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Abstract. Segmentation of image sequences is an important task in
medical image analysis, which enables clinicians to assess the anatomy
and function of moving organs. However, direct application of a segmen-
tation algorithm to each time frame of a sequence may ignore the tempo-
ral continuity inherent in the sequence. In this work, we propose an image
sequence segmentation algorithm by combining a fully convolutional net-
work with a recurrent neural network, which incorporates both spatial
and temporal information into the segmentation task. A key challenge in
training this network is that the available manual annotations are tempo-
rally sparse, which forbids end-to-end training. We address this challenge
by performing non-rigid label propagation on the annotations and intro-
ducing an exponentially weighted loss function for training. Experiments
on aortic MR image sequences demonstrate that the proposed method
significantly improves both accuracy and temporal smoothness of seg-
mentation, compared to a baseline method that utilises spatial informa-
tion only. It achieves an average Dice metric of 0.960 for the ascending
aorta and 0.953 for the descending aorta.

1 Introduction

Segmentation is an important task in medical image analysis. It assigns a class
label to each pixel/voxel in a medical image so that anatomical structures of
interest can be quantified. Recent progress in machine learning has greatly
improved the state-of-the-art in medical image segmentation and substantially
increased accuracy. However, most of the research so far focuses on static image
segmentation, whereas segmentation of temporal image sequences has received
less attention. Image sequence segmentation plays an important role in assessing
the anatomy and function of moving organs, such as the heart and vessels. In
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this work, we propose a novel method for medical image sequence segmentation
and demonstrate its performance on aortic MR image sequences.

There are two major contributions of this work. First, the proposed method
combines a fully convolutional network (FCN) with a recurrent neural network
(RNN) for image sequence segmentation. It is able to incorporate both spatial
and temporal information into the task. Second, we address the challenge of
training the network from temporally sparse annotations. An aortic MR image
sequence typically consists of tens or hundreds of time frames. However, manual
annotations may only be available for a few time frames. In order to train the
proposed network end-to-end from temporally sparse annotations, we perform
non-rigid label propagation on the annotations and introduce an exponentially
weighted loss function for training.

We evaluated the proposed method on an aortic MR image set from 500 sub-
jects. Experimental results show that the method improves both accuracy and
temporal smoothness of segmentation, compared to a state-of-the-art method.

1.1 Related Works

FCN and RNN. The FCN was proposed to tackle pixel-wise classification
problems, such as image segmentation [1]. Ronnerberger et al. proposed the U-
Net, which is a type of FCN that has a symmetric U-shape architecture for
feature analysis and synthesis paths [2]. It has demonstrated remarkable perfor-
mance in static medical image segmentation. The RNN was designed for handling
sequences. The long short-term memory (LSTM) network is a type of RNN that
introduces self-loops to enable the gradient flow for long durations [3].

In the domain of medical image analysis, the combination of FCN with RNN
has been explored recently [4-9]. In some works, RNN was used to model the
spatial dependency in static images [4-6], such as the inter-slice dependency in
anisotropic images [4,5]. In other works, RNN was used to model the temporal
dependency in image sequences [7-9]. For example, Kong et al. used RNN to
model the temporal dependency in cardiac MR image sequences and to predict
the cardiac phase for each time frame [7]. Xue et al. used RNN to estimate the left
ventricular areas and wall thicknesses across a cardiac cycle [8]. Huang et al. used
RNN to estimate the location and orientation of the heart in ultrasound videos
[9]. These works on medical image sequence analysis [7-9] mainly used RNN for
image-level regression. The contribution of our work is that instead of performing
regression, we integrate FCN and RNN to perform pixel-wise segmentation for
medical image sequences.

Sparse Annotations. Manual annotation of medical images is time-consuming
and tedious. It is normally performed by image analysts with clinical knowl-
edge and not easy to outsource. Consequently, we often face small or sparse
annotation sets, which is a challenge for training a machine learning algorithm,
especially neural networks. To learn from spatially sparse annotations, Cicek et
al. proposed to assign a zero weight to unlabelled voxels in the loss function
[10]. In this work, we focus on learning from temporally sparse annotations and



588 W. Bai et al.

address the challenge by performing non-rigid label propagation and introducing
an exponentially weighted loss function.

Aortic Image Segmentation. For aortic image sequence segmentation, a
deformable model approach has been proposed [11], which requires a region
of interest and the centre of aorta to be manually defined in initialisation. This
work proposes a fully automated segmentation method.
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Fig. 1. The proposed method analyses spatial features in the input image sequence
using U-Net, extracts the second last layer of U-Net as feature maps z, connects them
using convolutional LSTM (C-LSTM) units across the temporal domain and finally
predicts the label map sequence.

