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Abstract. Deep feature derived from convolutional neural network
(CNN) has demonstrated superior ability to characterize the biologi-
cal aggressiveness of tumors, which is typically based on convolutional
operations repeatedly processed within a local neighborhood. Due to the
heterogeneity of lesions, such local deep feature may be insufficient to rep-
resent the aggressiveness of neoplasm. Inspired by the non-local neural
networks in computer vision, the non-local deep feature may be remark-
ably complementary for lesion characterization. In this work, we propose
a local and non-local deep feature fusion model based on common and
individual feature analysis by extracting common and individual compo-
nents of local and non-local deep features to characterize the biological
aggressiveness of lesions. Specifically, we first design a non-local subnet-
work for non-local deep feature extraction of neoplasm, and subsequently
combine local and non-local deep features with a specific designed fusion
subnetwork based on common and individual feature analysis. Experi-
mental results of malignancy characterization of clinical hepatocellular
carcinoma (HCC) with Contrast-enhanced MR images demonstrate sev-
eral intriguing features of the proposed local and non-local deep feature
fusion model as follows: (1) Non-local deep feature outperforms local deep
feature for lesion characterization; (2) The fusion of local and non-local
deep feature yields further improved performance of lesion characteriza-
tion; (3) The fusion method of common and individual feature analysis
outperforms the method of simple concatenation and the method of deep
correlation model.

1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary hepatic malig-
nancy, ranking second in the world for the cause of death from tumors [1].
Malignancy of HCC is an important prognostic factor that affects recurrence
and survival after liver transplantation or surgical resection in clinical practice
[2]. MR imaging has played a significant role in the diagnosis of HCC, in which
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there are a variety of studies that address the malignancy characterization of
HCC by identifying imaging features [3,4]. However, such morphological features
are generally dependent on empirical manual design, which are often insufficient
to characterize the heterogeneity of the tumor.

Deep features relied on data-driven learning from samples demonstrate supe-
rior ability to characterize tumors [5]. Recently, deep feature in the arterial phase
of Contrast-enhanced MR has been verified to outperform texture features for
malignancy characterization of HCC [6]. Such local deep feature is typically
based on convolutional operations repeatedly processed within a local neighbor-
hood. More recently, a non-local neural network has been illustrated for the task
of video classification in computer vision, which is based on a non-local operation
that allows distant pixels to make contribution to the response at a position as
a weighted mean of features from all the distant pixels [7]. We hypothesize that
such non-local deep feature may be remarkably applicable and complementary
to local deep feature for malignancy characterization of HCC.

More importantly, it is essential to take full advantage of the local and non-
local deep features by optimal fusion for lesion characterization. One simple way
for fusing information is concatenating deep features [8] or integrating multi-
modal results based on weighted summation [9]. Recently, deep correlational
model has been proposed to extract maximum correlated representation of deep
features from multimodal by canonic correlation analysis for lesion character-
ization [10]. However, only shared or correlated component of deep features
between modals are extracted, neglecting the influence of separation of deep
features across modals for characterization. As a matter of fact, a common part
to be shared and a modal-specific part from features of the color and depth
information have been recovered to represent the implicit relationship between
different modalities for RGB-D object recognition [11,12]. We hypothesize that
both the correlated component and separated component between local and
non-local deep features of neoplasm may play significant roles in malignancy
characterization of HCC.

In this work, we propose a local and non-local deep feature fusion model to
characterize the malignancy of HCC. The proposed model first extracts local
and non-local deep feature of neoplasm separately, and subsequently recovers
common and individual components of local and non-local deep features based
on common and individual feature analysis. Specifically, the learned common and
individual features can reflect the implicit relationship of local and non-local deep
features, which further improve the performance of malignancy characterization
of HCC.

2 Method

2.1 Local Deep Feature Extraction

The local deep feature extraction consists of multiple repetitions of convolutional
layer with activation function. Given the input feature of image x in CNN, the
local deep feature y is obtained by y = σ(Wx + b), where W is a convolutional
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filter based on a convolutional operation that sums up the weighted input in
a local neighborhood, b is the bias term, σ is the rectified linear unit (ReLU)
active function.

2.2 Non-local Deep Feature Extraction

The non-local deep feature extraction is based on the conventional non-local
mean operation defined in deep neural network as follows [7]

yi =
1

C(x)

∑

∀j

f(xi, xj)g(xj) (1)

where i is the index of a position to be computed and j is the index of all possible
positions. x is the input image and y is the output non-local feature of the same
size as x. A similarity function f computes a scalar that manifests approximation
between i and j. The function g computes a representation of the input image
at the position j. The response is normalized by a factor C(x).

In this work, the g is considered in the form of a linear embedding as g(xj) =
Wgxj , where Wg is a weight matrix to be learned. Furthermore, the similarity
function f is considered by the embedded Gaussian as f(xi, xj) = eθ(xi)

T φ(xj),
where θ(xi) = Wθxi, and φ(xj) = Wφxj are two embeddings.

