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Abstract. Microservice architectures are considered really promising to
achieve devops in IT organizations, because they split applications into
services that can be updated independently from each others. But to pro-
tect SLA (Service Level Agreement) properties when updating microser-
vices, devops teams have to deal with complex and error-prone scripts of
management operations. In this paper, we leverage an architecture-based
approach to provide an easy and safe way to update microservices.
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1 Introduction

To facilitate agile development and operations (devops), many companies,
including established ones such as Netflix [1] and Uber [2], are switching to
a microservice architecture for their Cloud applications. With this approach,
applications are designed as loosely-coupled services deployed on distributed
PaaS (Platform-as-a-Service) sites and running in their own full-stack [3].

The key property that is expected from microservices is the notion of indepen-
dent replacement and updatability. Especially, microservices exhibit independent
lifecycles: they can be deployed and updated independently from each others.
The objective is to favor reactivity of small development teams, each team being
in charge of developing and evolving its own set of microservices through simple
and fast processes.

Such an objective is attractive, but the reality is much more complex because
microservices are often associated to SLA properties regarding availability, per-
formances, and resource costs [4,5]. To keep these properties at update time,
devops teams follow complex strategies. Typically, the well-known BlueGreen
strategy [6] intends to update a microservice with zero downtime, but requires
deploying and starting all the new microservices before stopping and uninstalling
the old ones. In comparison, the Canary strategy [7,8] minimizes the resources
used at update time, at the expense of a reduced availability: microservices are
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updated in-place (new instances taking the place of the old ones), in an incre-
mental manner to slowly transfer the load from the current to the new version.

Using strategies to update microservices is considered relevant [9], but so far,
the process is managed manually or only automated through using scripts [10].
Scripts provide flexibility but their imperative form limits their ease of use. When
devops teams are provided with application-independent scripts, they have to
determine what script can be applied to process a given update. Furthermore,
they must check that the current state of their application meets the require-
ments of the chosen script. This is cumbersome and error-prone as most update
scripts encompass complex pipelines of PaaS commands. When update scripts
are designed specifically for a given application, they can be used in a much
easier and safer way, but the price is that devops teams have to compose these
scripts, facing the usual coding and debugging challenges.

This paper advocates switching from a script-based to an architecture-based
approach to automate microservices updates: instead of scripts processing PaaS
commands, update strategies are defined as sequences of elementary changes
being applied on an architectural model of a microservice application. Simply
put, this architectural model (also known as model@runtime [11]) reflects how
microservices are deployed on PaaS sites and how they are configured. Compared
to scripts, the benefits of the proposed approach are the following:

– ease of use: to update a microservice application, devops teams simply give
as input the desired target architecture, along with the strategy to follow,
without having to deal with low-level PaaS commands.

– preview: any update can be processed on the architectural model without
being applied on the effective system, allowing to preview its result in terms
of architectural changes.

– control: all stages of an update can be observed on the architectural model.
Moreover, at any stage an update can be stopped and resumed with a new
target architecture and/or strategy.

– robustness: failures occurring at update time are supported.

Leveraging an architecture-based approach raises two main challenges: (i)
determining an architectural model encompassing microservices deployed on het-
erogeneous PaaS sites and (ii) defining a strategy-driven update protocol relying
on this architectural model. This paper describes how these challenges were
addressed to provide an update framework that can add, remove, migrate, split,
or scale microservices as well as upgrade their code or change their configuration
across distributed and potentially heterogeneous PaaS sites.

The remaining of this paper is structured as follows. Section 2 summarizes
the background. In Sect. 3, we present the architectural model of the proposed
update framework. Section 4 describes the strategy-driven update protocol and
Sect. 5 focuses on the robustness aspect. An evaluation is given in Sect. 6 and we
conclude in Sect. 7.
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2 Background

2.1 Microservice Patterns

There is no standard definition for the microservice concept, but common pat-
terns guiding the development of distributed applications on Cloud platforms
[12]. We summarize hereafter the patterns that impact the processing of updates.

Microservices are independently deployable modules that run as self-
contained units encompassing an operating system along with the necessary run-
times, frameworks, libraries, and code. For improving scalability and availability,
each microservice can involve multiple redundant and distributed instances in
production.

