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Abstract Considering mathematics education as a DESIGN SCIENCE has strong
roots in Germany. E. Ch. Wittmann in particular contributed to the establishment of
this approach. From a DESIGN SCIENCE perspective, substantial learning environ-
ments play a crucial role. They comprise mathematical tasks which are connected in
an operative way, indicative of a specific epistemological structure. In such substan-
tial learning environments, students are actively immersed in learning mathematics,
and the learning environments allow for the pursuit of individual and differentiated
learning processes. In this chapter, we first address the scope of Design Science and
pay attention to characteristics of the learning environments and how teaching exper-
iments can be conducted. We then focus on key ideas and their role as a design princi-
ple. In the next section, we provide a comprehensive example of designing a learning
environment. Lastly, we shift our attention to the Design Research approach, which
complements designing substantial learning environments by empirically studying
the initiated learning processes to gain evidence for both theoretical considerations
and design principles.
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3.1 Introduction

DESIGN SCIENCE is aresearch approach with strong roots in Germany. This applies
specifically for the research approach advocated in Dortmund by Wittmann and
Miiller (1990), assigning a central role to so-called substantial learning environ-
ments. Particularly, Wittmann (1995) outlined how these can be a starting point to
establish mathematics education as a scientific field in its own right. That is, exploring
the epistemological structure reflected in such learning environments or reflecting
didactical principles while testing the learning environments in practice adds to a
deeper understanding of both the mathematics involved and students’ learning pro-
cesses. Of course, there have been similar trends in Germany. Some researchers, for
instance, focused on specifying and fostering ‘Grundvorstellungen’ (‘basic ideas’,
see Chap. 1) and informal proving (Kirsch 1978; Blum and Kirsch 1991) or cog-
nitive aspects of mathematical learning environments (Cohors-Fresenborg 1993).
These various approaches share the responsibility for designing learning environ-
ments, testing them in practice and drawing consequences for a partial redesign. All
kept a strong emphasis on the mathematical learning content rather than on generic
pedagogical issues only, and all contributed to elaborating ‘design principles’, serv-
ing as a theoretical background for a research-based design.

In this chapter, we present the traditional ‘Dortmund approach’ of DESIGN SCI-
ENCE with its focus on substantial learning environments as well as more recent
developments towards Design Research.

First, Marcus Niihrenborger and Bettina Rosken-Winter discuss how the theoret-
ical orientations of DESIGN SCIENCE are reflected in Wittmann’s work, especially
in the DESIGN SCIENCE project, ‘mathe 2000’. By doing so, they focus on devel-
opments that are close to Wittmann’s approach and have led to modifications in terms
of research approaches containing collaborative and iterative designs or designing
learning environments along with developing theories (Sect. 3.2). In the following
contribution (Sect. 3.3), Anna Susanne Steinweg points out key ideas as a framework
for designing substantial learning environments in relation to a spiral curriculum.
The key ideas serve as design principles as well as guiding principles for classroom
interaction. In Sect. 3.4, Michael Link presents an example of designing and exam-
ining a substantial learning environment (‘“number patterns in operative structured
sequences of addition in grade 3”). After outlining different stages of developing
such substantial learning environments, we discuss the resulting products (learn-
ing activities for students). This project already marks a partial shift as it combines
elements of DESIGN SCIENCE, the original approach pursued by Wittmann, and
design research, having a greater orientation towards empirically substantiating the
initiated learning processes. Finally, in the last Sect. 3.5 Susanne Prediger reports
on current strands of developing DESIGN SCIENCE into approaches of Design
Research, with their stronger emphasis on empirical investigations. Design Research
aims explicitly at gaining deep insights into teaching-learning processes, and local
theories underpinning the observed learning processes, for classrooms as well as for
professionalization and scaling up processes.
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3.2 Scope of Design Science: Learning Environments
and Teaching Experiments

Advocating ‘mathematics education as a DESIGN SCIENCE’, E. Ch. Wittmann
elaborated on constructing and investigating learning environments. From their very
nature, such learning environments contain substantial mathematical contents. These
allow, on the one hand, for the exploration of the epistemological structure in depth,
and on the other hand, the reflection of didactical principles while testing substan-
tial learning environments in practice, which adds to a deeper understanding of
both the mathematics involved and students’ learning processes. Thus, for Wittmann
“the design of substantial learning environments around long-term curricular strands
should be placed at the very center of mathematics education. Research, development
and teacher education should be consciously related to them in a systematic way”
(Wittmann 2001a, p. 4). Respectively, mathematics education has been conceptu-
alized as a constructive scientific discipline that has contributed teaching concepts,
units, examples, and materials. The main objective has been to develop feasible
designs for conceptual and practical innovations, involving the teachers actively
in any design process. In the following sections, we briefly explore the roots of
DESIGN SCIENCE (Sect. 3.2.1), elaborate on the role of substantial learning envi-
ronments (Sect. 3.2.2), and finally pay attention to the design of teaching experiments
(Sect. 3.2.3). For a more detailed discussion of DESIGN SCIENCE and its relation
to other European strands in mathematics education, we refer to Akinwunmi et al.
(2016).

3.2.1 Roots of DESIGN SCIENCE

The fundamental scope of mathematics education has been the initiation and support
of the deep mathematical learning processes of students. Therefore, one important
research approach is aimed at designing learning environments, exploring the induced
learning processes, and deriving fundamental design principles. In the German-
speaking tradition, the notion of DESIGN SCIENCE is closely connected with
Wittmann (1995), who has emphasized and elaborated this research approach over
the past decades. The careful analysis of the mathematical substance and the poten-
tials of mathematical structures within the specific designs have played a prominent
role. In this regard, the concept of DESIGN SCIENCE is embedded in the German
Stoffdidaktik tradition (cf. the respective chapter in this book). Describing “the spe-
cific status and the relative autonomy of mathematics education”, Wittmann (1995,
p- 355) pointed out that mathematics education on the one hand differs essentially
from pure mathematics, and on the other hand is not simply a conglomerate discipline
of mathematics involving related sciences such as psychology, sociology, or peda-
gogy. Rather, this ‘research approach’ is characterized as an applied approach whose
core task is to develop practical, constructive products of acknowledged quality for
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teaching mathematics. Thus, this core task encompasses many different components
such as analysing mathematical activities and related mathematical thinking, as well
as developing local theories on mathematising or problem solving, to name but a few
(Wittmann 1995).

