
5Impulse,Momentum,and Collisions

5.1 Linear Momentum and Collisions

When two billiard balls collide, in which direction would they
travel after the collision? If ameteorite hits the earth,whydoes
the earth remain in its orbit? When two cars collide with each
other, why is one of the cars more damaged than the other?
Wewill find that to answer such questions, new conceptsmust
be introduced.

Consider the situation where two bodies collide with each
other. During the collision, each body exerts a force on the
other. This force is called an impulsive force, because it acts
for a short period of time compared to the wholemotion of the
objects, and its value is usually large. To solve collision prob-
lems by using Newton’s second law, it is required to know
the exact form of the impulsive forces. Because these forces
are complex functions of the collision time, it is difficult to
find their exact form and would make it difficult to use New-
ton’s second law to solve such problems. Thus, new concepts
known as momentum and impulse were introduced. These
concepts enable us to analyze problems that involve colli-
sions, as well as many other problems.

The law of conservation of momentum is especially used
in analyzing collisions and is applied immediately before and
immediately after the collision. Therefore, it is not necessary
to know the exact form of the impulsive forces, which makes
the problem easy to analyze. Next, we will discuss and verify
the concepts of momentum and impulse, and the law of con-
servation of momentum. The linear momentum (or quantity
of motion as was called by Newton) of a particle of mass m
is a vector quantity defined as

p = mv

where y is the velocity of the particle. A fast moving car has
more momentum than a slow moving car of the same mass.
Another example is that a bowling ball has more momentum
than a basketball moving at the same speed. The SI unit of

linear momentum is kg.m/s. In terms of components, wemay
write px = mvx , py = mvy , and pz = mvz . Newton’s second
law can be expressed in terms ofmomentum for a particle-like
object of constant mass as

�F = ma = m
dv
dt

= d(mv)
dt

or

�F = dp
dt

That is, the rate of change of the linearmomentumof an object
is equal to the resultant force acting on the object and is in the
same direction as that force.

5.2 Conservation of Linear Momentum

The law of conservation of linear momentum states that if the
net external force acting on a system equals zero (isolated)
and if there is no mass exchange with the surroundings of the
system (closed), then the total linearmomentum of the system
remains constant. To show that, consider an isolated system
consisting of two particles where the only forces that act in
the system are internal forces (see Fig. 5.1). The total linear
momentum of the system at any particular time is given by

ptot = p1 + p2 (5.1)

If the net force exerted on particle 2 by particle 1 is F21, then
from Newton’s third law, the net force exerted on particle 1
by particle 2 is F12, That is

F12 = −F21

Differentiating Eq.5.1 with respect to time and by using
Newton’s second law, we have
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Fig. 5.1 An isolated system consisting of two particles where the only
forces that act in the system are internal forces

dptot
dt

= dp1
dt

+ dp2
dt

= F12 + F21 = F12 − F12 = 0

That is,

ptot = constant

or
pi = p f

That is, the linear momentum of each particle may change,
but the total linear momentum of the system is the same
at all times. This statement is known as the law of con-
servation of linear momentum: If the net external force on
a system is zero, the total linear momentum of the system
remains unchanged (constant). In terms of components, we
have pix = p f x , piy = p f y , and piz = p f z . In solving prob-
lems involving collisions, pi and p f refers to the total momen-
tum of the system immediately before and immediately after
the collision, respectively. For a two-particle system, we have

p1i + p2i = p1 f + p2 f

From the principle of invariance, the law of conservation of
momentum is valid with respect to any inertial frame of refer-
ence. Furthermore, as the law of conservation of energy, the
law of conservation of momentum is valid in relativity and
quantum mechanics.

5.3 Impulse andMomentum

Impulse is a quantity that defines how a certain force acting
on a particle changes the linear momentum of that particle.
Now, consider a time-dependent force acting on a particle.
From Newton’s second law (F = dp/dt), we have

dp = Fdt

Fig. 5.2 One example of the variation of F over time

∫ p f

pi
dp =

∫
ti
Fdt

p f − pi = �p =
∫ t f

ti
Fdt

The right side of the equation is a vector quantity known as
the impulse I

I =
∫ t f

ti
Fdt

Hence,
I = �P

Which is known as the impulse–momentum theorem. In com-
ponent form, we have Ix = �px , Iy = �py , and Iz = �pz .
That is, the impulse of a force that acts on a particle during
a time interval is equal to the change in the momentum of the
particle during that interval. The direction of the impulse is
in the same direction as the change of momentum. If F has
a constant direction, the variation of its magnitude with time
may be of the form as shown in Fig. 5.2. The average of F is
given by

F = 1

�t

∫ t f

ti
Fdt

And thus, I can be written as

I = �p = F�t

That is, F is a constant force that gives the same impulse as F.
In the case of a collision between two bodies, the variation of
the impulsive force that each body exerts on the other during
the collision time takes the form as shown in Fig. 5.2.