Microservices communicate through lightweight protocols such as reliable
asynchronous bus [8]. They also interact through their provided and consumed
services, often exposed as Web services accessed through REST communica-
tions. Each instance of a microservice may expose a service through registering a
remote API along with a given route (url) at a registry (usually a per-application
registry) such as Consul1, Apache ZooKeeper2 or Netflix Eureka3.

Microservices tolerate the unavailability of the services they access. Two main
design patterns are used to this end. Firstly, microservices intend to be stateless
through keeping and retrieving any data through an external server, typically
a (per-microservice) database. Thereby, any available service instance can be
used to execute a given task. Secondly, microservices use smart proxies to access
services provided by others microservices [13]. Smart proxies manage the cases
where an accessed service is unavailable. Most commonly, depending on the SLA
properties of the accessed microservice, a proxy may either (i) select another ser-
vice instance, (ii) wait for the service to be restored, or (iii) produce a by-default
reply, following the circuit-breaker pattern [14,15]. By supporting the unavail-
ability of the services they access, microservices get independent lifecycles—they
can be deployed, started, scaled, stopped independently from each other.

2.2 Dynamic Update of Microservice Applications

To update microservices, a first approach is using the Command Line Interface
(CLI) provided by PaaS sites [16–18], Although powerful, the CLI is a low-
level interface that may be challenging to use directly as most applications are
composed of many microservices distributed across PaaS platforms [10].

A second approach relies on using frameworks striving towards continuous
delivery features. For instance, Spinnaker [19], AWS CodeDeploy [20] and IBM
UrbanCode [21] allow to deploy and update distributed microservices on hetero-
geneous PaaS platforms. Updating an application goes through a script-based
approach where devops teams specify a pipeline of low-level operations to exe-
cute. The main limitation is certainly that it is an imperative approach. First,
1 https://www.consul.io/.
2 https://zookeeper.apache.org/.
3 https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance.

https://www.consul.io/
https://zookeeper.apache.org/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
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devops teams often have to compose the scripts, which faces the usual coding
and debugging challenges. Second, they need to check that scripts are com-
patible with the current state of the updated microservices. Third, they have to
make sure that applying such scripts will produce the desired target architecture.
Fourth, in case of failures, script-based approaches are usually not idempotent,
which requires either to rollback-restart the entire update process, or to analyze
the failure to determine how to restart forward, potentially requiring to adapt
the scripts.

Another framework, push2cloud [22], allows to update microservices deployed
on a single CloudFoundry PaaS site. Recently, push2cloud investigated an app-
roach allowing to express a desired target architecture. However, only mono-site
architectures are supported. Moreover, strategies are defined as pipelines of low-
level CloudFoundry-specific operations. Finally, failures are fixed and managed
manually.

From an academic perspective, [23] automates the deployment of microser-
vices according to a desired target architecture. However, the approach is con-
strained to using their own dedicated language [24] to program microservices and
does not consider update strategies. [10] aims at helping devops teams to man-
age consistent refactorings, by using a model of a microservice application that
covers both architectural and functional aspects. [25] provides an autonomous
tool to troubleshoot and repair microservice applications using canary testing
and version-aware routing techniques. [26,27] investigate on synthetizing a target
architecture for cloud components, considering capacity constraints and conflicts,
but they provide no actual mechanism to update running microservices. Other
architecture-based approaches for managing reconfigurations [11] are interesting
but do not consider any specifics of microservices. In particular, works such as
[28–30] have introduced formalisms for automating deployment processes, but
they consider components having dependent lifecycles and focus on the manage-
ment of their dependencies.

3 Architectural Model

With the proposed framework, devops teams update a microservice application
by simply giving as input the desired target architecture and the strategy to
follow. The strategy may be chosen among pre-defined ones or newly defined.

From a practical point of view, this framework should be launched on
a machine having a network connection towards the PaaS sites hosting the
microservices to update. Once launched, devops teams can invoke a pullArchitec-
ture command to get the current architecture of an application, and a pushArchi-
tecture command to update an application towards a given target architecture,
following a given strategy, as depicted in Fig. 1.

With both commands, the architecture of an application is expressed through
an architectural model specifying how microservices are deployed on PaaS sites
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Fig. 1. Operational view

and how they are configured (Listing 1.14). To consider both PaaS-common
and PaaS-specific configuration attributes, a microservice is expressed as an
extensible set of (attribute, value) pairs5.