DESIGN SCIENCE, according to Wittmann (1995), deals with the artificial
objects of mathematics teaching (i.e., with exercises as well as specific mathemat-
ics learning and teaching processes) and adapts these constructively with a view to
further developing mathematics education. The focus on designing for teaching and
learning has already been referred to in former times as, for instance, by Simon (1970)
who distinguished between ‘artificial sciences’ and ‘natural sciences’ as follows:

Historically and traditionally, it has been the task of the science disciplines to teach about
natural things; how they are and how they work. It has been the task of engineering schools
to teach about artificial things: how to make artefacts that have desired properties and how
to design. (Simon 1970, p. 55)

In this sense, artificial sciences develop and study artificial objects that are in prin-
ciple adaptable and can be changed with reference to specific objectives or functions.
In 2005, Lesh and Sriraman still called for re-conceptualizing “the field of mathemat-
ics education research as that of a design science akin to engineering and other emerg-
ing interdisciplinary fields which involve the interaction of ‘subjects’, conceptual
systems, and technology influenced by social constraints and affordances” (p. 490).
However, optimising how mathematics is taught in the classroom and developing
practical aids for teachers has been pursued by researchers over the past decades,
employing design research with different foci (Gravemeijer and Cobb 2006; Lesh
and Sriraman 2005; HuBmann and Prediger 2016; Ruthven et al. 2009; van den Akker
et al. 20006).

3.2.2 Characteristics of Substantial Learning Environments

Wittmann and Miiller (1990) concentrated their design efforts on what they called
substantial learning environments, as this focus allows different aspects of several
disciplines (like psychology, sociology or pedagogy) relevant for teaching and learn-
ing mathematics to be integrated (Wittmann 1995). From their perspective, students’
learning is an active process, assigning particular relevance to pedagogical theories
and methods of social learning.

The term ‘substantial learning environment’ refers to mathematical tasks which
are connected in an operative way. That is, a focus on mathematical structures sets the
frame for students to learn mathematics in an active and cooperative way. Therefore,
the tasks are adapted to the level of learners’ thinking and offer different learning
ways for the students. In this sense, learning environments are open for individual and
differentiated learning processes. The inherent structures of learning environments
induce impulses for students’ comprehensive learning processes. By referring to the
educational philosophy of Dewey (2008), Wittmann points out that the logically
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ordered mathematical content is the basis used to describe the earlier and later stages
of a single developmental learning process. For teaching mathematics, this process
has to be viewed from two directions as aptly outlined below:

From the side of the child, it is a question of seeing how his experience already contains within
itself elements facts and truths of just the same sort as those entering into the formulated
study; and, what is of more importance, of how it contains within itself the attitudes, the
motives, and the interests which have operated in developing and organizing the subject-
matter to the plane which it now occupies. From the side of the studies, it is a question of
interpreting them as outgrowths of forces operating in the child’s life, and of discovering the
steps that intervene between the child’s present experience and their richer maturity. (Dewey
1966, p. 11)

With respect to mathematics, the following core characteristics of substantial
learning environments reflect these thoughts:

e They represent fundamental objectives, contents, and principles of mathematical learning
at a particular level.

e They are based on fundamental mathematical content, processes, and procedures beyond
this level and contain a wealth of mathematical problems (‘exercises’).
e They can be flexibly tailored to the specific conditions of a particular class.

e They integrate mathematical, psychological, and educational aspects of mathematics
teaching and learning and therefore provide a rich field for empirical research

e (Wittmann 2001a, p. 2).

In order to design substantial learning environments, Wittmann (1995) considers
the mathematical substance of the exercise, or in other words the ‘epistemological
structure of the topic’, to be of particular importance. The latter provides the basis
of composing mathematical activities for children at very different ages and levels.
However, the mathematical substance does not appear as the systematic deductive
structure of already ‘finished’ mathematics. Rather, it recalls Freudenthal’s ideas
and helps with the understanding of mathematics from a learner’s perspective on the
subject.

Classical substantial learning environments are, for example, arithmogons or num-
ber walls (Fig. 3.1).

The rules for calculating within the number wall or the arithmogon are very
simple: Add the numbers of two adjacent fields and write the sum in the field above
(number wall) respectively outside of the corresponding side (arithmogon). Based on

Fig. 3.1 An arithmogon
(Wittmann 2001b, p. 193)

and a number wall 25

11 14
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the mathematical substance of these two exercises, substantial learning environments
that vary in their focus of initiating deep learning of mathematics can be developed
(see Fig. 3.2).

For example, one can find different problems for adding and subtracting numbers
within the triangle by offering different numbers inside and/or on the outside of the
triangle. The operational structure of the arithmogons can be examined by changing
the entries in the fields systematically (see Fig. 3.3). In this sense, the sequence
of tasks and problems can arise naturally from the mathematical substance of the
context.

While the epistemological structure of the subject offers an essential orientation
for evaluating learning environments, the creative act of designing new learning envi-
ronments ultimately is not explicitly comprehensible and explainable. This depends
mainly on the ‘constructive imagination’ of the designer (Wittmann 1995). Nonethe-
less, according to Wittmann (2015), the following characteristics provide orientation
for developing substantial learning environments: mathematical substance and rich-
ness of activities at different levels, assessment of cognitive demands, curricular
fit (in terms of content and general learning objectives), curricular coherence and
consistency, curricular coverage, exercise potential, and the estimation of the time
required. Ultimately, mathematics education considered as a DESIGN SCIENCE is
a creative science, based on the solid knowledge of fundamental mathematical struc-
tures and processes combined with the profound knowledge of children’s learning,
professional learning requirements, and objectives of mathematics teaching, also
with a reference to curricular frameworks.

For Wittmann (2001b), substantial learning environments are conducted as teach-
ing experiments, which do not encompass complete and detailed lesson units. Instead,
to learners substantial learning environments are revealed as a space for error and
discovery as well as a path of their own learning.