2 Methods

2.1 Network Architecture

Figure 1 shows the diagram of the method. The input is an image sequence
I ={L|t =1,2,...,T} across time frames ¢ and the output is the predicted
label map sequence L = {L;|t = 1,2,...,T}. The method consists of two main
parts, FCN and RNN. The FCN part analyses spatial features in each input
image I; and extracts a feature map x;. We use the U-Net architecture [2] for
the FCN part, which has demonstrated good performance in extracting features
for image segmentation.

The second last layer of the U-Net [2] is extracted as the feature map z; and
fed into the RNN part. For analysing temporal features, we use the convolu-
tional LSTM (C-LSTM) [12]. Compared to the standard LSTM which analyses
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one-dimensional signals, C-LSTM is able to analyse multi-dimensional images
across the temporal domain. Each C-LSTM unit is formulated as:

iy = o(xs * Wy + hy—q * Wy + b;)

fr=0(xs* Wap+ hy—1 x Wiy + by)

et =ct—1 O fr +ip © tanh(zy * Woe + hy—q % Whe + be) (1)
o0t = o(xy * Wyo + hi—1 % Who + by)

hi = o4 ® tanh(c;)

where * denotes convolution!, ® denotes element-wise multiplication, o(-)

denotes the sigmoid function, i, f;, ¢; and o; are respectively the input gate
(i), forget gate (f), memory cell (c) and output gate (o), W and b denote the
convolution kernel and bias for each gate, x; and h; denote the input feature
map and output feature map. The equation shows that output h; at time point
t is determined by both the current input x; and the previous states ¢;_; and
ht—1. In this way, C-LSTM utilises past information during prediction. In the
proposed method, we use bi-directional C-LSTM, which consists of a forward
stream and a backward stream, as shown in Fig.1, so that the network can
utilise both past and future information.

The output of C-LSTM is a pixel-wise feature map h; at each time point ¢.
To predict the probabilistic label map Ly, we concatenate the outputs from the
forward and backward C-LSTMs and apply a convolution to it, followed by a
softmax layer. The loss function at each time point is defined as the cross-entropy
between the ground truth label map L; and the prediction L.
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Fig. 2. Label propgation and the weighting function for propagated label maps.

2.2 Label Propagation and Weighted Loss

To train the network end-to-end, we require the ground truth label map sequence
across the time frames. However, the typical manual annotation is temporally

! The standard LSTM performs multiplication instead of convolution here.
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sparse. For example, in our dataset, we only have manual annotations at two
time frames, end-diastole (ED) and end-systole (ES). In order to obtain the
annotations at other time frames, we perform label propagation. Non-rigid image
registration [13] is performed to estimate the motion between each pair of suc-
cessive time frames. Based on the motion estimate, the label map at each time
frame is propagated from either ED or ES annotations, whichever is closer, as
shown in Fig. 2(a).

Registration error may accumulate during label propagation. The further a
time frame is from the original annotation, the larger the registration error might
be. To account for the potential error in propagated label maps, we introduce a
weighted loss function for training,

E©) = Y wlt - s)- f(L, Li(6)) (2)

t

where 6 denotes the network parameters, f(-) denotes the cross-entropy between
the propagated label map L; and the predicted label map L;(6) by the network,
s denotes the nearest annotated time frame to ¢ and w(-) denotes an exponential
weighting function depending on the distance between ¢ and s,

_ |t—8‘ r
w(t—s) = -2 0

where R denotes the radius of the time window 7" for the unfolded RNN and
the exponent r is a hyper-parameter which controls the shape of the weighting
function. Some typical weighting functions are shown in Fig.2(b). If » = 0, it
treats all the time frames equally. If r» > 0, it assigns a lower weight to time
frames further from the original annotated frame.

2.3 Evaluation

We evaluate the method performance in two aspects, segmentation accuracy and
temporal smoothness. For segmentation accuracy, we evaluate the Dice overlap
metric and the mean contour distance between automated segmentation and
manual annotation at ED and ES time frames. We also calculate the aortic
area and report the difference between automated measurement and manual
measurement. For evaluating temporal smoothness, we plot the curve of the
aortic area A(t) against time, as shown in Fig. 4, calculate the curvature of the

17
. A
time-area curve, k(t) = —2 (Wl

= G3A20)5 and report the mean curvature across time.