5.4 Collisions

As discussed previously, when two bodies collide, they exert
large forces on one another (during the time of the collision)
called impulsive forces. These forces are very large such that
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any other forces ( e.g., friction or gravity) present during the
short time of the collision can be neglected. This approxima-
tion is known as the impulse approximation. For example, if a
golf ball was hit by a golf club, the change in the momentum
of the ball can be assumed to be only due to the impulsive
force exerted on it by the club. The change in its momen-
tum due to any other force present during the collision can be
neglected. That is, the force in the expression I = �p = F�t
can be assumed to be the impulsive force only The neglected
forces present during the collision time are external to the two-
body system, whereas the impulsive forces are internal. The
two-body system can therefore be considered to be isolated
during the short time of the collision (which is in the order
of a few milliseconds). Hence, the total linear momentum of
the system is conserved during the collision, which enables
us to apply the law of conservation of momentum immedi-
ately before and immediately after the collision. In general,
for any type of collision, the total linear momentum is con-
served during the time of the collision. That is, pi = p f .,
where pi and p f are the momenta immediately before and
after the collision. In the next sections, we will define various
types of two- body collisions, depending on whether or not
the kinetic energy of the system is conserved.

Example 5.1 A 50g golf ball initially at rest is struck by a
golf club. The golf club exerts a force on the ball that varies
during a very short time interval from zero before impact, to
a maximum value and back to zero when the ball is no longer
in contact with the club. If the ball is given a speed of 25m/s,
and if the club is in contact with the ball for 7 × 10−4 s, find
the average force exerted by the club on the ball.

Solution 5.1 The impulse of the force is

I = �p = mv f − 0 = (0.05 kg)(25m/s) = 1.25 kg · m/s

the average force exerted on the ball by the club is then

F = I

�t
= (1.25 kgm/s)

(7 × 10−4 s)
= 1785.7N

Example 5.2 A canon placed on a carriage fires a 250kg ball
to the horizontal with a speed of 50m/s. If the mass of the
canon and the carriage is 4000kg, find the recoil speed of the
canon.

Solution 5.2 Because there are no external horizontal forces
acting on the cannon-carriage-ball system, then the total
momentum of the system is constant (conserved) in the x-
direction

p f x = pix

m1v1 f + m2v2 f = 0

therefore,

v2 f = −m1

m2
v1 f = − (250 kg)

(4000 kg)
(50m/s) = −3.1m/s

i.e., the cannon recoils in the negative x-direction.

Example 5.3 A hockey puck of mass 0.16kg traveling on a
smooth ice surface collides with the court’s edge. If its initial
and final velocities are vi = −2 im/s and vf = 1 im/s and if
the hockey puck is in contact with the wall for 2ms, find the
impulse delivered to the puck and the average force exerted
on it by the wall.

Solution 5.3

I = �p = p f − pi = mv f − mvi = (0.16 kg)((l m/s) − (−2m/s))i = 0.48i kg · m/s

F = I
�t

= (0.48 i kg · m/s)

(0.002 s)
= 240 iN

Example 5.4 A 0.5kg hockey puck is initially moving in the
negative y-direction as shown in Fig. 5.3, with a speed of
7m/s. If a hockey player hits the puck giving it a velocity
of magnitude 12m/s in a direction of 60o to the vertical, and
if the collision lasts for 0.008 s, find the impulse due to the
collision and the average force exerted on the puck.

