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Abstract. Performance of deep learning neural networks to classify
class imbalanced gene-expression microarrays datasets is studied in this
work. The low number of samples and high dimensionality of this type
of datasets represent a challenging situation. Three sampling methods
which have shown favorable results to deal with the class imbalance
problem were used, namely: Random Over-Sampling (ROS), Random
Under-Sampling (RUS) and Synthetic Minority Oversampling Technique
(SMOTE). Moreover, artificial noise and greater class imbalance were
included in the datasets in order to analyze these situations in the context
of classification of gene-expression microarrays datasets. Results show
that the noise or separability of the dataset is more determinant than its
dimensionality in the classifier performance.

Keywords: Gene-expression microarrays · Deep neural networks ·
Class-imbalance

1 Introduction

Recently, the use of deep learning to solve a variety of real-life problems has
attracted the interest of many researchers because these algorithms usually
allow to obtain better results than traditional machine learning methods [14,21].
Multi-Layer Perceptron (MLP), the most common neural network, has been also
translated to deep learning context [18]: Deep Learning MLP (DL-MLP) incor-
porates two or more hidden layers [13], thus increasing the computational cost of
processing large size and high dimension datasets [12]. Nevertheless, when effi-
cient frameworks are available, such as Apache-Spark [24] or Tensor-Flow, the
advantage of the high performance, robustness to overfitting, and high processing
capability of this deep neural networks could be taken.
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In the field of biomedical databases classification, the use of deep learning
is gaining attention [18]; for instance, in the classification of gene-expression
microarrays [6,12,17]. Typical applications with deep neural networks refer to
problems in which both: dimensionality and number of samples are high [5,20].
However, in gene-expression microarrays databases, the number of samples is
low, and the dimensionality is high, which represent a challenging situation. In
some cases, the classes are imbalanced, where one class is highly underrepre-
sented compared to the other class [3].

Class imbalance problem has been a hot topic in machine learning and data-
mining and more recently, in deep learning [9]. Usual techniques employed to
handle the class imbalance problem have been the random sampling methods
(under-sampling - RUS or over-sampling - ROS), mainly due to the indepen-
dence of the underlying classifier [19]. ROS randomly replicates samples in the
minority-class, while RUS randomly eliminates samples from the majority-class,
biasing the discrimination process to compensate the imbalance of classes. Syn-
thetic Minority Oversampling Technique (SMOTE) is also a helpful sampling
technique which generates artificial samples from the minority class by interpo-
lating existing instances that lie close together [11]; it has motivated the develop-
ment of other over-samplings methods [16,19]. RUS is one of the most successful
under-sampling methods, however, this method loses effectiveness when removes
significant samples [19]. Other important under-sampling methods include a
heuristic mechanism [16].

Usually in the state-of-the-art, machine learning methods have been used
to classify gene-expression microarrays databases [6,10,17], but recent works
have been focused in the application of deep learning [1,5,7,15,20,23]. In this
scenario, common methods used to face the class imbalance have been ROS,
RUS and SMOTE; however, results are not conclusive in different works. For
example, in [4] SMOTE is better than others methods, while in [8] RUS presents
better results. In this paper, performance of DL-MLP in the classification of
gene-expression microarrays databases in presence of class imbalance problem is
evaluated. In order to focus this study in the situation of class imbalance and
noisy data, artificial scenarios were also included.

2 Deep Learning MLP

MLP is the most conventional neural network architecture, which is commonly
based on three layers: input, output, and one hidden layer [18]. MLP can be
translated into deep neural networks by incorporating more than two hidden
layers, becoming a Deep Learning-MLP (DL-MLP); this allows to reduce the
number of nodes per layer and uses fewer parameters, but in return this leads to
a more complex optimization problem [12,13]. If an efficient framework, such as
Apache-Spark [24] or Tensor-Flow, the advantage of high performance, robust-
ness to overfitting, and high processing capability of DL-MLP could be taken.

Traditionally, a MLP has been trained with the back-propagation algorithm
(based in the stochastic gradient descent) and its weights are randomly initial-
ized. However, in the last versions of the DL-MLP, hidden layers are pre-trained
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by an unsupervised algorithm and weights are optimized by the back-propagation
algorithm [18]. Alternatively, MLP uses sigmoid activation functions, such as the
hyperbolic tangent or logistic function, but DL-MLP includes (commonly) the
rectified linear unit (ReLU) f(z) = max(0, z), because typically it learns much
faster in networks with many layers, allowing training a DL-MLP without super-
vised pre-training.

