowalski, D., Panconesi, A. (eds.) ACM Symposium on Principles of
Distributed Computing, PODC 2012, Funchal, Madeira, Portugal, 16—18 July 2012,
pp. 185-194. ACM (2012). https://doi.org/10.1145/2332432.2332466

Hella, L., et al.: Weak models of distributed computing, with connections to
modallogic. Distrib. Comput. 28(1), 31-53 (2015). https://arxiv.org/abs/1205.
2051. http://dx.doi.org/10.1007/s00446-013-0202-3

Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer, New
York (1999). https://doi.org/10.1007/978-1-4612-0539-5

Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329-363 (1994). https://doi.org/10.1016,/0304-3975(94)90242-9

Kuusisto, A.: Modal logic and distributed message passing automata. In: Rocca,
S.R.D. (eds.) Computer Science Logic 2013 (CSL 2013), Torino, Italy, 2-5 Septem-
ber 2013, LIPIcs, vol. 23, pp. 452—468. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.452

Libkin, L., et al.: Elements of Finite Model Theory. Texts in Theoretical Computer
Science. An EATCS Series, 1st edn. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-662-07003-1

Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput.
24(6), 1259-1277 (1995). https://doi.org/10.1137/S0097539793254571

Reiter, F.: Distributed graph automata. In: 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6-10 July 2015, pp. 192—
201. IEEE Computer Society (2015). https://arxiv.org/abs/1408.3030. https://doi.
org/10.1109/1L1CS.2015.27

Reiter, F.: Asynchronous distributed automata: a characterization of the modal
MU-fragment. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th
International Colloquium on Automata, Languages, and Programming, ICALP
2017, Warsaw, Poland, 10-14 July 2017. LIPIcs, vol. 80, pp. 100:1-100:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). http://arxiv.org/abs/1611.
08554. https://doi.org/10.4230/LIPIcs. ICALP.2017.100

Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, San Francisco,
California, USA, 5-7 May 1982, pp. 137-146. ACM (1982). https://doi.org/10.
1145/800070.802186


https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1145/2332432.2332466
https://arxiv.org/abs/1205.2051
https://arxiv.org/abs/1205.2051
http://dx.doi.org/10.1007/s00446-013-0202-3
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CSL.2013.452
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1137/S0097539793254571
https://arxiv.org/abs/1408.3030
https://doi.org/10.1109/LICS.2015.27
https://doi.org/10.1109/LICS.2015.27
http://arxiv.org/abs/1611.08554
http://arxiv.org/abs/1611.08554
https://doi.org/10.4230/LIPIcs.ICALP.2017.100
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186

132 B. Bollig et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Identifiers in Registers
	1 Introduction
	2 Preliminaries
	3 Distributed Register Automata
	4 Functional Fixpoint Logic
	5 Translating Between Automata and Logic
	6 Conclusion
	References