Solution 5.4 Along the x-direction, we have

pix = mvix = 0

and

p f x = mv f x = (0.5 kg)(12m/s) cos 30o = 5.2 kg · m/s

along the y-direction, we have

Fig. 5.3 A hockey player changing the momentum of the puck



76 5 Impulse,Momentum, and Collisions

piy = mviy = (0.5 kg)(−7m/s) = −3.5 kg · m/s

and

p f y = mv f y = (0.5 kg)(12m/s) sin 30◦ = 3 kg · m/s

Therefore, the impulse of the force in each direction is

Ix = p f x − pix = (5.2 kg · m/s) − 0 = 5.2 kg · m/s

and

Iy = p f y−piy = (3 kg·m/s)−(−3.5 kg·m/s) = 6.5 kg·m/s

I = (5.2 i + 6.5 j)kg · m/s

I =
√

(5.2 kgm/s)2 + (6.5 kgm/s)2 = 8.3 kg · m/s

The direction of the impulse is

tan θ = Iy
Ix

= (6.5 kg · m/s)

(5.2 kg · m/s)
= 1.25

θ = 51.3o

where θ is measured from the positive x-axis. The average
force acting on the puck is

F = I

�t
= (8.3 kg · m/s)

(0.008 s)
= 1037.5N

Example 5.5 Two ice skaters of masses m1 = 50kg and
m1 = 62kg standing face to face push each other on a fric-
tionless horizontal surface. If skater (1) recoils with a speed
of 5m/s, find the recoil speed of the other skater.

Solution 5.5 For the two-skater system, the sum of the verti-
cal forces are zero (weight and normal forces) and the forces
exerted by one skater on the other is internal to the system.
That is, there are no external forces acting on the system and
the total momentum is conserved. Because the motion takes
place in a straight line, we have

p1i + p2i = p1 f + p2 f

0 = m1v1 f + m2v2 f

and hence,

v2 f = −m1

m2
v1 f = −(50 kg)

(62 kg)
(5m/s) = −4.03m/s

Example 5.6 A particle is moving in space under the influ-
ence of a force. If its momentum as a function of
time is

p = ((4t2 + t)i − (3t − 1)j + (5t3 + 2t)k) kg. m/s

(a) Find the force acting on the particle at any time; (b) Find
the impulse of the force from t = 0 to t = 1 s.

Solution 5.6 (a)

F = dp
dt

= ((8t + 1)i − 3j + (15t2 + 2)k)N

(b)

I = �p = (5i − 2j + 7k) − j = (5i − 3j + 7k) kg.m/s

5.4.1 Elastic Collisions

An elastic collision is one in which the total kinetic energy,
as well as momentum, of the two-colliding-body system is
conserved. These collisions exist when the impulsive force
exerted by one body on the other is conservative. Such force
converts the kinetic energy of the body into elastic potential
energy when the two bodies are in contact. It then recon-
verts the elastic potential energy into kinetic energy when
there is no more contact. After collision, each body may
have a different velocity and therefore a different kinetic
energy. However, the total energy as well as the total momen-
tum of the system is constant during the time of the colli-
sion. An example of such collisions is those between billiard
balls.

5.4.2 Inelastic Collisions

An inelastic collision is one in which the total kinetic energy
of the two-colliding-body system is not conserved, although
momentum is conserved. In such a collision, some of the
kinetic energy of the system is lost due to deformation and
appear as internal or thermal energy. In other words, the
(internal) impulsive forces are not conservative. Therefore,
the kinetic energy of the system before the collision is less
than that after the collision. If the two colliding objects
stick together, the collision is said to be perfectly inelas-
tic. There are some types of collisions in which the total
kinetic energy after the collision occurs is greater than that
before it occurs. This type of collision is called an explosive
collision.
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Fig. 5.4 Two particles of masses m1 and m2 experiencing an elastic
head-on collision

5.4.3 Elastic Collision in One Dimension

When a collision takes place in one dimension, it is referred
to as a head-on collision. Consider two particles of masses
m1 and m2 experiencing an elastic head-on collision as in
Fig. 5.4. Applying the law of conservation of energy and the
law of conservation of linear momentum gives

m1v1i + m2v2i = m1v1 f + m2v2 f

1

2
m1v

2
1i + 1

2
m2v

2
2i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

Solving these equations for v1 f and v2 f , we get

v1 f =
(
m1 − m2

m1 + m2

)
v1i +

(
2m2

m1 + m2

)
v2i (5.2)

v2 f =
(

2m1

m1 + m2

)
v1i +

(
m2 − m1

m1 + m2

)
v2i (5.3)

5.4.3.1 Special Cases
1. Ifm1 = m2, it follows from Eqs. 5.2 and 5.3 that v1 f = v2i
and v2 f = v1i . In other words, if the particles have equal
masses they exchange velocities.