Architecture = (String appid, Set<PaaS−Site> sites);
PaaS−Site = (String siteid, Set<Microservice> services);
Microservice = (String msid, Set<String attribute, String value>);

Listing 1.1. Architecture model

The architectural model can be introspected and reconfigured through the
PaaSOperations interface (Listing 1.2). This interface provides four canonical
operations allowing to add, get, modify, or remove microservices, following a
CRUD (Create, Read, Update, Delete) approach [31]. For any PaaS targeted by
the framework, a specific implementation of this interface should be provided,
mapping canonical operations towards PaaS-specific operations6.

interface PaaSOperations{
Set<Microservice> get(String appid);
int add(String appid, Microservice m);
int remove(String appid, Microservice m);
int modify(String apid,Microservice m, Set<String attribute, String value>);
}

Listing 1.2. PaaS introspection and reconfiguration interface

Using the PaaSOperations interface, our framework can reconfigure a
microservice application towards a desired target architecture through the steps
given in Listing 1.3. As an example, let’s consider a target architecture upgrading
a microservice M , deployed on two CloudFoundry PaaS sites Sa and Sb, towards
a new version V0.2 (current version being V0.1).

4 appid, siteid and msid respectively identify a microservice application, a PaaS site,
and a microservice.

5 PaaS-common attributes include name, code-version, code-path, route, instances-
number, lifecycle-state (STARTED, STOPPED, etc.)).

6 So far, we mapped this interface for the Cloud Foundry and Heroku platforms.
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reconfigure(String appid, Architecture Acurrent, Architecture Atarget) {
1: compute an architectural diff[27] between Acurrent and Atarget and

determine the reconfiguration operations (add, remove, modify) to process at each PaaS site
2: map the reconfiguration operations towards their PaaS−specific implementation
3: execute the PaaS−specific operations in parallel at each PaaS site

}

Listing 1.3. Core reconfigure function

At step 1, the reconfigure function determines that the following operation should
be processed at Sa and Sb:
→ modify(M,{(“code-version”,“0.2”),(“code-path”,“https : //gitX/M/M0.2.jar”)})
At step 2, the CloudFoundry implementation of the PaaSOperations interface
maps this operation as follow:
→ cf push M –var version=V0.2 -p https : //gitX/M/M0.2.jar

At step 3, this push operation is executed in parallel at site Sa and Sb. Notice
that such upgrade induces downtime, as the push operation stops M , loads its
new version of code, and then restarts it, a process taking several minutes in
average. The way to avoid downtime is using strategies.

4 Strategy-Driven Updates

A strategy forces an update process to follow a particular path of intermedi-
ate architectures, protecting SLA properties throughout the update process, as
illustrated in Fig. 2. For instance, still considering the previous upgrade case, the
BlueGreen strategy would protect the availability property through reaching a
first intermediate architecture where M is started in both versions V0.1 and V0.2,
before reaching another architecture where M in version V0.1 is stopped.

AC

intermediate architectures

target architecturecurrent architecture

strategy-driven 
updateA1 A2 An

At

strategy-less update

Fig. 2. Strategy-driven update

To account for strategies, we design the pushArchitecture command as a fix-
point (Listing 1.4). At each step, the fix-point requests the strategy to compute
the next intermediate architecture along the update path, and then reconfigures
the application accordingly.

A strategy is simply defined as a sequence of transitions, each transition
managing elementary updates. To compute the next intermediate architecture,
a strategy goes through its transitions incrementally, until finding one that can
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evolve the current architecture closer to the target architecture (see Strategy
and Transition definitions in Listing 1.4).

pushArchitecture(String appid, Architecture Atarget, Strategy strategy) {
Architecture Acurrent, Anext;
Acurrent = pullArchitecture(appid, Atarget.sites);

while (Acurrent.differ(Atarget)) { ////////////// update fix-point
// compute next intermediate architecture
Anext = strategy.nextArchitecture (Acurrent, Atarget);
if (Anext == null) exit(”target unreachable”);
// reconfigure towards Anext
reconfigure (appid, Acurrent, Anext);
Acurrent = Anext;