There are three variants of the descending gradient that differ in how many
data are used to process the gradient of the objective function: (a) Batch Gra-
dient Descendent, calculates the gradient of the cost function to the parameters
for the entire training data set, (b) Stochastic Gradient Descendent, performs
an update of parameters for each training example and (c) Mini-batch Gradient
Descendent, takes the best of the two previous types and performs an update
for each mini-batch of n training examples [22].

The most common algorithms of descending gradient optimization are:
(a) Adagrad, it adapts the learning reason for the parameters, making big-
ger updates for less frequent parameters and smaller for the most frequent,
(b) Adadelta, is an extension of Adagrad that seeks to reduce aggressiveness,
monotonously decreasing the learning rate, instead of accumulating all the previ-
ous descending gradients, restricting accumulation to a fixed size and (c) Adam,
calculates adaptations of the learning rate for each parameter and stores an
exponentially decreasing average of past gradients. Other relevant algorithms
are AdaMax, Nadam and RMSprop [22].

3 Related Works

Nowadays, the treatment of bioinformatic databases is increasingly common,
including tasks for disease prediction, treatments and sick classification. Most
efforts have focused on feature selection: for example, [6] presents a technique to
classify microarrays of genetic expression by selection of characteristics, compar-
ing 7 classifiers with 4 databases, obtaining the best results with HAM (proposed
method) and Support Vector Machines (SVM). A similar case is presented by
[10], where a cancer database is evaluated by using 6 classifiers, of which the
MLP shows the best results with 98% accuracy. Likewise, in [17], several meth-
ods of selection and extraction of characteristics are presented to reduce the
dimensionality of the microarray databases; this selection is made through fil-
ters, wrappers, and integrated techniques.

In literature, machine learning methods have been applied to treat biomedi-
cal information; however, the presented databases have high dimensionality. For
example, in [20], a series of images of breast cancer is classified into 3 differ-
ent groups; the method uses Restricted Boltzmann Machines (RBM) in a Deep
Neural Network (DNN) that allows classifying faster and more accurately. In [5],
multiple Recurrent Neural Networks (RNN) are used to make the classification
of people with benign and malignant breast cancer; the proposed model con-
sists of four RNN to extract the characteristics and one RNN to make the final
classification. Reference [1] presented an automatic diagnosis system to detect
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breast cancer based on a deep belief network for the training phase followed by
a back-propagation neuronal network. Reference [15] implemented deep bidirec-
tional recurrent neuronal networks of short-term memory for the reduction of
intrinsic protein disorder.

In works such as [7,23], a comparison is made to classify and identify rele-
vant genes and perform cancer detection; the data used are the most important
characteristics extracted through different methods, including the use of auto-
encoders. When the results of both works are analyzed, better classification
results are obtained when deep learning methods are used.

Currently, there are several works dealing with the problem of imbalance
of classes in bioinformatic databases, which contain biological information such
as nucleotide sequence data, protein structures, genomes, genetic expression,
metabolism and other similar data. Re-sampling techniques are applied to bal-
ance the classes in the set of samples; for example, in the work presented by [4],
SMOTE is used to deal with the imbalance of databases of high dimensionality,
presented in three databases with real and simulated data, where it is shown
that in the case of the low dimensionality database, the accuracy of the classifier
increases when applying SMOTE, however, in cases of high dimensionality, it is
not advisable.

In problems of imbalance of classes in databases of gene expression microar-
rays, studies have been carried out by applying under and over sampling tech-
niques. In [8], RUS, ROS and SMOTE were applied to treat the imbalance in
bioinformatic databases through classifiers 5-NN and SVM; results show that
RUS obtains the best results, in comparison with the work of [4] where they
mention that SMOTE is significantly better to RUS when the k-NN classifier is
applied.

4 Experimental Set-Up

In order to study the class imbalance problem on the classification of gene-
expression microarrays datasets using deep neural networks, four microarray
cancer data sets were used (see Table 1). Datasets were obtained from the Kent
Ridge Biomedical DataSet Repository (http://datam.i2r.a-star.edu.sg/datasets/
krbd). Original datasets were also modified to highlight the class imbalance
(+HI) and to include artificial noise (+Noise). The modification consisted in
random elimination (+HI) or change the label (+Noise) at ten samples from
the minorities classes. Table 1 presents the main features of the new produced
benchmarking datasets. For the experimental design, the hold out method was
adopted (10 times), with 60% of the samples for training and 40% for testing.

