Skip to main content

High Thermoelectric Performance due to Nanoprecipitation, Band Convergence, and Interface Potential Barrier in PbTe-PbSe-PbS Quaternary Alloys and Composites

  • Chapter
  • First Online:
Book cover Novel Thermoelectric Materials and Device Design Concepts
  • 835 Accesses

Abstract

Thermoelectric power generation is a direct heat to electric energy conversion technology and can be applied to waste heat power conversion as well. Among thermoelectric (TE) materials, PbTe−PbSe−PbS quaternary alloys and composites are promising candidates for thermoelectric power generation applications in mid-temperature operating range from 500 to ~850 K. On the other hand, the thermoelectric performance of quaternary alloys and composites is not fully optimized regarding composition and synthesis process. Here we present results of investigation of quaternary system PbTe−PbSe−PbS. We found that PbS will form nanoprecipitation in the matrix of quaternary alloy for small content of PbS (≤0.07) which induces the reduction of lattice thermal conductivity. The power factor of PbTe − PbSe − PbS quaternary alloys is significantly enhanced due to band convergence in PbTe1−xSex. As the result of simultaneous PbS nanoprecipitation with coherent interface with the matrix and band structure modification, we obtained extremely high ZT value of 2.3 at 800 K for (PbTe)0.95−x(PbSe)x(PbS)0.05. The chemical potential tuning by effective K doping (x = 0.02) and PbS substitution causes high power factor and low thermal conductivity, resulting in comparatively high ZT value of 1.72 at 800 K. The combination of high Seebeck coefficient and low thermal conductivity results in very high ZT value of 1.52 at 700 K for low Cl-doped (x = 0.0005) n-type (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. Therefore, effective chemical potential tuning, band convergence, and nanoprecipitation give rise to significant enhancement of thermoelectric performance of both p- and n-type PbTe − PbSe − PbS quaternary alloy and composite TE materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Koumoto, T. Mori, Thermoelctric Nano Materials: Material Design and Applications (Springer, Heidelberg, 2013)

    Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

    Article  CAS  Google Scholar 

  4. Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, G.J. Snyder, Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv. Mater. 23, 5674–5678 (2011)

    Article  CAS  Google Scholar 

  5. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Article  CAS  Google Scholar 

  6. J. Androulakis, Y. Lee, I. Todorov, D.-Y. Chung, M. Kanatzidis, High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb. Phys. Rev. B 83, 195209 (2011)

    Article  CAS  Google Scholar 

  7. D. Ginting, C.-C. Lin, L. Rathnam, B.-K. Yu, S.-J. Kim, R. Al Rahal Al Orabi, J.-S. Rhyee, Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1−xKxTe)0.70(PbSe)0.25(PbS)0.05. RSC Adv. 6, 62958–62967 (2016)

    Article  CAS  Google Scholar 

  8. D. Ginting, C.-C. Lin, R. Lydia, H.S. So, H. Lee, J. Hwang, W. Kim, R. Al Rahal Al Orabi, J.-S. Rhyee, High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater. 131, 98–109 (2017)

    Article  CAS  Google Scholar 

  9. J. He, L.-D. Zhao, J.-C. Zheng, J.W. Doak, H. Wu, H.-Q. Wang, Y. Lee, C. Wolverton, M.G. Kanatzidis, V.P. Dravid, Role of sodium doping in lead chalcogenide thermoelectrics. J. Am. Chem. Soc. 135, 4624–4627 (2013)

    Article  CAS  Google Scholar 

  10. Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-Type PbTe, PbSe, and PbTe1–ySey. J. Am. Chem. Soc. 134, 10031–10038 (2012)

    Article  CAS  Google Scholar 

  11. D. Ginting, C.-C. Lin, J.H. Yun, B.-K. Yu, S.-J. Kim, J.-S. Rhyee, High thermoelectric performance by nano-inclusion and randomly distributed interface potential in N-type (PbTe0.93-xSe0.07Clx)0.93(PbS)0.07 composites. J. Mater. Chem. A 5, 13535–13543 (2017)

    Article  CAS  Google Scholar 

  12. H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder, Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv. Mater. 23, 1366–1370 (2011)

    Article  CAS  Google Scholar 

  13. H. Wang, Z.M. Gibbs, Y. Takagiwa, G.J. Snyder, Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci. 7, 804–811 (2014)

    Article  CAS  Google Scholar 

  14. H. Wang, E. Schechtel, Y. Pei, G.J. Snyder, High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 3, 488–495 (2013)

    Article  CAS  Google Scholar 

  15. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012)

    Article  CAS  Google Scholar 

  16. T. Su, S. Li, Y. Zheng, H. Li, M. Hu, H. Ma, X. Jia, Thermoelectric properties of PbTe1−xSex alloys prepared by high pressure. J. Phys. Chem. Solids 74, 913–916 (2013)

