
Adaptive Temporal Verification and Violation
Handling for Time-Constrained Business

Cloud Workflows

Haoyu Luo1,2, Xiao Liu3, Jin Liu1(&), Bo Han1, and Yun Yang4

1 School of Computer Science, Wuhan University, Wuhan, China
{luohy,jinliu,bhan}@whu.edu.cn

2 School of Computer Science, South China Normal University,
Guangzhou, China

3 School of Information Technology, Deakin University, Geelong, Australia
xiao.liu@deakin.edu.au

4 School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia

yyang@swin.edu.au

Abstract. To achieve on-time completion of time-constrained business cloud
workflows, a large number of parallel cloud workflow instances need to be
constantly monitored so that temporal violations (namely intermediate runtime
delays) can be detected and handled timely. Over the last few years, many
strategies have been proposed but they are not adaptive enough to capture the
dynamic behaviors of business cloud workflows. In this paper, we introduce the
idea of “adaptiveness” into our strategy design. Specifically, we first present an
adaptive temporal checkpoint selection strategy where the time intervals
between checkpoints are adaptively determined at runtime, and then propose a
matching temporal violation handling strategy which can determine the required
lifecycle of cloud services. The evaluation results demonstrate that our adaptive
strategy can achieve both higher efficiency and better cost effectiveness com-
pared with conventional strategies.

Keywords: Temporal verification � Violation handling � Business workflow
Adaptiveness � Cloud computing

1 Introduction

Business workflow can provide partial or even full automation of business processes in
the domains of such as e-business and e-government. A notable feature of business
workflow is that there is usually a large number of workflow instances running in a
parallel fashion triggered by a large amount of concurrent user requests. To ensure the
scalability in processing parallel workflow instances, a rapidly increasing number of
business workflow applications are being deployed into the Cloud.

In business scenarios, a time-constrained workflow application needs to provide
timely response to business requests [1]. Failing to deliver requested results in time
may lead to the deterioration of user satisfaction, even huge financial loss. Therefore,

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 90–99, 2018.
https://doi.org/10.1007/978-3-030-03596-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_6

the correctness of a business workflow application depends not only on its logical
correctness, but also on its temporal correctness [2]. However, due to the dynamic
nature and uncertainties that exist during the running of workflows in the cloud,
temporal violations often occur which may have a serious impact on on-time com-
pletion of workflow instances. “temporal violation” means an intermediate violation of
time constraints during workflow execution that can be fixed locally to achieve overall
timely completion.

To ensure temporal correctness, workflow temporal behaviors need to be constantly
monitored at runtime so that temporal violations can be timely detected and handled [3,
4]. When dealing with the monitoring and verification of temporal behaviors for a large
number of parallel business workflow instances, throughput has been proved to be a
competent measurement for the requirements of efficiency and scalability [5]. The basic
idea is to select a set of time points along execution timeline as checkpoints, at which
temporal behavior (represented by workflow throughput) is verified to determine
whether a temporal violation occurs or not. If a temporal violation is detected, the
current temporal behavior needs to be adjusted by temporal violation handling
strategies.

To handle temporal violations, a temporal verification strategy and a temporal
violation handling strategy are required to address the problem of “Where” and “How”
respectively. In recent years, many related approaches have been proposed. However, a
common problem is that they are not adaptive enough to capture the dynamic behaviors
of business cloud workflows. To detect temporal violations, existing strategies verify
temporal behavior at a set of temporal checkpoints which are selected from predefined
system time points before workflow execution. These time points are usually equally
distributed and the fixed time intervals between them are empirically set. This is
inefficient as temporal behaviors constantly fluctuate at workflow runtime. In the
meantime, most approaches handle the detected temporal violations by adding new
resources. But the current work simply adds new resources with fixed lifecycles once a
temporal violation is detected, in regardless of workflow runtime temporal behavior.
Such kind of static approach may cause unnecessary cost of resource consumption.