Fig. 3.2 The algebraic
structure of an arithmogon

and a number wall a+2b+c
a+b b+c
— a b c
a+b
Finde passende Zahlen. Wie viele Maglichkeiten? Wie @ndern sich die Aufienzahlen? Finde die Innenzahlen.
(a) (b) (c) (a)
30 5 15 49 15 36 50 37 51 38
10 25 3% 2 3% 2
35 55 55 55

Fig. 3.3 Variations of problems: ‘Find the suitable numbers. How many possibilities?” and ‘The
outside numbers are changing. Find the inside numbers’ (Nithrenborger and Schwarzkopf 2017)
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3.2.3 Conducting Teaching Experiments for Improving
the Design

The quality of the learning environments developed by Wittmann has been contin-
uously reviewed in collaboration with teachers, and so the processing of learning
environments has undergone cyclical revisions. Echoing Piaget’s clinical interviews,
Wittmann (1995) proposed ‘clinical teaching experiments’ as a suitable empirical
method:
As a result we arrive at ‘clinical teaching experiments’ in which teaching units can be used
not only as research tools, but also as objects of study. The data collected in these experiments
have multiple uses: They tell us something about the teaching/learning processes, individual
and social outcomes of learning, children’s productive thinking, and children’s difficulties.
They also help us to evaluate the unit and to revise it in order to make teaching and learning
more efficient. [...] Clinical teaching experiments can be repeated and thereby varied. By
comparing the data we can identify basic patterns of teaching and learning and derive well-
founded specific knowledge on teaching certain units. (Wittmann 1995, p. 367f.)

Following the idea of ‘lesson studies’ (Fernandes and Yoshida 2004), a group
of teachers (and researchers) work together by planning, teaching and discussing a
concrete teaching unit. In order to finally revise the teaching unit, the teachers not
only discuss the documents of the lesson but their impressions and observations as
well, with reflection on the initiated processes. Learning environments in particular
serve as a basis to closer investigate the teaching experiments with the mathematics
teaching and learning processes, especially the mathematical thinking of students.

For example, within the project PEnDEL (practice-oriented development projects
in discussion with educators and teachers; Schwarzkopf et al. 2018), different teach-
ing experiments are designed to provide a rich frame for comparing tasks with a
view on the mathematical structures. The teaching experiments are based on the
assumption that individual learning processes always depend on an active discussion
of mathematical issues and, at the same time, are also linked to social interactions
where such discussions are realized. Therefore the didactical principles (e.g. opera-
tive principle, natural differentiation, spiral principle, genetic principle) for designing
the teaching experiment are enriched by ‘productive irritations’ for fostering math-
ematical argumentation processes (Niithrenborger and Schwarzkopf 2016). To this
end, the pupils should challenge routinely generated expectations in the processing
of assignments or in a mathematical observation. Such a productive irritation should
create an opportunity for the children to recognise a subject-specific conflict, while
on the other hand trying to resolve it argumentatively. In this sense, a productive irri-
tation needs to be ultimately understood as a deviation from received expectations
that require resolution.

Next, we provide an example of a short teaching experiment, fostering the math-
ematical argumentation processes of children in a primary class (4th class) (Niihren-
borger and Schwarzkopf 2016). First, the children calculate a sequence of number
walls; increasing the number in the bottom box on the right and decreasing the num-
ber in the bottom left box by the same amount leaves the number at the top of the wall
constant (keeping the same number in the middle of the bottom row) (see Fig. 3.4).
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The children calculate the number at the top and try to find arguments to explain
the constancy of the number at the top of the wall. However, having calculated
some of these tasks, the students just focus on the changing bottom numbers without
reflecting on the structure of the number wall (see Fig. 3.5). For example, the written
document refers to the relation of the corner numbers (+10 and —10) as argument
for explaining the equality of the results.

For rich argumentation, it is important that the children reason not only on a
number level, but take into account the terms for calculation. In a complement task,
the children are confronted with another number wall that does not exactly fit the
previously discovered pattern (see Fig. 3.6). So, the question for the children was:
Will the number at the top of the wall change or not? This is considered a productive
irritation, helping the children to become aware of the special function of the number
in the bottom middle box.

The example shows how substantial learning environments pursue not only the
goal to provide mathematical learning opportunities for students, but to enrich teach-
ers’ understanding of their learning processes. In view of reaching the ultimate goal
of fostering children’s argumentation, the first approach of designing the learning
environment is only partly successful. Based on the initiated reasoning, the teaching
experiment has been modified so that conducting cyclical teaching experiments is
an essential methodological prerequisite within the DESIGN SCIENCE approach.

550 | " 650 | " Nl
[460 [190 | —lasd | zo_‘ lfm’lﬂ)l

330 80 110 | 370 360 | 130

i ] ) | |

Fig. 3.4 An operative series of number walls with constant number at the top of the wall

Wes falle e suf } What do you notice?
ﬁm_w_m_ ” M The result is always the same
+ -
& M .',.'o 10 because first +10 and then -10.

‘Warum ist das so? Begriinde.
! / ot 2A oy €4 ’{w- /, Why? Justify.
= M Because it is first + and then -
M g‘L ,4 t ) 10, so equals 0.

Fig. 3.5 A child’s explanation of the constant number at the top of the number walls (see Fig. 3.4)

Fig. 3.6 A new series of
number walls with a constant

number at the top of the wall ‘

‘380‘80 ‘110‘[365‘95 ‘95 ‘
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Designing and researching substantial learning environments has substantially
permeated research in mathematics education. Chapter 2 and this chapter provide
some current examples that centre research on such learning environments, but pursue
different emphasis as well. Thus, the concept of DESIGN SCIENCE has undergone
some change, both in terminology as well as methodology.

3.3 Identifiying and Following Key Ideas as a Design
Principle

Research in mathematics education as a DESIGN SCIENCE in line with Wittmann
(1995) puts emphasis on a constructive element, i.e. designing substantial learning
environments. As outlined in Sect. 3.2, these are based on fundamental mathematical
content and represent fundamental objectives (Wittmann 2001a). One pending issue
still to be resolved is identifying content, which is fundamental in this sense. This is
where key ideas of mathematics come into play.

In this chapter the different meanings of these key ideas are specified. Afterwards,
some brief insights into two examples of using key ideas in research projects are
given. Furthermore, in the projects’ descriptions the interweaving relation between
key ideas as normative settings and empirical research is addressed.

3.3.1 Theoretical Reflections on Key Ideas of Mathematics

In the early 1970s—around the same time as the founding of the German Society of
Didactics of Mathematics (GDM)—different studies on fundamental ideas of math-
ematics and mathematics education started to appear in Germany. The papers at
that time try to assure and reassure the newly established community of its purpose
and aims. Some of the studies focus on mathematical behaviour and mathematics as
an activity. Others address mathematics education as a recently encountered inde-
pendent research field. And last not least, studies put an emphasis on the scope of
mathematics contents and topics.