We set C(x) =
∑

∀j f(xi, xj), and for a given i, 1
C(x)f(xi, xj) becomes the

softmax computation along the dimension j. Therefore, the output non-local
deep feature y becomes

y = softmax(xT Wθ
T Wφx)Wgx (2)

where Wg, Wθ and Wφ are three weight matrices to be learned. Inspired by
the work of [7] in video classification, an implementation of the non-local deep
feature map y of neoplasm is described in Fig. 1. Different from the work of [7] in
video classification, we conduct the non-local operation directly for the non-local
deep feature extraction of neoplasm without considering the residual connection.

Fig. 1. An implementation of the 3D non-local deep feature map.
⊗

denotes matrix
multiplication, and “1 × 1 × 1” denotes 1 × 1 × 1 convolutions. Note that the softmax
operation is performed on each row, and we set the number of channels in x to 64.
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2.3 Correlation and Individual Feature Analysis

Given two local and non-local deep feature sets {Yi ∈ R(Ii×J), i = 1, 2}, the
Correlation and individual feature analysis is to extract common and individual
components between the two deep feature sets Y1 and Y2 in disciplines. Each
feature set Yi is typically decomposed into three terms as follows [13]:

Yi = Ji + Ai + Ri, i = 1, 2 (3)

where Ji ∈ R(Ii×J) and Ai ∈ R(Ii×J) are low-rank matrices, denoting com-
mon component between sets and individual component associated with each
set, respectively. Ri ∈ R(Ii×J) is a matrix denoting residual noise. In order to
facilitate the identification of common and individual components, the rows of
J and Ai should be mutually orthogonal. Hence, the common component Ji and
individual component Ai can be represented by the original deep feature Yi as

Ji = V T
i ViYi, Ai = QT

i QiYi (4)

where Vi is the mapping matrix that projects the original deep feature Yi into
the common component Ji, and Qi is the mapping matrix that projects the
original deep feature Yi into the individual component Ai. As Ji and Ai should
be unrelated and not contaminated by each other, the mapping matrix Vi and
Qi should be orthogonal to each other as V T

i Qi = 0.
The purpose of extracting the common and individual components between

the two local and non-local deep features {Yi ∈ R(Ii×J), i = 1, 2} is solving the
constrained least-squares problem:

min ||V1Y1 − V2Y2||2F ,

s.t. Yi = V T
i ViYi + QT

i QiYi, i = 1, 2

V T
i Qi = 0, i = 1, 2

(5)

Where || · ||F is the Frobenius norm. In this work, alternating optimization is
adopted to minimize the constraint least squares problem for all the variable Vi

and Qi. Based on the Lagrange multiplier criterion, the Lagrange function to
minimize the constrained least-squares problem is

ι(φ, θ) =||V1Y1 − V2Y2||2F +
2∑

i=1

φi||Yi − V T
i ViYi − QT

i QiYi||2F

+
2∑

i=1

θi||V T
i Qi||2F

(6)

Where φi and θi are the positive Lagrange multipliers related to the two linear
constraints. In this work, we first learn the mapping matrices Vi to map the local
and non-local deep features Yi into the common feature space Ji separately, and
then we use Singular Value Decomposition (SVD) to construct the orthogonal
basis Qi of the matrix Vi. Finally, the common component Ji and individual
component Ai are obtained by Vi and Qi according to Eq. (4).
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2.4 Local and Nonlocal Deep Feature Fusion Framework

Figure 2 showed the proposed local and non-local deep feature fusion framework.
With respect to the extraction of 3D local deep feature by conventional CNN,
the convolutional layer was determined by convolving the extracted 3D patches
(16 × 16 × 16) with a 3D convolution filter (3 × 3 × 3) to get the convolution
feature maps of the original 3D patch, followed by a pooling layer to perform
downsampling operation along the 3D dimensions. In addition, the non-local
deep feature can be obtained by the non-local operation as demonstrated in the
previous Sect. 2.2. Subsequently, the fusion layer performed the correlation and
individual feature analysis to recover common and individual components from
the local and non-local deep features. The common component J1 or J2 and
the individual component A1 and A2 are concatenated as the output of local
and non-local deep feature fusion, followed by the fully-connected layer and the
softmax layer to yield the classification results of low-grade or high-grade of
HCC.

Fig. 2. The proposed local and non-local deep feature fusion framework.

2.5 The Implementation

The proposed framework is implemented by python on the platform of Ten-
sorFlow, and the configuration of GPUs used in this work is NVIDIA GeForce
GTX1080. The whole network is trained in an end-to-end manner. For the opti-
mization, we use the well-known Adam algorithm [14] for Stochastic Optimiza-
tion to minimize the objective function. The number of iterations is set to 15000.
The initialization of the learning rate is set to 1e–4, and the decay of the learning
rate is set to 0.99.
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3 Results

The accuracy, sensitivity and specificity are quantitatively computed for malig-
nancy characterization of HCC, and the 4-fold cross-validation with 10 repeti-
tions is adopted to evaluate the performance of the proposed framework.