For such an issue, we introduce the idea of “adaptiveness” into our strategy design.
Two adaptive strategies are proposed to answer the questions of “Where” and “How”
to handle temporal violations respectively. Specifically, we first present an adaptive
temporal checkpoint selection strategy for the question of “Where”. Instead of using
fixed time intervals, time interval between adjacent checkpoints is adaptive to workflow
execution states. This strategy is more sensitive to the variation of temporal behaviors,
which can improve the efficiency of temporal verification and decrease unnecessary
resource consumption. Then we present a matching temporal violation handling
strategy to answer the question of “How”. This strategy is designed to reduce or
eliminate time delays by accelerating the execution of workflow activities with extra
resources, e.g. service instances, provisioned to the cloud service nodes where temporal
violations are detected. Specifically, it addresses three major issues for the question of
“How”: (1) where to add extra resources; (2) how many resources are needed; (3) how
long their lifecycles should be. Experimental results show that our adaptive strategy can
achieve the target on-time completion rate with higher verification efficiency and at
least 19.4% less resource consumption compared with conventional strategies.

Adaptive Temporal Verification and Violation Handling 91

The rest of the paper is organized as follows. Section 2 presents preliminary def-
initions. Section 3 presents the adaptive temporal verification and violation handling
strategies. Section 4 demonstrate the experimental results. Section 5 concludes this
paper.

2 Preliminary

(1) Workflow throughput

A business workflow is made up of a set of activities in partial order. We denote the i th
activity of a business workflow as ai. The mean, expected and runtime completion
duration of ai is denoted as M aið Þ, E aið Þ and R aið Þ respectively. Accordingly, WFi is a
workflow with its mean, expected and runtime completion duration denoted as
M WFið Þ, E WFið Þ and R WFið Þ respectively.
Definition 1 (Workflow Throughput). Given a batch of q business workflow
instances WF{WF1, WF2, …, WFq} which starts at system time S0, the completion of
workflow activity aij contributes to the completion of the entire collection of workflows
with a value of M aij

� �
=T where T ¼ Pq

i¼1 M WFið Þ. Here, we assume that at the
current observation time point St, the set of new completed activities from the pre-
ceding nearest observation time point St�1 is denoted as afgjStSt�1

, then the system

throughput is defined as THjStSt�1
¼ MðafgjStSt�1

Þ=T .
Workflow throughput constraints is the expected accumulated workflow throughput

(namely the percentage of completion) that should be achieved by a specific system
time point. The value is decided by the throughput deadline assignment strategy [6].

(2) Queueing model for cloud services

At workflow runtime, a large number of instances are initialized in a short time. Since
the number of parallel workflow instances is much more than the dedicated cloud
services, workflow activities have to queue up on limited services. In this paper,
queueing model is employed to depict the queueing and execution process of parallel
workflow activities. We employ M/G/m/m+r model to formulate the behavior of the first
queueing system and G/G/m/m+r model for the rest k � 1 queueing systems [7]. The
discussion for the rationale of the model design can be found at our previous work [8].

(3) Throughput-based temporal consistency model

Temporal verification requires a temporal consistency model which defines the rela-
tionship between the current workflow execution state and target deadline.

Definition 2 (Throughput Consistency Model). Given the same batch of workflows
in Definition 1 and its final deadline F WFð Þ, at throughput checkpoint Sp, it is said to
be of a% consistency if:

92 H. Luo et al.

F kað Þ ¼ THjSpS0 þExp THjF WFð Þ
Sp

� �
ð1Þ

where ka is defined as the a% confidence percentile with the cumulative standard

normal distribution function of F li þ krið Þ ¼ 1
r
ffiffiffiffi
2p

p
R li þ kri
�1 e� x�lið Þ2=2r2i dx ¼ a%. THjSpS0

is the current runtime throughput until Sp, Exp THjF WFð Þ
Sp

� �
is the expected workflow

throughputs during the time between the checkpoint and final deadline. a% consistency
is a probability confidence for on-time completion.

3 Adaptive Temporal Verification and Violation Handling

3.1 Adaptive Temporal Checkpoint Selection Strategy

Definition 3 (Candidate Throughput Checkpoints). Given the same batch of work-
flow instances as in Definition 1, a system time point St along the workflow execution
timeline is a candidate throughput checkpoint if St � St�1 ¼ k � bt (k = 1, 2, 3, …).