The concept of structuring the ‘body of knowledge’ by fundamental ideas dates
back to Bruner (1966a, p. 41). In Bruner’s work various terms, such as ‘basic idea’,
‘general idea’, or ‘fundamental idea’, can be already identified (Bruner 1966b). In
subsequent studies and literature the various terms are taken up by others or even the
scope is broadened by big ideas, core ideas, etc.

The understanding of key ideas in the current studies seems to depend on miscel-
laneous underlying meanings. It is indeed futile to attempt to nail down each term in
its specific meaning, although the respective focus on (key) ideas can be identified.
Bruner (1966b) has already used such ideas with the aim of at least two objectives:
He merges thoughts on basic subjects and the grasping of general principles or atti-
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tudes of mathematical thinking by the learner whilst working on these basic contents.
In a nutshell, the aim of using key ideas is twofold: a focus on specific mathemat-
ical thinking processes on the one hand, and a focus on fundamental mathematical
content on the other.

3.3.1.1 Focus on Key Ideas of Mathematical Thinking

In different papers, mathematical thinking is attributed to special objectives and
behaviour (for more detailed information, see Vohns 2016). For instance, Bender
and Schreiber (1985) record inter alia ideation and exhaustion to be fundamental for
geometrical thinking. Vollrath (1978) characterizes no specific mathematical think-
ing types but defines ideas to be fundamental indirectly by the impact of such ideas
within an individual thinking process:

When I speak of ideas in the following, I mean the crucial thought of a theme, the substantial

core of a consideration, a fruitful inspiration while solving a problem, the leading question

of a theory, the central statement of a proposition, the underlying relations of an algorithm,

and the images linked to conceptualization. (Vollrath 1978, p. 29, translation by the author

of this paper)

Other studies outline the understanding of mathematical ideas in the context of
learning and mathematics education, e.g. Winter (1975) identifies general ideas of
learning mathematics in using heuristic strategies, proving, mathematising, formaliz-
ing, and using mathematical skills. The attempt to describe certain cognitive activities
to be typical of mathematical thinking is still ongoing. Current studies mostly reflect
on the register that the Organisation for Economic Co-operation and Development
(OECD 2013) identifies as so-called mathematical literacy and the therein described
mathematical processes “formulating situations mathematically; employing mathe-
matical concepts, facts, procedures, and reasoning; and interpreting, applying and
evaluating mathematical outcomes” (p. 9) and fundamental mathematical capabil-
ities. Moreover, in this view it is common to differentiate mathematical thinking
gradually in competence levels which are denominated to be reproductive, connec-
tive, or reflective.

In summary, this perspective tries to outline the specific components of thinking
which define thinking processes and attitude to be mathematical. This meaning of
fundamental or key ideas is taken up in current standards and curricula as so-called
process goals or principles. Hence, they define fruitful teaching and learning inter-
actions, attitudes, and beliefs towards favourable terms of learning mathematics.

3.3.1.2 Focus on Key Ideas of Mathematical Content Cores

In a different perspective, it is not the thinking and interaction processes that are
focused upon but the core content areas. The approach used here follows a con-
structive orientation in order to provide practical and concrete designs (Wittmann
1974).
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Learning mathematics is not an event but a lifelong process. Mathematical key
ideas are one possible answer to identify strands—aligned to age and level of devel-
opment—but also to keep in mind the big picture and connectivity. Bruner recom-
mends to present knowledge as a connected set of facts in a sufficient structure to be
re-examined throughout both primary and secondary school (Bruner 1966b).

The scope of mathematical contents, which is considered to be crucial and sub-
stantial, constitutes key ideas. Of course it is necessary to condense mathematical
contents in such ideas which are continuative and expandable. This concentration in
key ideas allows one possible orientation for researchers and teachers.

In order to provide teachers with an orientation beyond substantial learning environments,
it is useful to summarize basic knowledge about mathematics, learning, and teaching math-
ematics in didactical principles. One principle, for example, is “orientation on fundamental
mathematical ideas”. (Wittmann 2016, p. 26)

In accordance with Whitehead’s (1929) view on mathematical education,
Wittmann follows the idea to restrict the teaching contents (Table 3.1) and not to
choose any subject but the mathematical important ones in line with Freudenthal
(1983). Ideally, key ideas are never out of fashion because mathematics and its struc-
tural important subjects do not change.

Key ideas make it possible to get an overview of important topics from kinder-
garten up to grade 12. They allow for the understanding of content areas at a
glance. This possibility should not be underestimated especially by both teachers
and researchers. Focusing on the relations and connections of topics in mathematics
education stops the whole picture from being put on the line and from creating isolated
or disconnected (Whitehead 1929) teaching-learning-environments, which would be
useless for mathematical literacy or the development of fundamental mathematical
thinking. At best, key ideas, metaphorically spoken, function as the backbone of the
living body of the lifelong mathematical education process.

For research, key ideas function as a framework for designing substantial learning
environments. Lifelong learning in terms of a spiral curriculum allows individuals

Table 3.1 Key ideas (Wittmann and Miiller 2012, pp. 160-161)

Ideas of arithmetics

Ideas of geometry

Ideas of stochastics

Number line

Shapes and their
constructions

Quantitative description of
random events

Calculating, properties,
calculating strategies

Operating with shapes

Probability

Number system

Co-ordinates

Random experiments

Algorithms

Measurements and formulas

Formulas

Arithmetical patterns and
structures

Geometrical patterns and
structures

Stochastic patterns and
structures

Numbers in daily life

Shapes in daily life

Random events in daily life

Translation in number- and shape-language

Stochastic modelling




72 M. Niihrenborger et al.

to deepen their understanding while working on these designed tasks in continuous
strands of key ideas.

3.3.2 Two Examples of Using Key Ideas

Key ideas can be seen as normative settings determined by mathematics itself, even
though empirical research is consistent with these ideas. On the one hand, mathemat-
ics education as a DESIGN SCIENCE (Wittmann 1995) needs researchers and expert
practitioners to translate the ideas into suitable learning environments and tasks. In
doing so, the design naturally takes into account empirical findings according to
learning conditions which are psychologically and educational sound. On the other
hand, mathematics education research is requested to evaluate the effects and impacts
of the implementation of the environments on students’ abilities and mathematical
development.

The key ideas serve as designing principles for substantial learning environments.
The research responsibility is to identify crucial key ideas and learning trajectories
and to implement these ideas into tasks and SLEs. Consequently, these activities
provide access to the key ideas and allow sensibility for the main subjects:

The language in which substantial learning environments are communicated is understand-
able to teachers, so reflective practitioners have good starting points to transform what is
offered to them into their context and to adapt, extend, cut, and improve it accordingly.
(Wittmann 2016, p. 25)

The projects briefly presented in this chapter are assigned to the essential phases of
transition concerning primary school, i.e. the transition from kindergarten to school
and the transition from primary to secondary school. Both approaches aim to support
the smooth transition phases by pinpointing mathematical key ideas.