2. If m2 is stationary (v2i = 0) , then from Eqs. 5.2 and
5.3, we have

v1 f =
(
m1 − m2

m1 + m2

)
v1i (5.4)

v2 f =
(

2m1

m1 + m2

)
v1i (5.5)

In that case m2 is called the target and m1 is called the pro-
jectile. Furthermore, ifm1 � m2, then from Eqs. 5.4 and 5.5,
we find that v1 f ≈ v1i and v2 f ≈ 2v1i . While if m2 � m1,
then from Eqs. 5.4 and 5.5, we see that v1 f ≈ −v1i , and
v2 f ≈ v2i = 0.

5.4.4 Inelastic Collision in One Dimension

Figure5.5 showsaone-dimensional (head-on) perfectly inelas-
tic collision between two particles of mass m1 and m2. Here,
the kinetic energy of the system is not conserved, but the law
of conservation of linear momentum still holds

Fig. 5.5 A one dimensional (head-on) perfectly inelastic collision
between two particles of mass m1 and m2

m1v1i + m2v2i = (m1 + m2)v f

v f = m1v1i + m2v2i
m1 + m2

5.4.5 Coefficient of Restitution

For any collision between two bodies in one dimension, the
coefficient of restitution is defined as

e = v2 f − v1 f
v1i − v2i

where v1i and v2i are velocities before the collision. v1 f and
v2 f are velocities after the collision. |v1i − v2i | is called the
relative speed of approach and |v2 f −v1 f | is the relative speed
of recession.

• If e = 1 the collision is perfectly elastic.
• If e < 1 the collision is inelastic.
• If e = 0 the collision is perfectly inelastic (the two bodies

stick together).

Example 5.7 Two marble balls of masses m1 = 7kg and
m2 = 3kg are sliding toward each other on a straight fric-
tionless track. If they experience a head-on elastic collision
and if the initial velocities of m1 and m2 are 0.5m/s to the
right and 2m/s to the left, respectively, find the final velocities
of m1 and m2.

Solution 5.7 For an elastic head-on collision, we have

v1 f =
(
m1 − m2
m1 + m2

)
v1i+

(
2m2

m1 + m2

)
v2i = (0.4)(0.5m/s)+(0.6)(−2m/s) = −1m/s

v2 f =
(

2m1

m1 + m2

)
v1i +

(
m2 − m1

m1 + m2

)
v2i = (1.4)(0.5m/s)+(−0.4)(−2m/s) = 1.5m/s

Example 5.8 The ballistic pendulum consists of a large
woodenblocksuspendedbya lightwire (seeFig. 5.6).Thesys-
tem is used to measure the speed of a bullet where the bullet
is fired horizontally into the block. The collision is perfectly
inelastic and the system (bullet+block) swings up a height h.
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Fig. 5.6 The ballistic pendulum consists of a large wooden block sus-
pended by a light wire

IfM = 3kg,m = 5 gandh = 5cm,find (a) the initial speedof
the bullet; (b) themechanical energy lost due to the collision.

Solution 5.8 (a) Using the impulse approximation, the law
of conservation of momentum gives the velocities just before
and after the collision when the string is still nearly vertical.
For a perfectly inelastic collision, the total momentum is con-
served but the total kinetic energy is not conserved during the
collision. Thus, we have

mv1i = (m + M)v f

v1i = (m + M)

m
v f

After the collision, the energy of the (bullet +block+earth)
system is conserved since the gravitational force is the only
force acting in the system.

Ei = E f

1

2
(m + M)v2f = (m + M)gh

v f = √
2gh

That gives

v1i = (m + M)

m

√
2gh = (3.005 kg)

(0.005 kg)

√
2(9.8m/s2)(0.05m) = 595 m/s

(b) The kinetic energy of the bullet before collision is

1

2
mv21i = 1

2
0.005 kg)(595m/s)2 = 885 J

After collision, the kinetic energy of the (bullet+block) is

1

2
(m + M)v2f = (m + M) (gh) = (3.005 kg)(9.8m/s2)(0.05m) = 1.5 J

therefore,

�E = (885 J) − (1.5 J) = 883.5 J

Fig. 5.7 Two blocks colliding head-on on a frictionless surface

That is, nearly, all the mechanical energy is dissipated and
converted into internal (thermal) energy of the (block+bullet)
system.

Example 5.9 Two masses m1 = 0.8kg and m2 = 0.5kg
are heading toward each other with speeds of 0.25m/s and
−0.5m/s, respectively. If they have a perfectly inelastic col-
lision, find the final velocity of the system just after the colli-
sion.