Adaptive Temporal Verification and Violation Handling 93

k � bt is the time interval between adjacent candidate throughput checkpoints.bt is the
minimum time interval for system monitoring. k is a variable which is decided at
workflow runtime. Checkpoint selection strategy needs to figure out candidate
throughput checkpoints first, then determines whether they should be selected as a
checkpoint.

Algorithm 1 depicts the adaptive checkpoint selection strategy, which selects
checkpoints one by one at workflow runtime. Whether a candidate checkpoint is
selected as checkpoint or not depends on both the temporal behavior during the latest
monitoring window k � bt and the temporal behaviors of several prepositive check-
points. Temporal consistency state of the newly selected checkpoint influences the
decision of the next checkpoint. To reflect such a feedback and adjustment mechanism,
we integrate the proposed checkpoint selection strategy (Step 1) with throughput-based
temporal consistency model (Step 2) as an overall throughput consistency verification
approach.

3.2 Temporal Violation Handling Strategy

Once a temporal violation is detected at a checkpoint, temporal violation handling
strategy will be triggered to deal with the recovery of violation by accelerating the
workflow execution after the current checkpoint. In the scenario of business cloud
workflows, if a throughput violation is reported, temporal violation handling strategy
needs to increase the system throughput in a short period of time.

We design to handle temporal violations by recruiting extra resources (namely
adding more cloud service instances in queueing systems). The extra resources for
violation handling are recruited only for temporary use. Specifically, our proposed
temporal violation handling strategy needs to answer three major questions:

(1) Where to add resources?

Queueing system for a cloud service is regarded as a basic unit for violation handling.
Therefore, new resources are added into the queueing systems where local throughput
constraints are violated and these queueing systems are called violation handling
points.

Algorithm 2 (Step 1) explains the violation handling point selection strategy. When
a throughput violation is detected at checkpoint Sp (line 1), we need to calculate the
average response time (ART) of workflow activities in each queueing system during
Sp�1 and Sp (lines 2–3). If the ART of a queueing system exceeds the response time
constraint (RTC), the local throughput constraint will be violated inevitably, and this
queueing system is selected as a handling point (lines 4–5).

(2) How many resources are needed?

Adding extra service instances into a queueing system can increase the throughput of
cloud services and reduce the average response time of workflow activities. Here, an
essential question aroused is “to timely and completely handle temporal violations,
does adding more extra resources mean better effectiveness?” Our answer is “not
always”.

94 H. Luo et al.

Since it is impossible to obtain a closed formula to represent the probability dis-
tribution of general distribution “G” in M/G/m/m+r and G/G/m/m+r models, the
numerical relationship between the number of service instances and average response
time is not clear. Therefore, we conduct testing experiments and use the results as
reference.

We conduct two rounds of experiments to figure out how response time changes
with the number of cloud service instances in queueing systems with the above two
different queueing models. In the two queueing systems, the average execution time of
workflow activities is 6.1729 s and 13.5686 s. The minimum numbers of service
instances based on queueing rule are 6 and 12 (at the worst level of service). When we
add the first service instance into the two queueing systems, the average response time
of both systems declines dramatically. Afterwards, the average response time is
gradually getting close to the average execution time but has no evident decrease
despite that more service instances are being recruited. The reason is that adding new
service instances can only decrease the waiting time of workflow activities in the
queue.

Therefore, we only add one extra service instance into the queueing system for
violation handling to achieve the best cost-effectiveness. Even if in some cases adding
one service instance may not be sufficient to compensate all throughput deficit, the
handling strategy will be called again timely to add another service instance as tem-
poral behaviors are still constantly monitored by our temporal verification strategy.

Adaptive Temporal Verification and Violation Handling 95

(3) How long the lifecycle of these resources should be?