3.3.2.1 Mathematical Key Ideas in Kindergarten

Early mathematics in kindergarten is commonly regarded as being an important
lifelong learning process. Nevertheless, the scope of core areas has not yet been
entirely agreed upon. The role of key ideas here is to suggest one possible approach
of an overview of important subjects.

In our design and research project MAIKE (Mathematics in Kindergarten), we
take into account the wide range of competencies which are considered to promote a
successful school beginning, different content areas such as number and operations,
geometry and spatial sense, measurement, pattern, etc. as described in the learning
paths or the big ideas (e.g. NAEYC & NCTM 2010; Wittmann 2009).

In this project, the design of a little application for tablet use is the specific
vehicle for allowing children, parents, and kindergarten educators to gain access to
the normative set of important key ideas. The design idea is to provide awareness
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of the wide range of suitable mathematical contents (for both children and adults).
The purpose of the digital feature is to tempt children and adults to explore real life
mathematical objects and analogous situations.

Of course the design of tasks and learning situations has to be accompanied by
empirical research on the use, accessibility, and impact of the substantial learning
environments: “The big ideas or vital understandings in early childhood mathematics
are those that are mathematically central, accessible to children at their present level
of understanding, and generative of future learning” (NAEYC & NCTM 2010, p. 6).
For instance, first case studies indicate substantial differences between the abilities
and competencies shown in an interview versus the digital play environment (Birklein
and Steinweg 2018).

Key ideas in this research end up in designing digital learning environments.
They thereby offer adults the chance to become aware of the mathematical contents
and activities suitable for kindergarten children, and are helpful to overcome the
widespread uncertainty of kindergarten educators, which subjects should be provided
in early maths education. Furthermore, they may hopefully serve as an implicit in-
service education to kindergarten teachers (and parents).

3.3.2.2 Key Ideas of Algebraic Thinking

In the field of algebraic thinking, the particular situation in Germany asks for key
ideas for some other reason. Algebraic thinking is not mentioned in primary curricula
and therefore the fundamental rule in the interplay of contents and topics is neglected
(Steinweg et al. 2018). Hence, key ideas in this branch of mathematics pave the way
to become aware of algebraic ideas as a possible subject in primary mathematics
education.

International research indicates major ideas and core areas of algebraic thinking
(e.g. Kaput 2008), even though these registers are not suitable for German teachers
and thus have no influence on teaching-learning-situations in schools. Key ideas have
to be made accessible in the specific cultural context. Furthermore, they have to take
into account the existing ideas of mathematics and work out the interplay between the
common and the supposedly new ideas. Only the connectivity of key ideas ensures
dissemination and implementation in classrooms. Moreover, the sensible emphasis
on the interweaving of contents protects classroom interaction against disconnected
and isolated teaching.

The major branch of patterns and structures, which is given in the national stan-
dards (KMK 2004), is taken up as a possible link to algebraic thinking. This content
area is controversially discussed and difficult to grasp for teachers. The offer of alge-
braic key ideas thereby gives one possible answer to the open question of which
topics might be condensed in this twosome concept. Consequently, the key ideas of
algebraic thinking are formulated in the spirit and wording of patterns and structures:
patterns (and structures), property structures, equivalence structures, and functional
structures (Steinweg 2017).
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Exemplarily, one SLE in the idea of property structures is sketched here. Numbers
have certain properties, which can be discovered and described. For instance, the
divisibility relation between natural numbers is essential in mathematics. The abstract
relation can be made accessible if the product is regarded as a rectangle area with a
given length and width, k and a (see Fig. 3.7).

The rectangle has the area b which is—for given a and k—equal to the number of
squares in the field on a piece of grid paper. Many mathematically sound activities
arise from this idea of rectangles as a representation of factors as edge length. Special
numbers that only have two dividers can be identified as numbers with only one
possible representation (prime numbers). Numbers that can be divided by 3, 4, 5,
etc. can be found and compared.

If the divisibility by two is investigated, odd and even numbers can be displayed.
Moreover, not only the properties of numbers but the properties of additive operations
on these numbers can be investigated by children. The introduced representation of
rectangle areas allows the discovery of the remarkable behaviour of the sums of odd
addends to be even (see Fig. 3.8).

This example illustrates the impact of key ideas put into concrete terms of learning
environments and tasks. Key ideas allow teachers to become aware of main topics
and fruitful tasks in order to initiate and enhance the chances of children’s learning
processes.

Va,b € N: alb
<= 3Jk €N, k b
suchthatb =k-a

Fig. 3.7 The definition of the divisibility relation represented as a rectangle

Fig. 3.8 Properties of sums 1 ql' 1
of odd and even numbers r = TR - :
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3.3.3 Closing Remarks

The two illustrations given above indicate the possibilities of key ideas. First of
all they serve as the designing principles for researchers in a constructive under-
standing of mathematics education. They function as a framework for designing
substantial learning environments and adequate material. In addition to the area of
research therein (identifying key ideas and design), research thereafter is essential.
This research evaluates and eventually adjusts the designed environments on the one
hand, and monitors and supports children’s learning processes and developments on
the other.

For teachers, key ideas serve as guiding principles for classroom interaction. They
allow for the awareness of core contents and to differentiate between important tasks
and questions and less fruitful ones.

Teachers need to work with learners on the fundamental ideas behind topics. The Chinese
teachers seem to me to be paying explicit attention and taking time over what I would call
core awareness, or threshold concepts. Everybody can work at those, everybody can take
that in, anybody who can get to school can comprehend them. (Mason 2016, p. 45)

Key ideas enhance the chances of children’s learning processes. At the same time
they put emphasis on the core objectives of children’s developments. The important
steps and milestones can be seen as being structured along the key ideas for both
teachers and children.

3.4 Describing Number Patterns. an Example
for Designing a Learning Environment

Within his concept of mathematics education as a DESIGN SCIENCE, Wittmann
points out different options to combine design with empirical research (Wittmann
1995). One is the ongoing design, evaluation and revision of learning environments
in cyclic teaching experiments. This iterative approach is a common characteristic
of comparable accounts to intertwine design and research known as design research
or design-based research. Combining design and empirical research is a suitable
methodological account when an educational problem is recognised and there are
not yet sufficient solutions available to ‘solve’ this problem in educational practice
(Plomp 2013; Kelly 2013; Gravemeijer 1994). Sketching the problem should form
the starting point of every design research project, and therefore, I will briefly outline
the background and the problem of the project presented here: Why is it necessary
to design learning activities on describing number patterns?