3.1 Subjects, MR Imaging and Histology Information

Forty-six HCC patients with 46 HCCs are included for this retrospective study
from October 2011 to September 2015. Contrast-enhanced MR images with Gd-
DTPA agent administration are acquired with a 3.0T MR scanner (Signa Excite
HD 3.0T, GE Healthcare, Milwaukee, WI, USA), including pre-contrast, arterial,
portal venous, and delayed phase images. The pathological information of HCCs
is retrieved from the clinical histology report, including Edmondson grade I (1),
II (20), III (24) and IV (1) for these forty-six HCCs. Clinically, Edmondson
grade I and II are low-grade, and Edmondson grade III and IV are high-grade,
resulting in 21 low-grade and 25 high-grade HCCs for this study. Note that the
clinical data has been used in the work of [4,6].

3.2 Performance of Local and Nonlocal Deep Feature

Table 1 showed the characterization performance of local, non-local and the pro-
posed local and non-local fusion of deep features from the arterial phase of
Contrast-enhanced MR in 2D and 3D, respectively. First, it can be found that
3D deep feature outperformed 2D deep feature either in local or non-local cir-
cumstances for malignancy characterization of HCC, which demonstrated that
3D CNN or 3D Non-local Neural network encoded sufficiently spatial informa-
tion in volumetric data compared with 2D CNN or 2D Non-local Neural network.
Furthermore, non-local deep feature showed better performance than local deep
feature for malignancy characterization both in 2D and 3D, indicating that non-
local deep feature may embed more image feature from vascularity and cellular-
ity of neoplasm to characterize the aggressiveness of HCC. Finally, the proposed
local and non-local deep feature fusion yielded best results both in 2D and 3D
when taking advantage of local and non-local deep features.

3.3 Comparison of Deep Feature Fusion Methods

Table 2 showed the performance comparison of local and non-local deep feature
fusion by direct concatenation, deep correlation model and the common and
individual feature in 2D and 3D, respectively. Compared with the performance
of local or non-local deep features in 2D and 3D as tabulated in Table 1, all
the fusion methods could obtain improved results as shown in Table 2. Compar-
atively, the proposed fusion method based on common and individual feature
analysis yielded better results than direct concatenation and deep correlation
model both in 2D and 3D circumstances. Furthermore, the individual compo-
nent between local and non-local deep features also yielded promising results
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Table 1. Performance comparison of local, non-local and the proposed local and non-
local fusion of deep features in 2D and 3D from the arterial phase of Contrast-enhanced
MR(%).

Accuracy Sensitivity Specificity

2D local 84.61± 7.25 87.60± 11.81 83.00± 17.19

2D non-local 86.32± 7.93 87.61± 12.16 87.24± 10.83

2D local and non-local fusion 89.74± 8.88 91.51± 8.55 88.17± 16.12

3D local 87.69± 7.05 86.96± 9.99 89.53± 11.58

3D non-local 90.00± 6.01 86.95± 9.35 93.42± 8.24

3D local and non-local fusion 93.16± 4.36 94.14± 8.92 91.30± 11.26

for malignancy characterization of HCC, especially in 3D. Specifically, the com-
mon feature yielded slightly better results than that of the deep correlation
model, demonstrating that the common component recovered by the common
and individual feature analysis has more advantage than that from the canonical
correlation analysis, which is consistent with the previous finding in [13].

Table 2. Performance comparison of local and non-local deep feature fusion in 2D and
3D by direct concatenation, deep correlation model and the common and individual
feature analysis(%).

Accuracy Sensitivity Specificity

2D direct concatenation 88.03± 8.20 92.44± 11.77 86.01± 12.37

2D deep correlation model 88.89± 9.67 93.94± 6.92 85.81± 14.07

2D common feature 89.74± 6.28 92.35± 6.98 89.09± 10.16

2D individual feature 88.89± 8.20 92.70± 6.71 87.39± 13.13

2D common and individual feature analysis 90.60± 4.83 93.77± 7.35 87.50± 9.43

3D direct concatenation 91.45± 7.64 93.52± 9.80 90.22± 12.02

3D deep correlation model 90.60± 6.04 87.70± 9.40 91.45± 11.22

3D common feature 91.45± 5.67 91.16± 8.71 91.91± 7.64

3D individual feature 92.31± 6.28 91.78± 9.84 91.30± 12.71

3D common and individual feature analysis 93.16± 4.36 94.14± 8.92 91.30± 11.26

4 Conclusion

The proposed local and non-local deep feature fusion model yields superior per-
formance for malignancy characterization of HCC in comparison of local deep
feature, non-local deep feature, and the fusion methods of direct concatenation
and deep correlation model, providing a novel strategy for the biological aggres-
siveness prediction and treatment planning of neoplastic diseases.
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