Solution 5.9

v f = m1v1i + m2v2i
(m1 + m2)

= (0.8 kg)(0.25m/s) − (0.5 kg)(0.5m/s)

(1.3 kg)
= −0.04m/s

Example 5.10 Two blocks m1 = 2kg and m2 = 1kg collide
head-on with each other on a frictionless surface (see Fig. 5.7.
If v1i = −10m/s and v2i = 15m/s and the coefficient of
restitution is e = 1/4, determine the final velocities of the
masses just after the collision.

Solution 5.10

e = v2 f − v1 f
v1i − v2i

1

4
= v2 f − v1 f

(−25m/s)

v2 f − v1 f = −6.25m/s (5.6)

From the conservation of momentum, we have

m1v1i + m2v2i = m1v1 f + m2v2 f

(2 kg)(−10m/s) + (1 kg)(15m/s) = (2 kg)v1 f + (1 kg)v2 f

That gives

v2 f + (2 kg)v1 f = −5m/s (5.7)

Solving Eqs. 5.6 and 5.7 gives v1 f = 0.42m/s and v2 f =
−5.83 m/s.

Example 5.11 A m1 = 5 g bullet is fired horizontally at the
center of a wooden block with a mass of m2 = 2 kg. The
bullet embeds itself in the block and the two slides a distance
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of 0.5m on a rough surface (μk = 0.2) before coming to rest.
Find the initial speed of the bullet.

Solution 5.11 Applying the law of conservation of momen-
tum immediately before and after the collision gives

pix = p f x

m1v1i + 0 = (m1 + m2)v f

v1i = (2.005 kg)

(0.005 kg)
v f = (401)v f

by taking the (block+bullet) as the system after the collision
until it comes to rest, we have

K f +U f = Ki +Ui + �Kext

that gives

0 = 1

2
(m1 + m2)v

2
f − μk(m1 + m2)gd

v f = √
2μkgd =

√
2(0.2)(9.8m/s2)(0.5m) = 1.4m/s

Hence,
v1i = (401)(1.4m/s) = 561.4m/s

5.4.6 Collision in Two Dimension

When a collision takes place in space, the total linear momen-
tum is conserved along each of the x−, y-, and z-directions.
That is, pix = p f x , piy = p f y , and piz = p f z .Here, we will
analyze a two-dimensional elastic collision between two par-
ticles where one particle is moving and the other is at rest as
shown in Fig. 5.8. This type of collision is known as a glanc-
ing collision. Since the collision is elastic, it follows that the
total linearmomentum aswell as the kinetic energy of the sys-
tem are conserved. Applying these laws immediately before
and immediately after the collision, we have pix = p f x and
piy = p f y or

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

and
m1v1iy + m2v2iy = m1v1 f y + m2v2 f y

From Fig. 5.8, we have

m1v1i = m1v1 f cosα1 + m2v2 f cosα2

and

Fig. 5.8 A two dimensional elastic collision between two particles
where one particle is moving and the other is at rest

0 = m1v1 f sin α1 + m2v2 f sin α2

Furthermore,

1

2
m1v

2
1i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

Therefore, we have three equations and seven unknown quan-
tities. By knowing any four of these quantities, the three equa-
tions for the three variables can be solved.

Example 5.12 A ball of mass of 2kg is sliding along a hori-
zontal frictionless surface at a speed of 3m/s. It then collides
with a second ball of mass of 5kg that is initially at rest.
After the collision, the second ball is deflected with a speed
of 1m/s at an angle of 30o below the horizontal as shown in
Fig. 5.9. (a) Find the final velocity of the first ball; (b) show
that the collision is inelastic; (c) suppose that the two balls
have equal masses and the collision is perfectly elastic, show
that θ1 + θ2 = 90o.