Communication competences, which are specific for the discipline, are part of
revised mathematical curricula and standard listings all over the world. Following
the NCTM standards in the US, for example, students should learn to “organize and
consolidate their mathematical thinking through communication”, to “communicate
their mathematical thinking coherently and clearly to peers, teachers and others”,
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and to “use the language of mathematics to express mathematical ideas precisely”
(NCTM 2000). These competences do not only contribute to the communication
between individuals, but through communicating about mathematics, students should
deepen their individual understandings of mathematical concepts and procedures.
Writing about mathematics in particular has this effect because, in contrast to oral
communication, a much more precise language and complete explanation and thus
a deeper analysis is required (Morgan 2001; Elliott 1996). Morgan (1998, p. 25)
speaks in this context of ‘writing-to-learn’ mathematics. But she also points out that
these writing competences of students do not evolve naturally and spontaneously;
teachers should plan focused opportunities for students to practice ‘learning-to-write’
mathematics.

A simple and not too complex example for ‘writing-to learn’ and ‘learning-to-
write’ mathematics in the first years of primary school are the so-called Entdeck-
erpdckchen (Discovering Pacs) (see Fig. 3.9). These are series of calculations that
emerge through operative variations of the given numbers. Besides practising com-
putational competences, students can also discover a pattern and continue it (What
comes next?), they can investigate the connections between the variations of the given
numbers and the results (What happens with the result?), and they can describe the
discovered patterns (What do you notice?).

The patterns in Discovering Pacs are based on general operation-specific prop-
erties (e.g. the sum remains constant if the summands are varied in the opposite
direction by the same amount, or the difference remains constant if minuend and
subtrahend are varied in the same direction by the same amount). By recognising
the patterns and connections and particularly by formulating precisely and writing
down their discoveries, students can extend their understanding of the arithmetic
operations by exploring these properties (in the sense of Morgan: ‘writing-to-learn’
mathematics). By focusing on general properties of operations and by stimulating
typical mathematical processes like generalization and abstraction, describing pat-
terns in Discovering Pacs can be seen as a valuable pre-algebraic activity (Steinweg
2013). But in order to fully initiate these learning processes, it is not sufficient just
to ask students to write down what they notice; students’ first attempts to describe
number patterns show often potential to improvement (Frobisher and Threlfall 1999;
Steinweg 2004). These first attempts can be used as a starting point for further dis-
cussions, reflections and revision for formulating descriptions of number patterns
in the classroom, so that the students have the opportunity to ‘learning-to-write’

Fig. 3.9 Examples for 65+11= 65—11=
discovering pacs
55+21= 75-21=
45+31 = 85-31=

35+41 = 95-41=
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mathematics. It was the aim of the project presented here to design such learning
opportunities.

3.4.1 Stages of the Design Research Project

Characteristic for a design research project, a cyclic approach of designing, testing
in teaching experiments, and revising and redesign was employed (van den Akker
et al. 2006), similar to the concept of lesson studies (Lewis et al. 2006). With the
project progressing, the teaching experiments took place under increasingly realistic
conditions in classroom situations.

3.4.2 Stage 1: Clarifying the Starting Points

In an initial stage of the project, data was collected on how students in grade 3
describe number patterns in Discovering Pacs, if they were not accustomed to them
through previous teaching. The aim of this stage was to document the instructional
starting points on which the following learning activities could be built upon (Cobb
and Gravemeijer 2008).

The analysis resulted in criteria to evaluate students’ descriptions and provided
examples that could be used as materials in classroom activities initiating discussions
with students about the quality and quality criteria of number pattern descriptions.
Besides the criteria—such as the extent of the description and accuracy and preci-
sion—it was interesting that some students described both variations and the positions
on which these variations took place and others did not (see examples in Fig. 3.10).

3.4.3 Stage 2: Interviews with Students

After the initial stage, a first draft of learning activities was designed. Two of
them, Beschreibungen vergleichen (Comparing Descriptions) and Beschreibungen
verbessern (Improving Descriptions), required students to evaluate one or several
given descriptions to a Discovering Pac, to think about what the author could have
meant by writing this, and to suggest how the descriptions could be improved. The
aim of these activities was to stimulate discussions and reflections with students upon
the quality criteria of number pattern descriptions and applying them in order to find
a better description. These two activities were tried out in teaching experiments
(Wittmann 1995), in interviews with students from grade 3.

All participating students were able to criticize the given descriptions by implicitly
referring to the quality criteria of number pattern descriptions. For example, as a
reaction to the Discovering Pac at the left in Fig. 3.11, one student argues why he
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Fig. 3.10 Examples for descriptions (Translations, starting with the description at the top: “It’s 65
and 30 more”; “In front, there are always 11 more, behind, there are always 10 less, the result is
always 1 more”; “The first is different, the second is +10, after the = it is +1”; “There are always
10 and 1 Changes”; “I notice that it is easy”; “At 21, 32, 43, 54, 65 it is always +11. At 70, 60, 50...
itis always +10. At 91, 92, 93, ... it is always +1”; “In front, there are always 11 more.”; “There is
always 91, 92, 93, 94.”; “Always +10”)

35+5=40 15+10=25
36 +4=40 15+20=35
37+3=40 15+30=45
38+2=40 15+40=755
Leon writes: Mary writes:

The numbers at the front are different.  It’s always one more.

Fig. 3.11 Two examples for the learning activity Improving Descriptions that were used in inter-
views (translated by the author of this paper, see Link (2012) for the originals)

doesn’t like the description: “Because it depends not only on the numbers here at
the front. You have to look also at the numbers behind (points to the column with
the second summands) and here at the back (points to the column with the sums).”
(Translated by the author.) In reaction to the Discovering Pac and the description to
the right, another student says: “Because what is always one more, the tens or the
ones [...] It could also be that he means the ones, but this isn’t correct.” (Translated
by the author.) While the first student criticizes the extent of the given description,
the second refers to the accuracy of the description as it is not clearly stated which
object or position is varied ‘always one more’.
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3.4.4 Stage 3: Teaching Experiment in Two Classrooms

The interviews have shown that it is possible to reflect with third graders on quality
criteria of pattern descriptions. The two learning activities were then used with three
additional activities in a teaching experiment in two classes consisting of seven
lessons, including a test at the beginning and at the end of the experiment. Teaching
materials were provided for all five learning activities (work sheets for students,
posters, teacher instructions at the beginning and the end of the lessons) and discussed
with the math teachers of both classes. The math teachers conducted the teaching
experiment in their own classes, the researcher was present during the lessons as
co-teacher.