}
}

abstract class Strategy {
// Sequence of transitions (to define in subclasses)
List<Transition> transitions;

// compute the next intermediate architecture to reach
Architecture nextArchitecture(Architecture Acurrent, Architecture Atarget) {

// process transitions until finding one moving closer to the target
for each Transition tr in transitions {

Architecture Anext = tr.process(Acurrent, Atarget);
if (Anext != null) return Anext;

}
return null;

}
}

interface Transition {
// returns null if the transition does not allow moving closer to the target
Architecture process(Architecture Acurrent, Architecture Atarget);

}

Listing 1.4. Strategy-driven updates

class AddRemoveStrategy extends Strategy {
// manages additions then removals of microservices,
List<Transition> = new List(Tadd, Tremove);

}

class Tadd implements Transition {
Architecture process (Architecture Acurrent, Architecture Atarget) {
// get microservices added in Atarget compared to Acurrent
List<Microservice> additions = Atarget.minus(Acurrent);
if (additions != null) {
// return an architecture including current miroservices plus the ones to add

Architecture Anext = Acurrent.clone();
Anext.add(additions);
return Anext;

} else return null;
}}
...

Listing 1.5. Example of strategy and transition definitions

For instance, a transition Tadd managing the additions of microservices
behaves as follow. Comparing the current and target architectures, it determines
if new microservices have to be deployed. If yes, it delivers a next architecture
containing the current microservices plus the new microservices to deploy. Symet-
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rically, a transition Tremove determines if there are microservices to undeploy. If
yes, it delivers accordingly an architecture containing the current microservices
minus those to undeploy.

current  architecture

M2

Site Sa

M1 transition
Tadd

intermediate  architecture

M2

M1 M3

Site Sb Site Sa Site Sb

target  architecture

M3

Site Sa Site Sb

transition
Tremove

Fig. 3. Using the basic AddRemove strategy

Listing 1.5 illustrates defining a strategy (named AddRemoveStrategy) com-
posed of the Tadd and Tremove transitions. Figure 3 depicts the behaviour
of this strategy when updating an elementary application composed of two
microservices (M1, M2) deployed on a site Sa. The target architecture only
contains the microservice M3 on Sb.

– At the first step, the update fix-point processes the first transition (Tadd)
of the strategy, that delivers the intermediate architecture composed of the
current microservices plus M3 deployed on Sb. The application is then recon-
figured towards this intermediate architecture.

– At the second step, the fix-point processes again the transition Tadd, that has
no more changes to perform. It then processes the next transition (Tremove),
that removes microservices not appearing in the target architecture (M1 and
M2 on Sa). The application is then reconfigured towards this architecture
and the fix-point terminates because the target has been reached.

Notice that transitions may apply changes over several steps of the fix-point.
Let’s consider a transition scaling up microservices horizontally as follow. For
each microservice to scale, new instances should be deployed and started one
by one7. Each time it is processed, this transition returns a next architecture in
which every microservice to scale has one more instance. When all microservices
have reach their target number of instances, it simply returns null.

5 Update Robustness

Two main kinds of failures may interrupt an update process, letting the applica-
tion in an arbitrary architectural state: first, the framework may faces a hardware
failure or a software one, for example a strategy raising an exception when com-
puting the next architecture; second, a microservice may fail when reconfigured
7 This pattern is required for microservices that do not support having several

instances started concurrently.
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on a PaaS site, for example it fails to start. With our approach, this is not a prob-
lem since any update process may be stopped at any time and later re-started as
a fresh update process. This kill-restart capability relies on the following main
properties.

– Runnability. Whatever the current architectural state for a microservice, it
can always be introspected and reconfigured by the PaaS site hosting it (even
a failed microservice can be restarted by PaaS operations).

– Idempotence. Transitions compare the current and target architectures to
determine the changes to process. Once a change has been done, a transition
just does not do it again. Thus it is always possible to restart an update
process that just failed.

Notice that re-starting an update process offers a way to change the tar-
get architecture and/or the strategy (Fig. 4), allowing the devops team to fix
some microservice configuration or to rollback to a previous architecture for the
updated application.

Fig. 4. Management of failures at update time

6 Evaluation

We evaluate our framework on the ease of programming strategies, the ease of
updating microservices, and the ability to protect SLAs at update time.