Fig. 5.9 A ball sliding along a horizontal frictionless surface collides
with a second ball that is initially at rest
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Solution 5.12 Applying the law of conservation of momen-
tum immediately before and after the collision in each direc-
tion gives pix = p f x and piy = p f y . Thus,

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

v1 f x = m1v1i x + m2v2i x − m2v2 f x
m1

= (2 kg)(3m/s) + 0 − ((5 kg)(1m/s) cos(−30))

(2 kg)

v1 f x = 0.84m/s

Along the y-direction, we have

m1v1iy + m2v2iy = m1v1 f y + m2v2 f y

v1 f y = m1v1iy + m2v2iy − m2v2 f y
m1

= 0 − ((5 kg)(1m/s) sin(−30o))

(2 kg)

v1 f y = 1.25m/s

Thus, the final velocity of the first ball is

v1 f =
√
v21 f x + v21 f y =

√
(0.84m/s)2 + (1.25m/s)2 = 1.5m/s

The direction of the velocity is

tan θ1 = v1 f y
v1 f x

= (1.25m/s)

(0.84m/s)
= 1.5

θ1 = 56o

(b) The total kinetic energy before the collision is

Ki = 1

2
m1v

2
1i = 1

2
(2 kg)(3m/s)2 = 9 J

The total kinetic energy after the collision is

K f = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f = 1

2
(2 kg)(1.5m/s)2 + 1

2
(5 kg)(1m/s)2 = 4.75 J

That is, some of the energy of the system is lost and thus
the collision is inelastic.

(c) In a perfectly elastic collision, both the totalmomentum
and the total mechanical energy of the system are conserved.
That is

pix = p f x

m1v1i x + m2v2i x = m1v1 f x + m2v2 f x

v1i = v1 f cos θ1 + v2 f cos θ2 (5.8)

piy = p f y

0 = v1 f sin θ1 − v2 f sin θ2

v1 f sin θ1 = v2 f sin θ2 (5.9)

From the conservation of kinetic energy, we have

1

2
m1v

2
1i = 1

2
m1v

2
1 f + 1

2
m2v

2
2 f

or
v21i = v21 f + v22 f (5.10)

Substituting Eq.5.8 into Eq.5.9 gives

v1i = v2 f
sin θ2

sin θ1
cos θ1 + v2 f cos θ2

or

v1i = v2 f sin(θ1 + θ2)

sin θ1
(5.11)

Substituting Eq.5.11 into Eq.5.10 gives

v22 f sin
2(θ1 + θ2)

sin2 θ1
= v22 f sin

2 θ2

sin2 θ1
+ v22 f

Therefore,

sin2(θ1 + θ2) = sin2 θ1 + sin2 θ2

This is satisfied only if θ1 + θ2 = 90o.

Example 5.13 A 1200kg car traveling east at a speed of
18m/s collides with another car of mass of 2500kg that is
traveling north at a speed of 23m/s as shown in Fig. 5.10.
If the collision is perfectly inelastic, how much mechanical
energy is lost due to the collision?

Fig. 5.10 A 1200 kg car traveling east at a speed of 18 m/s collides
with another car of mass of 2500 kg that is traveling north at a speed of
23 m/s



5.4 Collisions 81

Solution 5.13
pix = p f x

m1v1i x = (m1 + m2)v f x

v f x = m1v1i x
(m1 + m2)

= (1200 kg)(18m/s)

(3700 kg)
= 5.8m/s

piy = p f y

m2v2iy = (m1 + m2)v f y

v f y = m2v2iy
(m1 + m2)

= (2500 kg)(23m/s)

(3700 kg)
= 15.5m/s

v f =
√
v2f x + v2f y =

√
(5.8m/s)2 + (15.5m/s)2 = 16.5m/s

The direction of v f is

θ = tan−1 v f y

v f x
= tan−1 (15.5m/s)

(5.8m/s)
= 69.5o

from the positive x-axis. The change in the kinetic energy of
the system is

�K = K f − Ki = 1

2
(m1 + m2)v

2
f −

(
1

2
m1v

2
1i + 1

2
m2v

2
2i

)

= 1

2
(3700 kg)(16.5m/s)2 −

(
1

2
(1200 kg)(18m/s)2 + 1

2
(2500 kg)(23m/s)2

)

�K = −3.5 × 105 J

5.5 Torque

Consider a force F acting on a particle that has a position vec-
tor r with respect to some origin O that is in an inertial frame.
The torque is a vector quantity that measures the tendency of
that force to rotate the particle about O and is defined as

τ = r × F

The direction of τ is perpendicular to the plane formed by
r and F and its sense is given by the right-hand rule or of
advance of a right-handed screw rotating from r to F. From
the vector product definition, this quantity has a magnitude
given by

τ = r F sin φ

where φ is the smaller angle between r and F, τ is positive
if the force tends to rotate the particle counterclockwise and
negative if it tends to rotate it clockwise. If φ = 0 or 180◦,