One of these five learning activities had the name Markieren und Schreiben
(Colouring/Highlighting and Writing). In this learning activity, the students are asked
to use colour to highlight all the places in the Discovering Pacs where they noticed a
pattern or something else that they found noteworthy. In a second step, they should
write a sentence for every colour used. The intention was for the students to first
document their discoveries in a nonverbal way and then use the colours as a scaffold-
ing to write down everything they discovered. The colours could also be used with
finalising the writings as reference to the positions in the Discovering Pac (where
something is remarkable), as a help if suitable words or expressions to verbalize this
aspect of the pattern are missing. The students used this help in very different and
creative ways. Some used coloured dots to express what position their sentence is
referring to (see Fig. 3.12, on the left), others used the colours in a verbalized way:
“At green ...” or “The blue numbers...” (see Fig. 3.12, on the right).

The expression of positions by colours can work as a ‘bridge’ between infor-
mal, everyday language and mathematical language, particularly as the students will
then proceed to find and collect words and expressions to verbalize the positions
in the Discovering Pacs without the use of colours. This way, technical terms like
‘summand’ or ‘sum’ can be introduced by the teacher, too.
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Fig. 3.12 Student documents from the learning activity Colouring/Highlighting and Writing
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In contrast to the test at the beginning of the teaching experiment, the extent of the
number pattern descriptions increased noticeably among most of the students who
had participated in this learning activity. Almost all students were able to verbalize
the positions in the Discovering Pacs or make a reference to the coloured markings
they applied themselves.

3.4.5 Stage 4: Evaluation of the Materials in Seven
Classrooms

Based on the results of the teaching experiments in stages three and four, all materials
were revised and modified. In a final stage of the project, these materials were used
in seven classrooms. This time, the teachers received a short introduction, but they
worked alone and independently with the materials in their classrooms. At the end,
feedback from the participating teachers was collected, and all documents of stu-
dents’ work, including tests at the beginning and at the end of the teaching unit, were
provided for further analysis. Evaluations of the tests show that the students’ descrip-
tions of number patterns after the unit became more extensive and more accurate,
and the students verbalized positions in the Discovering Pacs much more frequently
than before (Link 2012).

3.5 From Design Science to Design Research: Trends
and Developments in Germany

Throughout the last two decade(s), the strong German tradition on DESIGN SCI-
ENCE, a heritage of Erich Wittmann and others, has evolved into the research pro-
gram of DESIGN RESEARCH in which Wittmann’s focus on designing learning
environments for developing mathematical structures is complemented by empirical
studies, investigating the learning processes initiated by the design, and aiming at
contributions to theory as well as to practical designs. This brief overview illustrates
how the German tradition gives a slightly different emphasis to topic-specificity than
in other well established approaches to DESIGN RESEARCH.

3.5.1 From DESIGN SCIENCE to DESIGN
RESEARCH—Lines of Development in Dortmund

In Dortmund, the pathway from DESIGN SCIENCE to DESIGN RESEARCH
started quite early, as already Wittmann emphasized. “In order to develop didactics
as design science, it is important to find ways of connecting design and empirical
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research” (Wittmann 1995, p. 337). An important motor for this enhancement of
DESIGN SCIENCE by empirical investigations was Heinz Steinbring, who joined
the Dortmund group from 1995 to 2004. He contributed substantially by empirical
investigations of learning processes on the micro-level, as evidenced for example in
his seminal book (Steinbring 2005) in which he explored the processes of knowledge
construction by an epistemological perspective on the micro level, emphasizing the
need to mentally construct structures and meanings.

Other substantial influences for this enhancement by empirical investigations were
given by the tight connection to the Freudenthal Institute (Treffers, van den Heuvel-
Panhuizen, and others) and its program of developmental research (Gravemeijer
1998) which was later called DESIGN RESEARCH (especially Gravemeijer and
Cobb 2006).

From 2004 to 2009, a new generation of professors started working in Dortmund.
They jointly decided to continue the work of Wittmann and Miiller by consequently
intertwining both the strong mathematical focus in topic-specific research and devel-
opment (following Wittmann 1995) and the deep empirical focus on processes of
knowledge construction on the micro level (following Steinbring 2005; Gravemeijer
and Cobb 2006).

3.5.2 Topic-Specific Didactical DESIGN RESEARCH
with a Focus on Learning Processes—A Model
Jor DESIGN RESEARCH

For elaborating the Dortmund research model of Topic-specific Didactical DESIGN
RESEARCH with a focus on learning processes, four main working areas have been
specified as printed in Fig. 3.13. Meanwhile, several Ph.D. projects and other projects
have been conducted in this model.

Developing designs, conducting and analysing design experiments and developing
local theories on teaching and learning processes are typical working areas appearing
in many models of DESIGN RESEARCH (e.g. Plomp and Nieveen 2013). The spe-
cific strong emphasis on processes on the micro level have been justified and theoret-
ically embedded by other researchers (e.g. Gravemeijer and Cobb 2006). The strong
topic-specific content focus, in contrast, appears less often in DESIGN RESEARCH
projects internationally, but reflects the German tradition of Stoffdidaktik (Humann
etal. 2016). In the Dortmund model, the strong content focus is realized by establish-
ing a separate working area “specifying and Structuring learning contents” for which
typical leading questions, methods and connections to the empirical work have been
made explicit by Humann and Prediger (2016), see Table 3.2.
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Table 3.2 Typical questions on four levels for specifying and structuring the content (HuBmann
and Prediger 2016, p. 36)

Specifying the content (selecting
aspects and their backgrounds)

Structuring the content (relating and
sequencing aspects, including
connecting points for long-term
processes)