6.1 Ease of Programming Strategies

Let’s consider first the BlueGreen strategy that updates an application without
downtime – through installing, starting, and testing the new version (called the
green one) before uninstalling the current version (called the blue one). Once
the green environment is ready, incoming requests should be routed to it. We
defined such strategy with four transitions.

class BlueGreen implements Strategy {
List<Transition> = new List(Tadd, Tupdate, Tswitch, Tremove);

}

Listing 1.6. BlueGreen Strategy
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In short, Tadd deploys microservices newly defined in the target architecture.
Tupdate deploys the green version of the microservices that are modified in the
target architecture (associating them to a temporary route (i.e., url) for testing
purposes). Tswitch switches from the temporary route to the regular one for
green microservices deployed at the previous step. Finally, Tremove removes
microservices that are no longer defined in the target architecture. The code
of the Tupdate and Tswitch transitions is shown hereafter (Tremove is quite
similar to Tadd given in Sect. 4). Altogether, these four transitions required only
54 lines of code.

class Tupdate implements Transition {
Architecture process(Acurrent, Atarget) {

Architecture Anext;
// get microservices modified in At compared to Ac
List<Microservice> modified = getModified(Ac, At);
if (updates != null) {

Anext = Ac.clone();
for each Microservice m in modified {

// deploy green version for the microservice to modify
Microservice mgreen = m.clone();
mgreen.route = m.get(”temporary−route”);
mgreen.set(”role”, ”green”);
mgreen.set(”blue−version”, m.get(”id”));
Anext.add(mgreen);

}
}
return Anext;

} // end of process method
}

class Tswitch implements Transition {
Architecture process(Acurrent, Atarget) {

Architecture Anext;
// get green versions of microservices in current architecture
List<Microservice> greens = getGreens(Ac);
if (greens != null) {

Anext = Ac.clone();
for each Microservice m in greens {

// remove blue version of the microservice
Anext.remove(m.get(”blue−version”));

// assign the regular route to the green version
m.set(”route”, m.get(”regular−route”));
m.set(”role”, ”blue”);

}
}
return Anext;

} // end of process method
}

Listing 1.7. Tupdate and Tswitch transitions

Additionally to the BlueGreen strategy, we programmed a dozen of other
classical update strategies8, some summarized in Table 1. Altogether, they only
required programming about fifteen transitions and each strategy was only com-
posed a few transitions (see column named nT ). Overall, all transitions were
easy to program: (1) they were following similar patterns, essentially comparing
the current and target architectures to determine the next architecture, (2) they
only required a few lines of code (less than 30).

8 The code is available at https://github.com/tao-xinxiu/prototype-template-engine.

https://github.com/tao-xinxiu/prototype-template-engine
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Table 1. Some strategies programmed

Name Description nT

Straight Reach target directly (no intermediate architecture) 1

CleanRedeploy Remove all in current, deploy target, one microservice at a time 2

BlueGreen Reach target, creating green versions then removing old (blue)

versions for microservices to update

4

BlueGreenByGrpAs BlueGreen, but processes at most k microservices at a time per site4

Canary Reach target, incrementally stopping and restarting instances

for microservices to update, site by site

6

CanaryBySite As Canary, but all instances in parallel on a site 3

CanaryByInst As Canary, but all sites in parallel 6

Mixed Reach target, creating one new instance for any microservice to update

(for test pupose) then apply Canary strategy for pending instances

5

6.2 Ease of Updating Microservices

We report here on using the proposed framework to deploy and update a
microservice application composed of three microservices deployed on two PaaS
sites. To perform the initial deployment, we simply use the pushArchitecture
command with the Straight strategy and the desired initial architecture (shown
in the left part of the Fig. 5) as target.