Algorithm 2 (Step 2) depicts how to determine the lifecycle of new resources for
temporal violation handling. If there is currently no recruited resource in the queueing
system, then we add a new resource with a basic lifecycle L (lines 11–12). The real
lifecycle T = m*L (m = 1, 2, 3, …). If there is already a recruited resource in the
queueing system (this resource is added in the queueing system at previous checkpoints
for violation handling and has not expired yet), then we check the residual time of this
resource. If RL\k � bt (namely the resource will expire before the next candidate
checkpoint Spþ 1), we extend its lifecycle by an extra basic lifecycle (lines 14–17).

By adaptively extending the resource’s lifecycle, our strategy can make sure only
one extra resource is required in the queueing system for temporal violation handling.

4 Evaluation

4.1 Experimental Settings

The simulation experiments are conducted in our cloud workflow system SwinFlow-
Cloud [9]. First, we simulate a continuous running of a large number of parallel
workflow instances. Basic experimental settings are similar to the settings our previous
work [10]. Arrival time and execution time of activities follow general distribution
which are simulated by Simulink1. Basic time unit bt is set as an equal interval of 30 s.
Basic lifecycle of recruited resources L is set as 1 min.

We compare our approach TVadap with the following two representative strategies:

• TVfixed: It selects checkpoints from a collection of time points along system timeline
with fixed interval. This strategy handles temporal violations by adding one extra
resource with fixed lifecycle into each selected queueing system [10].

• TVacti: It selects every workflow activity as candidate checkpoint [11]. If a temporal
violation is detected, one resource with a fixed lifecycle is added into each selected
queueing system (if there is no extra resource in the queueing system).

To get the baseline results for comparison purpose, we record the on-time com-
pletion rates of workflow instances under natural situation, i.e., without any temporal
verification or violation handling strategies (denoted as NIL).

In business scenario, a best strategy should be the one that can reach the target on-
time completion rate with high cost-effectiveness. Cost-effectiveness is measured by
the average resource consumption for every 1% increment from the baseline. The
formula is as follows:

H
c0%� c%

ð2Þ

where H denotes the total number of basic lifecycle of recruited resources needed by
each strategy, c% is the baseline on-time completion rate and c0% is the on-time
completion rate achieved by each strategy.

1 Simulink: https://www.mathworks.com/products/simulink.html.

96 H. Luo et al.

https://www.mathworks.com/products/simulink.html

4.2 Experimental Results

First, we compare TVadap with the other two strategies under different batches of
workflows. The workflow size is 25. In Fig. 1, each strategy can significantly improve
on-time completion rate when compared with the baseline NIL, and all of them can
reach the target on-time completion rate of 90%. However, in Table 1 the number of
checkpoints and resources consumption are obviously different. Since TVacti is working
at each workflow activity, the number of checkpoints is much more than the other two
strategies, and it can detect more temporal violations. But its resource consumption for
violation handling is several times higher than the other two strategies. TVfixed achieves
a slightly higher on-time completion rate than TVadap, but it consumes more resources.
In contrast, TVadap can reach the target on-time completion rate with the lowest
resource cost. Also, it achieves the highest verification efficiency with the minimum
number of checkpoints.

Figure 2 and Table 2 show the experimental results under different workflow sizes.
The number of parallel workflow instances is 6000. Similar to the above experiment
results, all the three strategies can reach 90% on-time completion. Compared with
TVfixed and TVacti, TVadap is the most cost-effective, which can achieve target on-time
completion with the least resource consumption.

Fig. 1. On-time completion rates with dif-
ferent number of instances

Fig. 2. On-time completion rates with differ-
ent workflow sizes

Table 1. Experimental results with different number of workflow instances

Strategies Checkpoints Resource lifecycle Average resource
consumption for
every 1% increment
from the baseline

3000 6000 10000 3000 6000 10000 3000 6000 10000

TVadap 86 102 121 118 141 252 12.47 10.75 14.61
TVfixed 132 145 159 172 169 336 16.03 11.74 18.33
TVacti 832 1471 2984 576 902 1685 57.26 74.54 93.36

Adaptive Temporal Verification and Violation Handling 97

5 Conclusion and Future Work

To achieve on-time completion of time-constrained business cloud workflows, tem-
poral violations occurred at workflow runtime need to be timely detected and handled.
In this paper, we present a temporal verification strategy and a temporal violation
handling strategy to tackle the problem of “Where” and “How” respectively for han-
dling temporal violations. Considering the fluctuation of workflow temporal behaviors,
the idea of “adaptiveness” is introduce into our strategy design. Compared with con-
ventional non-adaptive strategies, our strategies can achieve both higher efficiency and
better cost effectiveness.