    Article  CAS  Google Scholar 

  17. J. Androulakis, I. Todorov, J. He, D.-Y. Chung, V. Dravid, M. Kanatzidis, Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe–PbS. J. Am. Chem. Soc. 133, 10920–10927 (2011)

    Article  CAS  Google Scholar 

  18. H. Wang, J. Wang, X. Cao, G.J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J. Mater. Chem. A 2, 3169–3174 (2014)

    Article  CAS  Google Scholar 

  19. Q. Zhang, E.K. Chere, Y. Wang, H.S. Kim, R. He, F. Cao, K. Dahal, D. Broido, G. Chen, Z. Ren, Nano Energy 22, 572–582 (2012)

    Article  CAS  Google Scholar 

  20. R.J. Korkosz, T.C. Chasapis, S.-H. Lo, J.W. Doak, Y.J. Kim, C.-I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, High ZT in p-type (PbTe)1–2x(PbSe)x(PbS)x thermoelectric materials. J. Am. Chem. Soc. 136, 3225–3237 (2014)

    Article  CAS  Google Scholar 

  21. S.A. Yamini, H. Wang, Z.M. Gibbs, Y. Pei, S.X. Dou, G.J. Snyder, Chemical composition tuning in quaternary p-type Pb-chalcogenides - a promising strategy for enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 16, 1835–1840 (2014)

    Article  CAS  Google Scholar 

  22. S. Aminorroaya Yamini, H. Wang, D. Ginting, D.R.G. Mitchell, S.X. Dou, G.J. Snyder, Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Appl. Mater. Interf. 6, 11476–11483 (2014)

    Article  CAS  Google Scholar 

  23. J. He, M.G. Kanatzidis, V.P. Dravid, High performance bulk thermoelectrics via a panoscopic approach. Mater. Today 16, 166–176 (2013)

    Article  CAS  Google Scholar 

  24. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  25. I.D. Blum, D. Isheim, D.N. Seidman, J. He, J. Androulakis, K. Biswas, V.P. Dravid, M.G. Kanatzidis, Dopant distributions in PbTe-based thermoelectric materials. J. Electron. Mater. 41, 1583–1588 (2012)

    Article  CAS  Google Scholar 

  26. S. Johnsen, J. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, M.G. Kanatzidis, Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460–3670 (2011)

    Article  CAS  Google Scholar 

  27. H. Wang, J. Hwang, M.L. Snedaker, I.-h. Kim, C. Kang, J. Kim, G.D. Stucky, J. Bowers, W. Kim, High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem. Mater. 27, 944–949 (2015)

    Article  CAS  Google Scholar 

  28. D. Wu, L.-D. Zhao, X. Tong, W. Li, L. Wu, Q. Tan, Y. Pei, L. Huang, J.-F. Li, Y. Zhu, M.G. Kanatzidis, J. He, Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ. Sci. 8, 2056–2068 (2015)

    Article  CAS  Google Scholar 

  29. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)

    Article  CAS  Google Scholar 

  30. S.N. Girard, K. Schmidt-Rohr, T.C. Chasapis, E. Hatzikraniotis, B. Njegic, E.M. Levin, A. Rawal, K.M. Paraskevopoulos, M.G. Kanatzidis, Analysis of phase separation in high performance PbTe–PbS thermoelectric materials. Adv. Funct. Mater. 23, 747–757 (2013)

    Article  CAS  Google Scholar 

  31. S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, M.G. Kanatzidis, High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)

    Article  CAS  Google Scholar 

  32. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013)

    Article  CAS  Google Scholar 

  33. T.C. Chasapis, Y. Lee, E. Hatzikraniotis, K.M. Paraskevopoulos, H. Chi, C. Uher, M.G. Kanatzidis, Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. Phys. Rev. B 91, 085207–0852211 (2015)

    Article  CAS  Google Scholar 

  34. H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, J.E. Bowers, A.C. Gossard, A. Shakouri, W. Kim, Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics. Proc. Natl. Acad. Sci. U S A 111, 10949–10954 (2014)

    Article  CAS  Google Scholar 

  35. Y. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, G.J. Snyder, Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater. 4, e28 (2012)

    Article  CAS  Google Scholar 

  36. J. He, S.N. Girard, M.G. Kanatzidis, V.P. Dravid, Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Adv. Funct. Mater. 20, 764–772 (2010)

    Article  CAS  Google Scholar 

  37. H.J. Wu, L.D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, J.Q. He, Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014)

    Article  CAS  Google Scholar 

  38. Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011)

    Article  CAS  Google Scholar 

  39. S.V. Airapetyants, N.M. Vinograd, I.N. Dubrovsk, N.V. Kolomet, Sov. Phys. Solid State USSR 8, 1069–1072 (1966)

    Google Scholar 

  40. Y.K. Koh, C.J. Vineis, S.D. Calawa, M.P. Walsh, D.G. Cahill, Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl. Phys. Lett. 94, 153101 (2009)