3 Experiments and Results

3.1 Data and Annotations

We performed experiments on an aortic MR image set of 500 subjects, acquired
from the UK Biobank. The typical image size is 240 x 196 pixel with the spatial
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resolution of 1.6 x 1.6 mm?. Each image sequence consists of 100 time frames,
covering the cardiac cycle. Two experienced image analysts manually annotated
the ascending aorta (AAo) and descending aorta (DAo) at ED and ES time
frames. The image set was randomly split into a training set of 400 subjects and
a test set of 100 subjects. The performance is reported on the test set.

3.2 Implementation and Training

The method was implemented using Python and Tensorflow. The network was
trained in two steps. In the first step, the U-Net part was trained for static image
segmentation using the Adam optimiser for 20,000 iterations with a batch size
of 5 subjects. The initial learning rate was 0.001 and it was divided by 10 after
5,000 iterations. In the second step, the pre-trained U-Net was connected with
the RNN and trained together end-to-end using image and propagated label
map sequences for 20,000 iterations with the same learning rate settings but a
smaller batch size of 1 subject due to GPU memory limit. Data augmentation
was performed online, which applied random translation, rotation and scaling
to each input image sequence. Training took ~22h on a Nvidia Titan Xp GPU.
At test time, it took ~10s to segment an aortic MR image sequence.

3.3 Network Parameters

There are a few parameters for the RNN, including the length of the time window
T after unfolding the RNN and the exponent r for the weighting function. We
investigated the impact of these parameters. Table 1 reports the average Dice
metric when the parameters vary. It shows that a combination of time window
T = 9 and exponent r = 0.1 achieves a good performance. When the time
window increases to 21, the performance slightly decreases, possibly because the
accumulative error of label propagation becomes larger. The exponent r = 0.1
outperforms r = 0, the latter treating the annotated frames and propagated
frames equally, without considering the potential propagation error.

Table 1. Mean dice overlap metrics of the aortas when parameters vary.

(a) Varying T' (r = 0.1) (b) Varying r (T' =9)
T | Alo DAo r AAo DAo
5 0.959  0.952 0 0.955 0.949
9 | 0.960 0.953 0.1 0.960 0.953
13 | 0.959  0.950 1.0 0.959  0.951
17 | 0.959  0.952 10.0 | 0.959  0.948
21 | 0958  0.951 100.0 | 0.960 0.949




592 W. Bai et al.

Table 2. Quantitative comparison to U-Net. The columns list the mean dice metric,
contour distance error, aortic area error and time-area curve curvature.

Dice metric | Dist. error (mm) | Area error (mm?) | Curvature
AAo |DAo |AAo|DAo AAo |DAo AAo|DAo
U-Net 0.953 10.944 1 0.80 | 0.69 51.68 |35.96 0.47 10.38
Proposed | 0.960 | 0.953 | 0.67 | 0.59 39.61 | 27.98 0.41 | 0.28

3.4 Comparison to Baseline

We compared the proposed method to the U-Net [2], which is a strong baseline
method. U-Net was applied to segment each time frame independently. Figure 3
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Fig. 3. Comparison of the segmentation results for U-Net and the proposed method.
The yellow arrows indicate segmentation errors made by U-Net.
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compares the segmentation results on two exemplar cases. In Case 1, the U-Net
misclassifies a neighbouring vessel as the ascending aorta. In Case 2, the U-Net
under-segments the descending aorta. For both cases, the proposed method cor-
rectly segments the aortas. Figure4 compares the time-area curves of the two
methods on a exemplar subject. It shows that the curve produced by the pro-
posed method is temporally smoother with less abrupt changes. Also, the curve
agrees well with the manual measurements at ED and ES. Table2 reports the
quantitative evaluation results for segmentation accuracy and temporal smooth-
ness. It shows that the proposed method outperforms the U-Net in segmentation
accuracy, achieving a higher Dice metric, a lower contour distance error and a
lower aortic area error (all with p < 0.001 in paired t-tests). In addition, the pro-
posed method reduces the curvature of the time-area curve (p < 0.001), which
indicates improved temporal smoothness.

4 Conclusions

In this paper, we propose a novel method which combines FCN and RNN for
medical image sequence segmentation. To address the challenge of training the
network with temporally sparse annotations, we perform non-rigid label propa-
gation and introduce an exponentially weighted loss function for training, which
accounts for potential errors in label propagation. We evaluated the method
on aortic MR image sequences and demonstrated that by incorporating spatial
and temporal information, the proposed method outperforms a state-of-the-art
baseline method in both segmentation accuracy and temporal smoothness.
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