In the future, we plan to extend the proposed strategies to a more complex envi-
ronment where instances of different business workflow are mixed in the batch of
parallel workflow instances.

Acknowledgement. The authors would like to acknowledge the support provided by the grants
of the National Natural Science Foundation of China (61572374, 61300042, U163620068,
U1531122, U1135005), the Academic Team Building Plan from Wuhan University
(WHU2016012), and the Australian Research Council Discovery Project (DP180100212).

References

1. Kumar, A., Sabbella, S.R., Barton, R. R.: Managing controlled violation of temporal process
constraints. In: 13th International Conference on Business Process Management, pp. 280–
296 (2015)

2. Wegener, J., Grochtmann, M.: Verifying timing constraints of real-time systems by means of
evolutionary testing. Real-Time Syst. 15(3), 275–298 (1998)

3. Falcone, Y., Havelung, K., Reger, G.: A tutorial on runtime verification. J. Eng. Dependable
Softw. Syst. 34, 141–157 (2013)

4. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception handling patterns in
process-aware information systems. BPM Center Report BPM-06-04, BPMcenter.org (2006)

5. Liu, X., Wang, D., Yuan, D., Wang, F., Yang, Y.: Workflow temporal verification for
monitoring parallel business processes. J. Softw.: Evol. Process. 28(4), 286–302 (2016)

Table 2. Experimental results with different workflow sizes

Strategies Checkpoints Resource
lifecycle

Average resource
consumption for
every 1% increment
from the baseline

15 20 25 15 20 25 15 20 25

TVadap 94 101 102 113 116 141 14.43 9.11 10.75
TVfixed 152 159 145 141 148 169 14.46 10.39 11.74
TVacti 957 1098 1471 623 816 902 54.75 67.44 74.54

98 H. Luo et al.

6. Liu, X., Wang, D., Yuan, D., Yang, Y.: A novel deadline assignment strategy for a large
batch of parallel tasks with soft deadlines in the cloud. In: Proceedings of 15th IEEE
International Conference on High Performance Computing and Communications & 10th
IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC),
pp. 51–58 (2013)

7. Khazaei, H., Mišić, J., Mišić, V.B.: Performance analysis of cloud computing centers using
m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 5, 936–943 (2011)

8. Luo, H., Liu, J., Liu, X., Yang, Y.: Predicting temporal violations for parallel business cloud
workflows. Softw.: Pract. Exp. 48(4), 775–795 (2018)

9. Cao, D., Liu, X., Yang, Y.: Novel client-cloud architecture for scalable. In: Proceedings of
the 14th International Conference on Web Information Systems Engineering (WISE),
pp. 270–284 (2013)

10. Luo, H., Liu, X., Liu, J., Yang, Y.: Propagation-aware temporal verification for parallel
business cloud workflows. In: Proceedings of IEEE International Conference on Web
Services, pp. 106–113 (2017)

11. Wang, F., Liu, X., Yang, Y.: Necessary and sufficient checkpoint selection for temporal
verification of high-confidence cloud workflow systems. Sci. China Inf. Sci. 58(5), 1–16
(2015)

Adaptive Temporal Verification and Violation Handling 99

	Adaptive Temporal Verification and Violation Handling for Time-Constrained Business Cloud Workflows
	Abstract
	1 Introduction
	2 Preliminary
	3 Adaptive Temporal Verification and Violation Handling
	3.1 Adaptive Temporal Checkpoint Selection Strategy
	3.2 Temporal Violation Handling Strategy

	4 Evaluation
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion and Future Work
	Acknowledgement
	References