Fig.5.11 A particle in the x-y plane exposed to a force that lies in that
plane. The resulting torque is then perpendicular to the x-y plane parallel
to the z-axis

the force is radial and thus it has no rotating tendency. In
component form, we may write

τ = r × F = (x i + yj + zk) × (Fx i + Fyj + Fzk)

= (yFz − zFy)i + (zFx − xFz)j + (xFy − yFx )k

Let us consider a particle in the x–y plane exposed to a force
that lies in that plane (see Fig. 5.11). The resulting torque is
then perpendicular to the x–y plane parallel to the z-axis. τ

can also be written as
τ = Fd

where d = r sin φ is called the moment arm of F where it
represents the perpendicular distance from the axis of rotation
to the line of action of F as shown in Fig. 5.12. Note that
because τ depends on r, it follows that τ depends on the
choice of the origin O. The force F can be resolved into two
components Ft = F sin φ and Fr = F cosφ. Since the line
of action of Fr passes through O, it has no rotating effect.
Hence, Ft is the only component of F that causes rotation.
The SI unit of torque is the Newton-metre (N m). This unit
is the same unit of work, but they are different quantities and
the torque should never be expressed in joules.

Example 5.14 A force F = (−2t i− (t2 −3)j+4t5k) N acts

on a particle that has a position vector r =
(

− 6i + 5tj +

(
t

2
− 1) k

)
m find the torque of the particle about the origin

at t = 1 s.

Solution 5.14

τ = r × F =
∣∣∣∣∣∣
i j k
−6 5t ( t2 − 1)
−2t −(t2 − 3) 4t5

∣∣∣∣∣∣
Evaluating this at t = 1 s gives
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Fig. 5.12 d = r sin φ is called the moment arm of F and it represents
the perpendicular distance from the axis of rotation to the line of action
of F

τ = (2li + 25j − 2k)N/m

5.6 Angular Momentum

The angular momentum L of a particle of mass m and linear
momentum p is a vector quantity defined as

L = r × p

where r is the position vector of the particle relative to an
origin O that is in an inertial frame. Therefore, as τ ,L also
depends on the choice of the origin. Suppose the particle
moves in the x–y plane (see Fig. 5.13). The direction of L
is then perpendicular to the plane containing r and p and its
sense is found by the right-hand rule. The magnitude of L is
given by

L = mvr sin φ

where φ is the smaller angle between r and p. This quantity
is the rotational analog of linear momentum in translational
motion. If φ = 0 or 180◦ the particle will move along a line
passing through O and its angular momentum is zero. The SI
unit of angular momentum is kg.m2/s. In terms of rectangular
components, we have

L = r × p = (x i + yj + zk) × (px i + pyj + pzk)

= (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k

5.6.1 Newton’s Second Law in Angular Form

From the definition of torque, we have

Fig. 5.13 If the particle is moving in the x-y plane, then the direction
of L is perpendicular to the plane containing r and p and is found by the
right-hand rule

τ = r × F = r × d(mv)
dt

dL
dt

= d(r × mv)
dt

= dr
dt

× (mv) + r × d(mv)
dt

= v × (mv) + r × d(mv)
dt

= 0 + r × F = τ

τ = dL
dt

(5.12)

This implies that the torque acting on a particle is equal to
the time rate of change of the angular momentum for that
particle. This equation is valid only if τ and L are evaluated
with respect to the same origin or any other fixed point in an
inertial frame. If several forces act on the particle, Eq. 5.12
can be written as

�τ = dL
dt

where�τ is the net torqueon theparticle. This is the rotational
analog of Newton’s second law in linear form, which states
that the net force acting on a particle is equal to the time rate
of change of its linear momentum. In component form, we
have �τx = dLx/dt, �τy = dLy/dt and �τz = dLz/dt.

5.6.2 Conservation of Angular Momentum

The total angular momentum of a particle is constant if the
net external torque acting on it is zero:

�τ ext = dL
dt

= 0

L = constant
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Fig. 5.14 A cat watching a mouse run by

m(r × v) = contant

or

Li = L f

The law of conservation of angular momentum is a funda-
mental law of physics and it holds in relativity and quantum
mechanics. Thus, for an isolated system, the linear momen-
tum and angular momentum are conserved.

Example 5.15 A cat watches a mouse of mass m run by, as
shown in Fig. 5.14. Determine the mouse’s angular momen-
tum relative to the cat as a function of time if the mouse has
a constant acceleration a and if it starts from rest.