Formal Which concepts and theorems have to | How can the concepts, theorems,
level be acquired? justifications and procedures be
Which procedures have to be acquired, | structured in logical trajectories?
and how are they justified formally? Which connections are crucial, which
are contingent?
How can the network between
concepts, theorems, justifications and
procedures be elaborated?
Semantic What are the underlying big ideas How do the underlying ideas and
level behind the concepts, theorems and meanings relate to each other and to
procedures? earlier and later learning contents?
Which basic mental models and How can the meanings be successively
(graphical, verbal, numerical and constructed by horizontal
algebraic) representations are crucial mathematization in the intended
for constructing meaning? learning trajectories?
Which trajectories of vertical
mathematization have to be elicited in
order to initiate the
invention/discovery of core ideas,
concepts, theorems and procedures?
How can the intended learning
trajectories be sequenced with respect
to the logical structure?
Concrete Which core questions and core ideas How can the meanings be successively
level can guide the development of the constructed in situations in the
concepts, theorems, and procedures? intended learning trajectories?
In which context situations and by How can the intended learning
which problems can the core questions | trajectories be sequenced with respect
and ideas be treated exemplarily for to the problem structure?
re-inventing the content? Which trajectories of horizontal
mathematization have to be elicited in
order to initiate the invention/
discovery of core ideas, concepts,
theorems and procedures?
Empirical Which typical individual perspectives | Which critical points in students’
level of students (conceptions, ideas, learning path-ways are most crucial

knowledge, ...) can be expected?
How do they relate to the intended
perspectives (resources vs. obstacles)?
What are origins of typical obstacles
or idiosyncratic conceptions?

(obstacles, turning points, ...)?
Which typical preconceptions or
previous knowledge can serve as
fruitful starting points?

How can the intended learning
trajectory be re-

sequenced with respect to students’
starting points and obstacles?
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Design Proces: Design Results
Specified and structured

/-_-$ learning content, e.g. in intended

learning trajectories / spaces
Refined Design Principles

Prototype of Teaching-
Learning Arrangement

Contributions to local theories

on topic-specific learning processes:
typical learning pathways and
obstacles

Contributions to local theories

on topic-specific teaching processes:
typical effects of design elements
and conditions of success

Research Process Research Results

Fig. 3.13 Working areas in the model of Topic-specific DESIGN RESEARCH, applied across nine
subject didactic disciplines (HuBmann et al. 2013; in English Prediger and Zwetzschler 2013)

3.5.3 Illustration of Research Outcomes for a Typical
Project: Exploring Individual Schematization Pathways

One typical DESIGN RESEARCH project is described here in detail in order to
illustrate typical outcomes. The exemplary project explores a well-known design
principle: progressive schematization (Treffers 1987), according to which learning
trajectories towards procedural rules can be organized as independent discoveries
when the learning environment invites the students first to develop models for math-
ematical concepts and model-based informal strategies; then to explore the strategies
and to discover pattern for progressively developing procedural rules.

The project (Glade and Prediger 2017) contributed to the theoretical and empiri-
cal foundation of the design principle of progressive schematization by empirically
investigating students’ individual schematization pathways on the micro-level for
the specific case of part-of-part determination of fractions (see Fig. 3.14).

Structuring the learning content part-of-part in this case meant developing a
schematization trajectory in several steps:

starting with context problems

establishing graphical models for the part-of-part

developing informal strategies for determining part-of-part

successively economizing the informal strategies in graphical procedures
internalizing the informal strategies and underlying structures
discovering formal procedure multiplication of fraction.
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Inaseries of laboratory set design experiments, nine pairs of sixth graders explored
the part-of-part determination and progressively schematized their graphical strate-
gies before discovering the procedural rule. A qualitative in-depth analysis of 760 min
of video was conducted.

The analysis showed that progressive schematization is a multi-facetted process.
The individual schematization pathways are much more diverse than the developed
schematization trajectory, and cannot be described by internalization of graphi-
cal procedures alone. Instead, also finding inherent structures in the visualization
and developing concepts is required before economizing is possible for students
(Fig. 3.15).

A major contribution to the theory of schematization is that the schematization
must be described by a dual progression in which the reduction of external actions
are tightly intertwined with the compaction of concepts- and theorems-in-action.
The project explores the students’ pathways through successively compacting con-
cepts on part-of-part, and hereby contributes to the topic-specific learning theory
on fractions with typical pathways and obstacles. The reconstructed challenge to
develop a justifiable procedural rule by connecting the informal and formal thinking
also yields orientation for necessary design-elements, its effects and conditions of
success. These empirical findings inform the theory as well as the redesign of the
learning environment.

However, these kinds of Design Research studies have methodological limita-
tions, so the results are restricted with respect to (1) the mathematical topic in view
(only determining the part-of-part which is a simpler case than others, e.g., addition
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of fractions or long division), (2) the number of participants involved (n = 18), (3)
the specific learning environments, and (4) the specific teacher in the design exper-
iments. Hence the results are only local contributions to theory (Cobb et al. 2003),
which are worth extending in future studies to a larger group of students and other
learning environments and topics. By accumulating over several studies, a successive
generalization to different topics and conditions will then be reached.

3.5.4 Extensions of DESIGN RESEARCH to Other Subjects,
Places, and to Teacher Education

One milestone for the consolidation of DESIGN RESEARCH as a research program
is its transfer from mathematics education to other disciplines. This was realized by
the establishment of interdisciplinary graduate schools in Dortmund and other uni-
versities such as Bremen. In Dortmund, for example, the graduate school FUNKEN
gathered nine subject matter education disciplines (including e.g. mathematics edu-
cation, science education, language education and music) to collaborate within a joint
research program (HuBmann et al. 2013). The establishment of interdisciplinary grad-
uate schools reflects a growing interest not only in general education and mathematics
education, but also to many other subject didactics.

Another extension concerns the shift from school classrooms to teacher educa-
tion. For pre-service or in-service teacher education and professional development,
DESIGN RESEARCH also proves to be a suitable research model to combine two
aims, the development of suitable designs of learning environments for professional
development and empirically investigating teachers’ learning processes with typical
pathways and obstacles for specific PD topics.

In the German Center for Mathematics Teacher Education (DZLM), especially,
design experiments are put into a broader frame to substantiate professional develop-
ment courses for teachers (Rosken-Winter and Sceszny 2016; Prediger et al. 2017).
That is, research studies on the classroom level are needed to inform teachers’ learn-
ing on the professional development level systematically. A deep understanding of
students’ learning of particular mathematics content and how this learning can be
supported are both the basis for spreading professional development courses on a
large scale. Within the scope of such courses additional teaching experiments, fol-
lowing the idea of DESIGN SCIENCE as outlined earlier in the chapter, complete
the picture. However, the whole complexity of how teachers develop professionally
demands a comprehensive DESIGN RESEARCH approach.
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