In this work it is used a DL-MLP with two hidden layer, sigmoid (logis-
tic) function in their nodes, and softmax function on the output layer nodes.
The framework Apache-Spark [24] was used. The configuration of each hidden
layer was 10 and 20 nodes respectively. Back-propagation was used for learn-
ing the model, and the logistic loss function for optimization. Then, Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed
as an optimization routine.

http://datam.i2r.a-star.edu.sg/datasets/krbd
http://datam.i2r.a-star.edu.sg/datasets/krbd
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Table 1. Description of the benchmarking datasets. The imbalance ratio (IR), which
corresponds to the ratio of the majority class size to the minority class size is reported
in the last column

Database Features Samples Class 1 Class 2 IR

Ovarian 15154 253 162 Cancer Normal 91 1.78

Ovarian+HI+Noise 15154 253 172 Cancer Normal 81 2.12

Ovarian+HI 15154 243 162 Cancer Normal 81 2

Colon 2000 62 22 Positive Negative 40 1.82

Colon+HI+Noise 2000 62 12 Positive Negative 50 4.16

Colon+HI 2000 52 12 Positive Negative 40 3.33

Prostate 12600 136 77 Tumor Normal 59 1.31

Prostate+HI+Noise 12600 136 87 Tumor Normal 49 1.78

Prostate+HI 12600 126 77 Tumor Normal 49 1.57

CNS 7129 60 21 Class1 Class0 39 1.86

CNS+HI+Noise 7129 60 11 Class1 Class0 49 4.45

CNS+HI 7129 50 11 Class1 Class0 39 3.54

In order to deal with the class imbalance problem, ROS, RUS and SMOTE
were used to sample the training dataset to reach a relative class distribution
balance on class imbalanced gene-expression microarrays datasets.

Area Under the Receiver Operating Characteristic Curve (AUROC) was used
as measure criteria for the classifiers performance; it is one of most widely-used
and accepted technique for the evaluation of binary classifiers in imbalanced
domain [3].

Finally, a non-parametric statistical tests [19] of Friedman and Iman–
Davenport was applied in order to detect whether differences in the results exist.
If the null-hypothesis was rejected, the Holm-Shaffer post-hoc test was used to
find the particular pairwise comparisons that produce statistical significant dif-
ferences. These test were applied with a level of confidence γ = 0.05, by using
the KEEL software [19].

5 Results and Discussion

In this section, main experimental results of this research are presented. Table 2
exhibits, in term of AUROC and rank values, the experimental results obtained
to classify class imbalanced gene-expression microarrays datasets with DL-MLP.
It is noted that when the class imbalance is increased and noise is included in the
dataset (HI+Noise), the classification performance is harmed; however, increas-
ing the class imbalance does not necessarily affect the performance of DL-MLP
(see Prostate and Ovarian datasets). The worst performance of DL-MLP was
obtained for original CNS and Colon datasets, in accordance to AUROC values
(0.539 and 0.721 respectively), and the performance of the classifier is reduced
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when it includes noise (HI+Noise) or more imbalance (HI). It is assumed that
these dataset are less separable than Prostate and Ovarian; thus, noise and imbal-
ance do affect the classifier performance. These results agree with the reported
in others works [2,3], which show that the class imbalance becomes a problem
when the dataset is overlapped or less separable. Also, when SMOTE is applied
to CNS, the performance of DL-MLP trained with this dataset exhibits the
worst performance compared to the other methods; it occurs because SMOTE
generates artificial samples, which could increase the overlapping or noise in the
dataset. Table 2 also shows that Ovarian datasets produces good results for all
methods: even RUS does not harm the performance of the classifier (remem-
ber RUS deletes about 50% of the size dataset), possibly because it is a highly
separable dataset.

Table 2 does not show a direct relationship between the dimensionality
dataset and its percentage of success. For example, Ovarian is the dataset with
highest dimensionality (compared with other datasets used in this work) and the
classification performance of the DL-MLP was close to 1. Thus, AUROC values
obtained for CNS (which has about 50% less features than Ovarian) are close to
0.5, i.e., the prediction is not much better than just flipping a coin.