    Article  CAS  Google Scholar 

  41. J. Callaway, H.C. von Baeyer, Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149–1154 (1960)

    Article  CAS  Google Scholar 

  42. W. Kim, A. Majumdar, Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99, 084306 (2006)

    Article  CAS  Google Scholar 

  43. W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Gossard, S. Stemmer, Reducing thermal conductivity of crystalline solids at high temperature using embedded nanostructures. Nano Lett. 8, 2097–2099 (2008)

    Article  CAS  Google Scholar 

  44. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, A. Shakouri, Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009)

    Article  CAS  Google Scholar 

  45. A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)

    Article  CAS  Google Scholar 

  46. R. Prasher, Thermal transport due to phonons in random nano-particulate media in the multiple and dependent (correlated) elastic scattering regime. J. Heat Trans. 128, 627–637 (2006)

    Article  Google Scholar 

  47. H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. U. S. A. 112, 8205–8210 (2015)

    Article  CAS  Google Scholar 

  48. S. Ahmad, S.D. Mahanti, K. Hoang, M.G. Kanatzidis, Ab initiostudies of the electronic structure of defects in PbTe. Phys. Rev. B 74, 155205 (2006)

    Article  CAS  Google Scholar 

  49. J. Androulakis, I. Todorov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, M. Kanatzidis, Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands. Phys. Rev. B 82, 115209 (2010)

    Article  CAS  Google Scholar 

  50. L.-D. Zhao, S.-H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.-I. Wu, T.P. Hogan, D.-Y. Chung, V.P. Dravid, M.G. Kanatzidis, High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 133, 20476–20487 (2011)

    Article  CAS  Google Scholar 

  51. P.G. Klemens, Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507–509 (1960)

    Article  CAS  Google Scholar 

  52. W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42–56 (2012)

    Article  CAS  Google Scholar 

  53. H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, A. Shakouri, W. Kim, Large enhancement in the thermoelectric properties of Pb0.98Na0.02Te by optimizing the synthesis conditions. J. Mater. Chem. A 1, 11269–11278 (2013)

    Article  CAS  Google Scholar 

  54. X.X. Li, J.Q. Li, F.S. Liu, W.Q. Ao, H.T. Li, L.C. Pan, Enhanced thermoelectric properties of (PbTe)0.88(PbS)0.12 composites by Bi doping. J. Alloys Compd. 547, 86–90 (2013)

    Article  CAS  Google Scholar 

  55. J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, M.G. Kanatzidis, Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe−PbS. J. Am. Chem. Soc. 129, 9780–9788 (2007)

    Article  CAS  Google Scholar 

  56. C.M. Jaworski, M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, M.G. Kanatzidis, J.P. Heremans, Valence-band structure of highly efficient P-type thermoelectric PbTe-PbS alloys. Phys. Rev. B 87, 045203 (2013)

    Article  CAS  Google Scholar 

  57. H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder, Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl. Acad. Sci. U. S. A. 109, 9705–9709 (2012)

    Article  CAS  Google Scholar 

  58. H. Wang, A.D. LaLonde, Y. Pei, G.J. Snyder, The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586–1596 (2013)

    Article  CAS  Google Scholar 

  59. J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005)

    Article  CAS  Google Scholar 

  60. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    Article  CAS  Google Scholar 

  61. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, G. Ottaviani, Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. J. Solid State Chem. 193, 19–25 (2012)

    Article  CAS  Google Scholar 

  62. C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G.J. Snyder, Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014)

    Article  CAS  Google Scholar 

  63. A.D. LaLonde, Y. Pei, G.J. Snyder, Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material. Energy Environ. Sci. 4, 2090–2096 (2011)

    Article  CAS  Google Scholar 

  64. J. Androulakis, D.-Y. Chung, X. Su, L. Zhang, C. Uher, T.C. Hasapis, E. Hatzikraniotis, K.M. Paraskevopoulos, M.G. Kanatzidis, High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe. Phys. Rev. B 84, 155207 (2011)

    Article  CAS  Google Scholar 

  65. M. Cutler, N.F. Mott, Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969)

    Article  CAS  Google Scholar 

  66. D.M. Rowe, Thermoelectrics Handbook: Marco to Nano (CRC Press, Boca Raton, 2005)

    Google Scholar 

  67. S.V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008)

    Article  CAS  Google Scholar 

  68. K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. J. Appl. Phys. 92, 2544 (2002)

    Article  CAS  Google Scholar 

  69. Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides (Pleanum, New York, 1970)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Soo Rhyee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginting, D., Rhyee, JS. (2019). High Thermoelectric Performance due to Nanoprecipitation, Band Convergence, and Interface Potential Barrier in PbTe-PbSe-PbS Quaternary Alloys and Composites. In: Skipidarov, S., Nikitin, M. (eds) Novel Thermoelectric Materials and Device Design Concepts. Springer, Cham. https://doi.org/10.1007/978-3-030-12057-3_6

Download citation

Publish with us

Policies and ethics