Then, to update the application towards the target architecture shown in
the right part of the Fig. 5, upgrading M1 and removing M3, we decide to use
the BlueGreen strategy to avoid downtime. The framework allows us to follow
step by step the update, through the path of intermediate architectures. When
at the architecture 1, we perform some tests, checking that the newly deployed
microservice M ′

1 runs properly on Sa and Sb. Note that external client requests
are still routed to M1, as M ′

1 is assigned a temporary route.

initial architecture architecture 2 target architecture 

Legend :  

added microservices,
associated to temporary route
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Sa Sb
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M1'(r,2)
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M3(y,1)
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Highlight a change 
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The microservice M 
is deployed, associated
to the route x and 
has y instances 
running 

Fig. 5. Elementary application update through the BlueGreen strategy

Once the final target architecture has been reached, we want to continue with
a new update, upgrading M ′

1 towards a new version M ′′
1 on Sa and Sb. Due to
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a faulty configuration, M ′′
1 fails to run properly on Sb, automatically stopping

the update. Here we only have to fix M ′′
1 ’s configuration and re-issue the same

pushArchitecture request to continue the upgrade of M ′
1 towards M ′′

1 .
However, M ′′

1 ’s still fails to run properly on Sb. To fix the problem, we decide
to launch a new pushArchitecture command with the initial architecture as tar-
get, which rollbacks the partial updates we just tried. This results in the auto-
matic un-deployment of M ′′

1 on Sa and Sb.
Finally, to consider framework failures, we process updates along with a

script that randomly kills the framework. This time we consider longer processes,
updating one hundred microservices. Each time the framework is killed, whatever
the current state of the application, we just have to re-launch it and re-issue the
last pushArchitecture command to pursue the update towards the desired target.

6.3 Protecting SLA Properties: Real-Life Application Usecase

We used our framework to update a complete clone of a cross-canal order capture
application in live production at Orange, focusing on the simultaneous update of
two microservices ((C)atalog and (E)ligibility) that were deployed redundantly
over three distributed CloudFoundry (version 2.75.0) PaaS sites (S0, S1, S2). The
two microservices are about 10000 lines programmed in Java/Angular. Cloud-
Foundry ran on Cloudwatt [33] on top of OpenStack [34], under VMs with
medium flavor (4GB/2VCPU/50GB disk). The update to perform included a
code upgrade for the Catalog microservice and configuration changes for the
Eligibility microservice. We experienced with four strategies, comparing their
metrics: duration of the whole update process, downtime of the microservices
during the update (evaluated with Apache Jmeter), and resource consumption
(representative of the billing costs for the update). Each experiment was per-
formed 30 times. Results are given in Fig. 6.

Fig. 6. Update metrics

The Canary strategy (whise behavior is shown in Fig. 7) does not involve
additional cost in terms of resource usage. It ensures that any deployment of a
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Fig. 7. Real application update through the Canary strategy

new microservice instance is preceded by the removal of a current one. In the
version we used, the first new instance being deployed is associated to a tempo-
rary route to allow testing before continuing the update. Notice that in case of
high request load, some client requests may not be served as the microservices
have one less instance running during the update. Overall, this strategy involves
21 intermediate architectures to reach the target, 7 per site, sites being updated
sequentially. Its processing took about 10 min.

In comparison, the BlueGreen strategy updates the two microservices
through creating the three new (green) instances before removing the three cur-
rent (blue) ones, on all sites in parallel. Accordingly, it ensures zero downtime
but consumes nearly the double of memory during the update. The duration
is about 7 min, corresponding to the time required to create the new microser-
vices instances (which includes uploading their code), to switch their route, and
remove the three blue instances, on one site.
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The Mixed strategy (Fig. 8) updates microservices instance by instance, cre-
ating a new instance before removing an old one, across all sites in parallel. This
strategy takes approximately the same duration as BlueGreen, with no down-
time. It further limits the update cost in terms of resource usage since it uses
only one extra instance for each microservice while the BlueGreen doubles the
number of instances per site.

Finally, the Straight strategy delivers the shortest update duration (4 min),
as it reaches the target without going through intermediate architectures. The
duration corresponds to the time needed to update both microservices on one
site, the three sites being updated in parallel. This strategy does not consume
any additional resources but induces the largest downtime as the microservices
are stopped before their new version is uploaded, recompiled, and restarted.

7 Conclusion

With the proposed framework, devops teams update microservices through spec-
ifying target architectures and chosing strategies. They can follow an update step
by step, with the opportunity to change the strategy or adapt the target archi-
tecture at each step, which is key to handle failures gracefully. Since it permits
to pre-compute a path of intermediate architectures, the architecture-based app-
roach leveraged in this paper opens up an interesting perspective: predicting how
well a strategy will protect SLA properties during an update.
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