Solution 5.15 Suppose the plane is the x–y plane. Since v =
at , we have

L = m(r × v) = mrat cos θk

Example 5.16 A 0.2kg particle is moving in the x–y plane.
If at a certain instant r = 3m and v = 10m/s (see Fig. 5.15),
find the magnitude and direction of the angular momentum
of the particle at that instant relative to the origin.

Solution 5.16

L = m(r × v) = −(mvr sin φ)k = −(0.2 kg)(10m/s)(3m) sin 60◦k = (−5.2 k)kg.m2/s

Example 5.17 A particle is moving under the influence of a
force given by F = −kr. Prove that the angular momentum
of the particle is conserved.

Solution 5.17

τ = r × F = −k(r × r) = 0

Fig. 5.15 A particle moving in the x-y plane

Since τ = dL/dt , it follows that the total angular momentum
of the particle is conserved. That is,

L = constant

Example 5.18 A particle is moving in a circle where its
position as a function of time is given by the expression
r = a(cosωt i + sinωtj) , where ω is a constant. Show that
the total angular momentum of the particle is constant.

Solution 5.18

v = dr
dt

= a(−ω sinωt i + ω cosωtj)

L = m(r × v) = ma2[(cosωt i + sinωtj) × (−ω sinωt i + ω cosωtj)]

= ma2(ω cos2 ωtk + ω sin2 ωtk)

= mωa2k = constant

Problems

1. A tennis ball of mass of 0.06kg is initially traveling at an
angle of 47o to the horizontal at a speed of 45 m/s. It then
was shot by the tennis player and return horizontally at a
speed of 35 m/s. Find the impulse delivered to the ball.

2. A force on a 0.5kg particle varies with time according to
Fig. 5.16. Find (a) The impulse delivered to the particle,
(b) the average force exerted on the particle from t = 0
to t = 6 s(c). The final velocity of the particle if its initial
velocity is 2 m/s.

3. A 1kg particlemoves in a force field given byF = (2t2i+
(5t − 3)j − 6tk) N. Find the impulse delivered to the
particle during the time interval from t = 1 s to t = 3 s.

4. A boy of mass 45kg runs and jump with a horizontal
speed of 4.5 m/s into a 70kg cart that is initially at rest
(see Fig. 5.17). Find the final velocity of the boy and the
cart.
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Fig. 5.16 A force acting on a particle varies with time

Fig. 5.17 A boy jumps on a cart that is initially at rest

Fig. 5.18 A ball bouncing off a smooth surface

5. A rubber ball of mass of 0.2kg is dropped from a height
of 2.2 m. It re- bounds to a height of 1.1 m. Find (a) the
coefficient of restitution, (b) the energy lost due to impact.

6. A 1200kg car initially traveling at 12 m/s due east col-
lides with another car of mass of 1600kg that is initially
at rest. If the cars become entangled after the collision,
find the common final speed of the cars.

7. Figure5.18 shows a ball that strikes a smooth surfacewith
a velocity of 20m/s at an angle of 45o with the horizontal.
If the coefficient of restitution for the impact between the
ball and the surface is e = 0.85, find the magnitude and
direction of the velocity in which the ball rebounds from
the surface. (Hint: use the velocity components in the
direction perpendicular to the surface for the coefficient
of restitution).

8. Two gliders moving on a frictionless linear air track expe-
rience a perfectly elastic collision (see Fig. 5.19). Find the
velocity of each glider after the collision.

9. A bullet of mass of m is fired with a horizontal velocity v
into a block of mass M . The block is initially at rest on a
frictionless surface and is connected to a spring of force

Fig. 5.19 Two gliders moving on a frictionless linear air track experi-
ence a perfectly elastic collision

Fig.5.20 A bullet of mass ofm is fired with a horizontal velocity v into
a block of mass M

Fig. 5.21 A block moving along the y-axis subject to a force

Fig. 5.22 A conical pendulum of
mass m and length L is in
uniform circular motion with a
velocity v

constant of k (see Fig. 5.20). If the bullet embeds itself in
the block causing the spring to compress to a maximum
distance d, find the initial speed of the bullet.

10. A block moves along the y-axis due to a force given by
F = ai (see Fig. 5.21). Find the torque on the block about
(a) the origin (b) point A.

11. A conical pendulum of massm and length L is in uniform
circular motion with a velocity v (see Fig. 5.22). Find the
angular momentum and torque on the mass about O.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.
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