In general terms, it is noticed in Table 2 that RUS is not a good option
to deal with the class imbalance problem: although it does not considerably
deteriorate the classification performance, the tendency is that RUS presents
results worse than other methods, even by using the original dataset. In contrast,
it is noticeable than ROS and SMOTE improve the DL-MLP performance when
class imbalanced gene-expression microarrays datasets are used.

Table 2. Classification performance of the DL-MLP on class imbalanced gene-
expression microarrays datasets using the AUROC and average ranks (AR).

ROS SMOTE ORIGINAL RUS

Colon 0.865(1) 0.814(2) 0.721(3) 0.694(4)

Colon+HI+Noise 0.873(1) 0.866(2) 0.547(4) 0.563(3)

Colon+HI 0.883(2) 0.898(1) 0.667(3) 0.657(4)

CNS 0.642(2) 0.684(1) 0.539(3) 0.506(4)

CNS+HI+Noise 0.870(1) 0.754(2) 0.512(3) 0.462(4)

CNS+HI 0.781(1) 0.751(2) 0.510(4) 0.548(3)

Prostate 0.861(2) 0.896(1) 0.835(4) 0.839(3)

Prostate+HI+Noise 0.823(2) 0.826(1) 0.712(4) 0.774(3)

Prostate+HI 0.897(1) 0.878(2) 0.853(3) 0.798(4)

Ovarian 0.979(1) 0.978(2) 0.963(3) 0.962(4)

Ovarian+HI+Noise 0.942(1) 0.936(2) 0.886(4) 0.893(3)

Ovarian+HI 0.990(1.5) 0.990(1.5) 0.982(4) 0.949(3)

Average rank 1.375 1.625 3.416 3.583
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Nevertheless, according to the results shown in this section, it is highly
recommended to make a statistical analysis (see Sect. 4). Friedman and
Iman−Davenport non-parametrical statistical tests report that considering a
performance reduction distributed according to chi-square with 3 degrees of free-
dom, the Friedman statistic is set to 29.125, and p value computed by Friedman
test is 2.108 × 10−6. Considering a performance reduction distributed according
to F-distribution with 3 and 33 degrees of freedom, Iman−Davenport statistic is
46.6, and p value computed by this test is 5.804×10−6. Thus, the null hypothesis
is rejected because both: Friedman’s and Iman-Davenport’s tests, indicate that
significant differences exist. Upon these results, it is concluded that a post-hoc
statistical analysis is required. Holm and Shaffer statistics values were obtained,
as well as p-values (Table 3). Holm and Shaffer procedures rejects those hypothe-
ses with an unadjusted p-value ≤ {Holm and Shaffer} values, respectively.

In the Table 3, the Holm-Shaffer test demonstrates non-significant statistical
differences between ROS and SMOTE; however, there is statistical differences
between both methods and Original (i.e., the dataset without any preprocessing)
and RUS. In addition, it shows that does not exist significant statistical differ-
ences between RUS and Original. These results confirm that the worst method
to deal with the class imbalance problem is RUS, while ROS is very competitive
with SMOTE; in other words, does not exist evidence of the predominance of
any of these two methods.

Table 3. The accepted null hypothesis are typed in bold (p-values for α = 0.05).

i Algorithms z = (R0 − Ri)/SE p Holm Shaffer

6 ROS vs. RUS 4.190018 0.000028 0.008333 0.008333

5 Original vs. ROS 3.873790 0.000107 0.010000 0.016667

4 RUS vs. SMOTE 3.715676 0.000203 0.012500 0.016667

3 Original vs. SMOTE 3.399448 0.000675 0.016667 0.016667

2 ROS vs. SMOTE 0.474342 0.635256 0.025000 0.025000

1 Original vs. RUS 0.316228 0.75183 0.050000 0.050000

6 Conclusion

The classification performance of the deep learning MLP to classify class imbal-
anced gene-expression microarrays datasets was analyzed. In accordance to the
results, does not exist evidence of the predominance of ROS over SMOTE or vise-
versa, but the tendency is that RUS presents worse results than other methods,
even when the original dataset is used. On the other hand, does not exists evi-
dence (based on the datasets used in this work), of the relationship between
its dimensionality and the classifier effectiveness on class imbalance scenarios.
However, results show that the noise or separability of the dataset is more deter-
minant than its dimensionality in the classifier performance.
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